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1. The past: robust statistics

2. The present: model selection

3. The future: protein data, meat science, joint modelling, data

visualisation…



The past:

Robust statistics



PhD and postdoc at Sydney University

Inference in quantile regression models·

Robust scale estimator

Robust covariance and autocovariance (short and long range
dependence)

Robust precision matrix estimation (with regularisation for sparsity)

·

·

·



: our robust scale estimator
Given data , consider the -statistic based on the
pairwise mean kernel,

Let  be the cdf of the kernels with corresponding
empirical distribution function,

For , let .

We define  as the interquartile range of the pairwise means:

·

·

·



Why another scale estimator?
Location Scale Properties

Mean Standard
deviation

Efficient at normal but not robust

Median Interquartile
Range

Robust but not efficient

Hodges-Lehmann
estimator

Good robustness and efficiency
properties

The Hodges-Lehmann estimator of location is the median of the
pairwise means.

 is the interquartile range of the pairwise means.

·

·



Why pairwise means?
Consider 10 observations drawn from .



Bounded influence function
The influence curve for a functional  at distribution  is

where  has all its mass at .

Influence curve for 

Assuming that  has derivative  on  for all ,

T F

IF(x; T, F) = lim
ϵ↓0

T((1 − ϵ)F + ϵ ) − T(F)δx
ϵ

δx x

Pn

F f > 0 [ (ϵ), (1 − ϵ)]F−1 F −1 ϵ > 0

IF(x; , F)Pn = [
0.75 − F(2 (0.75) − x)H−1

F

∫ f (2 (0.75) − x)f (x)dxH−1
F

− ] .
0.25 − F(2 (0.25) − x)H −1

F

∫ f (2 (0.25) − x)f (x)dxH−1
F



Bounded influence function



Bounded influence function



Properties

Tarr, Müller, and Weber (2012)

Bounded influence function

When the underlying observations are independent,  is
asymptotically normal with variance given by the expected square of
the influence function.

When the underlying data are independent Gaussian,  has an
asymptotic efficiency of 86%.

Breakdown value of 13%.

·

·

·

·



Properties

Tarr, Müller, and Weber (2012)

Tarr, Weber, and Müller (2015)

Bounded influence function

When the underlying observations are independent,  is
asymptotically normal with varaince given by the expected square of
the influence function.

When the underlying data are independent Gaussian,  has an
asymptotic efficiency of 86%.

Breakdown value of 13%.

·

·

·

·

Also looked at the distribution of the estimator under short and long
range dependence

LRD turned out to be very complicated

Took a step back and looked at the interquartile range

·

·

·



Cellwise contamination
A key component of my PhD looked at estimating precision matrices for
data contaminated in a cellwise manner.

Important for:

Often sparsity is assumed, i.e. the precision matrix will have many zero
entries.

high dimensional data

automated data collection and analysis methods

e.g. -omics type data

·

·

·













Financial example
Aim: to estimate the dependence structure with S&P 500 stocks over the
period 01/01/2003 to 01/01/2008 (before the GFC).

How: using the graphical lasso with a robust covariance matrix as the
input.

Tarr, Müller, and Weber (2015)

We have  obervations (trading days) over  dimensions
(stocks).

Observe  the closing price of stock  on day  for  and 
.

Look at the return series .

We want to estimate a sparse precision matrix where the zero entries
correspond to (conditional) independence between the stocks.

·

·

·

·



What's the graphical lasso?
The graphical lasso minimises the penalised negative Gaussian log-
likelihood: over non-negative definite matrices :

where  is the  norm,  is a tuning parameter for the amount of
shrinkage and  is a sample covariance matrix.

Friedman, Hastie, and Tibshirani (2008)

Why? Sparsity!



Financial example
require(huge)
data(stockdata)
X = log(stockdata$data[2:1258,]/stockdata$data[1:1257,])
par(mfrow=c(3,2),mar=c(2,4,1,0.1))
for(i in 1:6) ts.plot(X[,i],main=stockdata$info[i,3],ylab="Return")



Classical approach



Robust approach



Classical approach (extra contamination)



Robust approach (extra contamination)



Take home messages

Robust methods

Cellwise contamination

Robustness has always been quite niche, but it deserves more attention

Analysing real data means dealing with errant observations

Having reliable methods to deal with these observations is important

·

·

·

With big data comes big problems

Traditional robust methods can fail

Downweighting rows is no longer appropriate

·

·

·



The present:

Model selection



Model selection

Some notation

Started working in this area last year during a post doc at ANU.·

Say we have a full model with an  design matrix .

Let  be any subset of  distinct elements from .

We can define a  submodel with design matrix  subset from 
by the elements of .

Denote the set of all possible models as .

·

·

·

·



A smörgåsbord of tuning parameters…
Information Criterion

With important special cases:

Regularisation routines

Generalised IC: ·

AIC: 

BIC: 

HQIC: 

·

·

·

Lasso: minimises 

Many variants of the Lasso, SCAD,…

·

·



A stability based approach

Aim

To provide scientists and researchers with tools that give them more
information about the model selection choices that they are making.

Method

Concept of model stability independently introduced by Meinshausen
and Bühlmann (2010) and Müller and Welsh (2010) for different models.

interactive graphical tools

exhaustive searches (where feasible)

bootstrapping to assess selection stability

·

·

·



Diabetes example
Variable Description

age Age

sex Gender

bmi Body mass index

map Mean arterial pressure (average blood pressure)

tc Total cholesterol (mg/dL)

ldl Low-density lipoprotein ("bad" cholesterol)

hdl High-density lipoprotein ("good" cholesterol)

tch Blood serum measurement

ltg Blood serum measurement

glu Blood serum measurement (glucose?)

y A quantitative measure of disease progression one year after baseline
Source: Efron, B., Hastie, T., Johnstone, I., Tibshirani, R., (2004). "Least angle regression. The Annals of
Statistics 32 (2): 407-499. doi:10.1214/009053604000000067

doi:10.1214/009053604000000067


Variable inclusion plots

Aim

To visualise inclusion probabilities as a function of the penalty multiplier 
.

Procedure

References

1. Calculate (weighted) bootstrap samples .

2. For each bootstrap sample, at each  value, find  as the model
with smallest .

3. The inclusion probability for variable  is estimated as 

.

Müller and Welsh (2010) for linear regression models

Murray, Heritier, and Müller (2013) for generalised linear models

·

·



Diabetes example – VIP
Variable inclusion plot
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Model stability plots

Aim

To add value to the loss against size plots by choosing a symbol size
proportional to a measure of stability.

Procedure

References

1. Calculate (weighted) bootstrap samples .

2. For each bootstrap sample, identify the best model at each dimension.

3. Add this information to the loss against size plot using model
identifiers that are proportional to the frequency with which a model
was identified as being best at each model size.

Murray, Heritier, and Müller (2013) for generalised linear models·



Artificial example – Model stability plot
Description loss against k
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With hdl
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Adaptive fence
Adaptive fence: c*=45.7

bmi
bmi + ltg
bmi + map + hdl + ltg
bmi + map + ltg
bmi + map + tc + ltg
sex + bmi + map + hdl + ltg
sex + bmi + map + tc + ldl + ltg
sex + bmi + map + tc + ldl + ltg + glu
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Get it on Github ®

Main functions

Diabetes example

Tarr, Müller, and Welsh (2015)

install.packages("devtools")
require(devtools)
install_github("garthtarr/mplot",quick=TRUE)
require(mplot)

af() for the adaptive fence

vis() for VIP and model stability plots

bglmnet() bootstrapping glmnet

mplot() for an interactive shiny interface

·

·

·

·

Interact with it online at garthtarr.com/apps/mplot/ Å·

http://garthtarr.com/apps/mplot/


Take home messages

Concept of "model stability"

Still to do:

Relatively new

Should be used more often

·

·

Approximating linear mixed models by linear models (with Alan Welsh,
ANU)

Approximating generalised linear models by linear models (with Samuel
Mueller, USYD)

Implement other models, e.g. Cox type models

The role of robust analysis in model selection

·

·

·

·



The future



Projects underway (or soon to be)

Melanoma prognosis prediction using protein data (with Jean Yang,
USYD)

·

Predicting the eating quality of beef and lamb (with Meat and
Livestock Australia + international collaborators)

·

Model selection in joint models (with Irene Hudson, UON)·

R packages for interactive data visualisation - bringing the power of D3
to R (edgebundleR, pairsD3)

·
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