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Graph C ∗-algebras

Definition

A graph E is a 4-tuple (E 0,E 1, r , s), where E 0 is a countable set of
vertices, E 1 is a countable set of edges, and r , s : E 1 → E 0 are the range
and source maps.

Definition

The graph C∗-algebra, C∗(E ), is the universal C∗-algebra generated by:

I pairwise orthogonal projections {pu | u ∈ E 0}, and,

I partial isometries {se | e ∈ E 1},
subject to the relations:

I s∗e sf = 0, if e 6= f ,

I s∗e se = pr(e),

I ses
∗
e ≤ ps(e), and,

I pu =
∑

e∈s−1(u)

ses
∗
e , if 0 < |s−1(u)| <∞.
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Examples of graph C ∗-algebras

•
$$

C (S1)

•
$$

dd O2

•
(∞)
// • K̃

C∗(N2) is not a graph C∗-algebra
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The first classification results

Theorem (Rørdam ’95)

If E ,F are strongly connected finite graphs, not a single cycle, then

C∗(E )⊗K ∼= C∗(F )⊗K ⇐⇒ K0(C∗(E )) ∼= K0(C∗(F )).

Theorem (Restorff ’04)

If E ,F are finite graphs such that every vertex supports a loop and E ,F
satisfy condition (K ), then

C∗(E )⊗K ∼= C∗(F )⊗K ⇐⇒ FKR(C∗(E )) ∼= FKR(C∗(F )).
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Simplified proof strategy

Lemma

If C∗(E ) and C∗(F ) have the same K-theory and E and F both satisfy a
positivity condition, then the shift spaces XE and XF are flow equivalent.

Lemma

If XE and XF are flow equivalent, then C∗(E )⊗K ∼= C∗(F )⊗K.

Lemma

Given a graph G we can find a graph G ′ such that

I C∗(G )⊗K ∼= C∗(G ′)⊗K.

I C∗(G ) and C∗(G ′) have the same K-theory.

I G ′ satisfies the positivity condition.
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Rørdam’s result revisited

Theorem (Rørdam)

Let E ,F be strongly connected finite graphs, not a single cycle.
The following are equivalent:

1. C∗(E )⊗K ∼= C∗(F )⊗K.

2. K0(C∗(E )) ∼= K0(C∗(F )).

3. E can be transformed into F using flow moves and the Cuntz splice.
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Problems with extending the strategy

I Sinks and sources are a dynamical problem.

I Infinite emitters are a different dynamical problem.

I Graphs that do not satisfy condition (K ) have infintely many ideals.

I Old positivity results need to be extended.

I We run into new positivity problems.
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Positivity problems

Problematic graphs

E : •
$$

// •
��

ZZ
// • dd

F : •
$$

//
�� ��

•
��

ZZ
// • dd

Theorem

I C∗(E )⊗K ∼= C∗(F )⊗K.

I We cannot transform E into F using the flow moves and the Cuntz
splice.
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The solution

The Pulelehua move

•
��

��

•
��

�� �� ��
•
$$ ��

��

Move(P)
// •

$$ ��

��

(( •DD
((

hh •DDhh

•DD •DD

Theorem

The Pulelehua move preserves stable isomorphism.
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The main result

Theorem

Let E ,F be graphs with finitely many vertices. The following are
equivalent:

1. C∗(E )⊗K ∼= C∗(F )⊗K.

2. E can be transformed into F using the flow moves, the Cuntz splice
and the Pulelehua move.

3. FK+
R,γ(C∗(E )) ∼= FK+

R,γ(C∗(F )).
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