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Classification

Theorem (Kirchberg-Phillips)

Let A and B be a separable, simple, nuclear and purely infinite C*-algebra in UCT,
then

A~ B < El(A) ~EI(B).

Definition

A C*-algebra is a subalgebra of B(H) which is norm-closed and closed under adjoints.
A separable, simple, nuclear C*-algebra A is purely infinite iff A= A® Ox.

A C*-algebra A is nuclear iff A ®@min B = A ®max B for any C*-algebra B.

A separable C*-algebra satisfies UCT iff it is KK-equivalent to an abelian C*-algebra.
The Elliott invariant of a C*-algebra is its K-theory paired with traces.
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k-graphs

Definition (Kumjian-Pask)

Let A be a countable small category and let d : A — N¥ be a functor. Then (A, d) is a
k-graph if it satisfies the factorization property: For every A € A and
m,n € Nk = spany{ey, ..., e} st.

d(A)=m+n

there exist unique p, v € A satisfying: d(u) = m, d(v) = nand A = pv.

Set A" := d~1(n) and identify A° = Obj(A), the set of vertices. An element \ € A% is
called an edge. For A\ : u — v we write

s(A)=u, r(A) =v.

" " eSS () | st &
For a vertex v, set vA" := {)\ e N\ r()\) = v}. ITS APPLICATIONS
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Drawing 2-graphs

For every 2-graph A, its 2-coloured directed graph or skeleton Ep is:
» draw a dot for each vertex
» draw an arrow from s(\) to r(\) for each edge A
» colour the arrows: if A € A® = d~1(e1) colour its arrow blue, if A € A® colour its

arrow red,

Recall, by factorisation property, for each A € A®1 there exist unique edges
ex, hy € A and fy, g\ € A2 s.t. A = ey fh = gy hy.

» record Cp = {(exfr, gphy) : A € Narte}

Using the equivalence relation ~¢, on Ex generated by Cp we recover A\: A =2 Ef/~c,.

Conversely, for any 2-coloured directed graph E and collection C s.t. each blue-red and
red-blue path of length 2 appears precisely once in C, then E*/~¢
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The k-graph C*-algebra

Definition (Kumjian-Pask)

Let A be a row-finite k-graph with no sources (i.e., the set vA" is finite and non-empty
for each v € A% and n € N¥). Then C*(A) is the universal C*-algebra generated by a
Cuntz-Krieger A-family: a collection of partial isometries {s) : A € A} s.t.

» {s, : v € A% are mutually orthogonal projections,
> 5,5, = S, Whenever r(v) = s(u),
> sySx = Sg() for all paths A, and

> Sy =Y yeunn S)S; for each v € A and n € NK.

Examples
C*(1 vertex, 1 edge) = C(T), C*(1 vertex, 2 edges) = Os.
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Classification

Recall that for A and B separable, simple, nuclear, UCT and purely infinite,

A= B < El(A) = El(B). Every k-graph C*-algebra is separable, nuclear and in
UCT (Kumjian-Pask, Tu). Simplicity is also characterized in terms of properties of the
k-graph (Robertson-Sims).

Question
When is a simple k-graph C*-algebra purely infinite?

Theorem (Kumjian-Pask-Raeburn)

Every simple 1-graph C*-algebra C*(N) is either purely infinite or AF depending on if
there is a loop or not.

Theorem (Pask-Raeburn-Rrdam-Sims)
The dichotomy of Kumjian-Pask-Raeburn fails for k = 2.
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Dichotomy

Conjecture (Astrid an Huef)

Let C*(N) be a simple C*-algebra of a row-finite k-graph \ with no sources. Then
C*(N) is either purely infinite or stably finite.

Theorem (Pask-Sims-S)

Let C*(N\) be a simple C*-algebra of a row-finite k-graph A\ with no sources. Suppose
its semigroup S(N) (to be defined) is almost unperforated. Then C*(N) is either purely
infinite or stably finite.

Definition
A pre-ordered (abelian) semigroup S is almost unperforated if for every n € N,
x,y €5,
(n+1)x <ny=x<y.
IS )| WIS
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The type semigroup of a k-graph

Definition
Let A be a row-finite k-graph with no sources. Denote the basis for N by ey, ..., e

and let NA? := spany{d, : v € A°} be the abelian semigroup of finitely supported
functions f : A° — N. We define

S(A) == NA%/=n, [f + gln = [flr + [g]a

where ~, is the smallest equivalence relation on NA? making S(A) into the semigroup
s.t. 0y AA Y xevne Os(n) for each v e A% and 1 < < k.

Example
Vi< VW<« V3« W
A d 7 A d 7 A d 7
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The type semigroup of a k-graph

Definition

Let S be an (abelian) semigroup with identity. We say that x € S is infinite if

x + y = x for some nonzero y € S. We call S stably finite if it contains no infinite
elements. If S is pre-ordered it is purely infinite if 2x < x for each nonzero x € S.

Theorem (Pask-Sims-S, cf. Clark-an Huef-Sims)
Let C*(N) be a simple C*-algebra of a row-finite k-graph A\ with no sources. Then
» If S(A) is stably finite or purely infinite then so is C*(N).
» If k =1 then S(N) is stably finite or purely infinite.
» S(A) is stably finite < C*(N) is stably finite.
» S(A) is purely infinite < C*(N) is purely infinite and S(N) is almost unperforated.

INSTITUTE FOR
MATHEMATICS & YRIVERSTYOE @
ITS APPLICATIONS
Hae

«4O0>» «F>» «E» «E»



When is S(A) almost unperforated?
Definition
x,y €85,

Theorem (Pask-Sims-S)

Recall a pre-ordered (abelian) semigroup S is almost unperforated if for every n € N,
(n+1)x<ny=x<y.

unperforated.

Let C*(N) be a simple C*-algebra of a row-finite k-graph \ with no sources. Then
» If A\ has finitely many vertices, then S(N) is almost unperforated.

» If A\ is strongly connected then S(N\) is almost unperforated.

» If \ contains a cycle \ satisfying d(\) > (1,...,1), then S(N\) is almost
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More Examples

Examples
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More Examples

EXan,]pIes
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Thank you.
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