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Outline

1. C ∗-algebras from monoids and categories (my interpretation)

2. regular representations

3. Wiener-Hopf algebras

4. relation with some other constructions
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G - discrete group. What should be C ∗(G )?

C ∗(G )

G

B(H)

U(H)U

∃!

universal for unitary representations.

P - discrete monoid. What should be C ∗(P)?

¿C ∗(P)?

P B(H)?

∃!
— Not clear what is desired.
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G - discrete group. What should be C ∗(G )?

C ∗(G )

G

B(H)

U(H)U

∃!

universal for unitary representations.

P - discrete monoid. What should be C ∗(P)?

¿C ∗(P)?

P

B(H)

Isom(H)T

∃!

universal for representations by
isometries. Not generally “right” —
too big. Should use a quotient.
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C ∗(G )

G

B(H)

U(H)U

∃!

U(`2(G ))

B(`2(G )) C ∗r (G )

π`

¿C ∗(P)?

P

B(H)

Isom(H)T

∃!

Isom(`2(P))

B(`2(P)) “C ∗r (P)”

π`

“C ∗r (P)” is a reasonable choice for the “smallest” quotient that is
“right”.

What universal property/ies should be used to characterize C ∗(P)?
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Example P = F+
n free semigroup.

For α, β ∈ P write α ≤ β if β = αα′ for some α′ ∈ P (β is an
extension of α). Nica observed: for P = F+

n , if α, β have a
common extension then they have a unique minimal common
extension:

αP ∩ βP 6= ∅ =⇒ ∃!γ ∈ P such that αP ∩ βP = γP.

(P is called singly aligned or LCM.) We write γ = α ∨ β.

Letting Tα = π`(α) ∈ Isom(`2(P)) we have

(∗) TαT
∗
α · TβT ∗β =

{
TγT

∗
γ , if γ = α ∨ β

0, if αP ∩ βP = ∅.
Nica: define C ∗(P) to be universal for (∗).

Q: Why is this “right”? A: C ∗(F+
n ) = T On.
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There ought to be a more fundamental reason . . .

(F+
n ,≤) is a tree, Wn. For α ∈

F+
n , τα : β 7→ αβ is an endo-

morphism.

∂W2

W2

τα, σα = (τα)−1 extend to partial homeomorphisms of Wn ∪ ∂Wn.

σα is the one-sided Bernoulli shift.

Renault: there is a groupoid G with G (0) = Wn ∪ ∂Wn — the
groupoid of germs of {σα, τα}. Moreover C ∗(G ) = T On.

We don’t have to “guess” at the relation (∗).

Many situations pose a similar problem: which came first, the
relations or the algebra? (E.g. graphs, higher rank graphs,
arbitrary monoids.) We can generalize the above construction.
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Λ - a small category (like a monoid, only multiplication is not
always defined).

For α ∈ Λ define the right shift τα : β ∈ s(α)Λ 7→ αβ ∈ αΛ.

Assume Λ is left cancellative: αβ = αγ =⇒ β = γ. Then τα is
one-to-one. Let σα = (τα)−1.

How to imitate the construction of ∂Wn?

One of many ways:

A = smallest ring of sets such that for all α ∈ Λ,

(i) αΛ ∈ A
(ii) E ∈ A =⇒ τα(E ), σα(E ) ∈ A ;

X := {ultrafilters in A }
(Equivalently, let A = span{χE : E ∈ A } ⊆ `∞(Λ), an abelian
C ∗-algebra. Then X = Â.)

x ∈ X ↔ Ux ⊆ A ultrafilter. τα(Ux) 6= ∅ iff s(α)Λ ∈ Ux . Then
τα(Ux) is an ultrafilter base; write Uτ̂α(x) for the ultrafilter it

generates. τ̂α, σ̂α = τ̂α
−1

are partial homeomorphisms of X .
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What do typical sets in A look like? Consider the following LCSC
Λ:

α

β

γ1 γ2
γ3

δ1
δ2

δ3

. . .

with relations αγi = βδi .

τβ(Λ) = βΛ = {β, βδ1, βδ2, . . .} = {β, αγ1, αγ2, . . .}.
σα ◦ τβ(Λ) = {γ1, γ2, . . .} (Note: β is no longer in the domain.)

Let ζ = (α, β). Then A(ζ) = dom(ϕζ) = {δ1, δ2, . . .}, and
ϕζ(δi ) = γi .
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More generally,

βnΛ = τβn(Λ)

σαn ◦ τβn(Λ)

· · ·
σα1 ◦ τβ1 ◦ · · · ◦ σαn ◦ τβn(Λ).

Write ζ = (α1, β1, . . . , αn, βn) - a zigzag:

α1

β1
α2

β2
αn

βn. . .
r(ζ)=s(α1) s(ζ)=s(βn)

Z(Λ) = set of all zigzags; composition by concatenation.

ϕζ = σα1 ◦ τβ1 ◦ · · · ◦ σαn ◦ τβn - zigzag map, partial bijection of Λ.

ϕ−1
ζ = ϕζ , where ζ = (βn, αn, . . . , β1, α1).

A(ζ) := dom(ϕζ) - the zigzag set (or constructible right ideal).
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D(0) = {A(ζ) 6= ∅ : ζ ∈ Z(Λ)};
closed under intersection: A(ζ) = A(ζζ), A(ζ) ∩ A(θ) = A(ζζθθ).

D = {E \ ∪ni=1Fi : E ,Fi ∈ D(0), ∪ni=1Fi ( E}.
A = {tmj=1Dj : Dj ∈ D}.

Φζ = σ̂α1 ◦ τ̂β1 ◦ · · · ◦ σ̂αn ◦ τ̂βn - partial homeomorphism of X .

Define two groupoids with unit space X :

G1(Λ) = groupoid of germs of {Φζ : ζ ∈ Z(Λ)}
= Z(Λ) ∗ X/ ∼1,

where (ζ, x) ∼1 (ζ ′, x ′) if x = x ′ and Φζ = Φζ′ near x .

G2(Λ) = Z(Λ) ∗ X/ ∼2,

where (ζ, x) ∼2 (ζ ′, x ′) if x = x ′ and ϕζ |E = ϕζ′ |E for some
E ∈ Ux .
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Theorem. If Λ has no inverses then ∼1 = ∼2.

(There are other sufficient conditions.)

Example. If Λ is a group then G1(Λ) = {pt} and G2(Λ) = Λ.

Definition. T (Λ) = C ∗(G2(Λ)) (or Ti (Λ) = C ∗(Gi (Λ)), i = 1, 2) -
the Toeplitz algebra of Λ.

The example shows that G2(Λ) is generally the more important
one.

Theorem. Ti (Λ) is universal for representations of Λ by partial
isometries {Tα : α ∈ Λ} ⊆ B(H) satisfying the following relations.
Let Tζ = T ∗α1

Tβ1 · · ·T ∗αn
Tβn (where ζ = (α1, β1, . . . , αn, βn)).

(i) Tζ1Tζ2 = Tζ1ζ2

(ii) Tζ = T ∗ζ

(iii) if A(ζ) = ∪ni=1A(ζi ) then T ∗ζ Tζ =
∨n

i=1 T
∗
ζi
Tζi

(iv)1 if Φζ = id
Â(ζ)

then Tζ = T ∗ζ Tζ

or (iv)2 if ϕζ = idA(ζ) then Tζ = T ∗ζ Tζ
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(The relations again.)

(i) Tζ1Tζ2 = Tζ1ζ2

(ii) Tζ = T ∗ζ

(iii) if A(ζ) = ∪ni=1A(ζi ) then T ∗ζ Tζ =
∨n

i=1 T
∗
ζi
Tζi

(iv)1 if Φζ = id
Â(ζ)

then Tζ = T ∗ζ Tζ

or (iv)2 if ϕζ = idA(ζ) then Tζ = T ∗ζ Tζ

The key aspect of these relations is the following

Theorem. Let {pE : E ∈ D(0)} be projections in a C ∗-algebra B.
There is a ring homomorphism µ : A → P(B) with µ(E ) = pE for
E ∈ D(0) if and only if (iii) and pE1∩E2 = pE1pE2 (which follows
from (i) and (ii)).
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The Regular Representation

Lemma. π` : Λ→ B(`2(Λ)) extends to a representation (also
called π`) of T (Λ) = C ∗(G2(Λ)):

T (Λ)

Λ

B(`2(Λ))

P.I.(`2(Λ))
π`

π`

(The map Λ→ T (Λ) is given by α 7→ Tα.)

Definition 1. T`(Λ) := π`(T (Λ)) - the regular Toeplitz algebra.
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For x ∈ X there is an induced representation Indx of C ∗(G2(Λ)) on
`2(G2(Λ)x); πr =

⊕
x∈X Indx is the regular representation of

C ∗(G2(Λ)): C ∗r (G2(Λ)) = πr (C ∗(G2(Λ))).

Definition 2. Tr (Λ) = C ∗r (G2(Λ)) - the reduced Toeplitz algebra.

Proposition. π` factors through Tr (Λ):

T`(Λ)

T (Λ) Tr (Λ)
πr

π`

Which of T` and Tr is “the” reduced C ∗-algebra of Λ?

Do we have to choose?
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Some conditions giving an isomorphism Tr → T`.

(1) Λ is finitely aligned if whenever E ⊆ Λ finite, there exists
F ⊆ Λ finite such that⋂

α∈E αΛ =
⋃
β∈F βΛ.

F is the set of minimal common extensions of E (well-defined up
to right multiplication by invertibles). (Recall that F+

n is singly
aligned: |F | = 0 or 1.)

Theorem. If Λ is finitely aligned then Tr → T` is an isomorphism.
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(2) The groupoid G2(Λ) is not necessarily Hausdorff (but is always
ample, i.e. étale with totally disconnected unit space).

Theorem. If G2(Λ) is Hausdorff then Tr → T` is an isomorphism.

For example,

Theorem. If Λ is a subcategory of a groupoid then G2(Λ) is
Hausdorff.

Corollary. If (G ,P) is an ordered group (not necessarily pointed)
then Tr → T` is an isomorphism.

30 / 52



In general, Tr → T` is not an isomorphism.

Example. Let p > 1 be odd. In the following, i ∈ Z, j ∈ Z/pZ:

γij

δij

α0α1α2α3

α4

β0
β1

β2
β3

β4
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with relations

(i) α0γij = β0δij , for i ∈ Z, j ∈ Z/pZ

(ii) α1γij =

{
β1δi ,j+1, if i ≡ 1 (mod 3), j ∈ Z/pZ
β1δij , if i 6≡ 1 (mod 3), j ∈ Z/pZ

(iii) α2γij =

{
β2δi ,j+1, if i ≡ 2 (mod 3), j ∈ Z/pZ
β2δij , if i 6≡ 2 (mod 3), j ∈ Z/pZ

(iv) α3γij =

{
β3δi+3,j , if i ≡ 0 (mod 3), j ∈ Z/pZ
β3δij , if i 6≡ 0 (mod 3), j ∈ Z/pZ

(v) α4γij = β4δij , if i 6≡ 0 (mod 3), j ∈ Z/pZ.
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θ1 = σα0τβ0σβ1τα1

θ2 = σα0τβ0σβ2τα2

θ3 = σα0τβ0σβ3τα3

θ4 = σα0τβ0σβ4τα4

θ1(γij) =

{
γi ,j+1 if i ≡ 1 (mod 3)

γij if i 6≡ 1 (mod 3),

θ2(γij) =

{
γi ,j+1 if i ≡ 2 (mod 3)

γij if i 6≡ 2 (mod 3).

θ3(γij) =

{
γi+3,j if i ≡ 0 (mod 3)

γij if i 6≡ 0 (mod 3),

θ4(γij) = γij if i 6≡ 0 (mod 3).

Let A := dom θ1 = dom θ2 = dom θ3 = {γij : all i , j}
B := dom θ4 = {γij : i 6≡ 0 (mod 3)}.

33 / 52



On A \ B:

θ1 = θ2 = id,

θ3 has no fixed points.

On B:

θ1 and θ2 have only fixed points and orbits of length p,

θ1(µ) = µ iff θ2(µ) 6= µ,

θ3 = id.

On `2(Λ): there exists c > 0 with

(∗) |〈π`(Tθ1)ξ, ξ〉|+ |〈π`(Tθ2)ξ, ξ〉|+ 1−Re〈π`(Tθ3)ξ, ξ〉 ≥ c‖ξ‖2,

for all ξ ∈ `2(Λ). (In fact, c = 1
2 (1− cos πp ).)

Moreover B defines x ∈ X such that if π` is replaced by Indx then
the lefthand side of (∗) equals 0. It follows that Indx is not weakly
contained in π`, and hence Tr → T` is not an isomorphism.
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The C ∗-algebra in this example is (very) type I (and Λ is nearly a
2-graph). One can identify the vertices of Λ to obtain a monoid
with the same properties (and a more complicated C -algebra).
(However, this monoid cannot be embedded in a group.)

In general it is not clear how to describe T`(Λ) by generators and
relations.
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Some remarks on amenability.

1. If G2(Λ) is amenable (in the sense of Anantharaman-Delaroche
and Renault) then T (Λ) = Tr (Λ), but it need not be the case that
Tr (Λ)→ T`(Λ) is an isomorphism.

2. If (G ,P) is a quasi-lattice ordered group, Nica defines amenable
to mean that C ∗(P)→ π`(C

∗(P)) is an isomorphism. In this case
Tr (Λ) = T`(Λ), so this is equivalent to T (Λ) = Tr (Λ) - an
ostensibly weaker condition than groupoid amenability.

3. In the quasi-lattice ordered case Nica showed that an equivalent
condition is that the conditional expectation
C ∗(P)→ span{TαT ∗α : α ∈ P} be faithful. For general Λ, one
ought to use span{T ∗ζ Tζ : ζ ∈ Z(Λ)} (i.e. C0(X )). Then this is
equivalent to the condition that T (Λ) = Tr (Λ).

4. Amenability of Λ is a much stronger condition. (Related to
independence, right reversibility, ...)
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Wiener-Hopf algebras

(G ,P) - ordered group

J : `2(P) ↪→ `2(G )

L : G → U(`2(G )) - left regular representation

For t ∈ G , Wt := J∗LtJ ∈ B(`2(P)) - Wiener-Hopf operator

(compression of Lt to `2(P))

Wt 6= 0 iff t ∈ PP−1

W := C ∗({Wt : t ∈ G}), W0 := C ∗({Wα : α ∈ P})

Theorem (Nica): If (G ,P) is quasi-lattice ordered (and
P ∩ P−1 = {e}) then W =W0.

(Recall: (G ,P) is qlo if for t ∈ G ,
(tP ∩ P 6= ∅) =⇒ (∃α ∈ P s.t. tP ∩ P = αP).)
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More generally. . .

Y - countable groupoid

Λ ⊆ Y - subcategory with Λ0 = Y 0

((Y ,Λ) is an ordered groupoid)

J : `2(Λ) ↪→ `2(Y )

L : Y → P.I.(`2(Y )) - left regular representation

For t ∈ Y , Wt := J∗LtJ ∈ B(`2(Λ)) - Wiener-Hopf operator

Wt 6= 0 iff t ∈ ΛΛ−1

W := C ∗({Wt : t ∈ Y }), W0 := C ∗({Wα : α ∈ Λ})

¿ W =W0 ?
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For t ∈ Y , Wt := J∗LtJ ∈ B(`2(Λ)) - Wiener-Hopf operator

Wt 6= 0 iff t ∈ ΛΛ−1

W := C ∗({Wt : t ∈ Y }), W0 := C ∗({Wα : α ∈ Λ})

¿ W =W0 ?
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Definition. (Y ,Λ) is finitely aligned if for t ∈ Y ,
(tΛ ∩ Λ 6= ∅) =⇒ (∃F ⊆ Λ finite s.t. tΛ ∩ Λ =

⋃
α∈F αΛ).

Note that if (Y ,Λ) is finitely aligned then Λ is finitely aligned (as
LCSC).

Theorem. Let (Y ,Λ) be an ordered groupoid. Suppose that Λ is a
finitely aligned LCSC. Then W =W0 iff (Y ,Λ) is finitely aligned.

Key point: If Λ is finitely aligned, then for all ζ, A(ζ) = ∪ni=1αiΛ
(i.e. every constructible right ideal is a finite union of principal
right ideals).
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In the general (nonfinitely aligned) case,

Proposition. Let t ∈ Y . Then Wt ∈ W0 iff there is a finite set
F ⊆ Z(Λ) such that

(i) for ζ ∈ F , ϕζ = t|A(ζ) (i.e. α−1
1 β1 · · ·α−1

n βn = t)

(ii) Λ ∩ t−1Λ =
⋃
ζ∈F A(ζ).

Corollaries.

1. Let t ∈ ΛΛ−1. If t ∈ Λ−1Λ then Wt ∈ W0.

2. If Y is abelian then W =W0.

Definition. Λ is right reversible if Λα ∩ Λβ 6= ∅, for all α, β ∈ Λ.

Lemma. Let (Y ,Λ) be an ordered groupoid. Then Λ is right
reversible iff ΛΛ−1 ⊆ Λ−1Λ.

3. If Λ is right reversible then W =W0.

Proposition. There exist examples of ordered groupoids (Y ,Λ)
with Λ not finitely aligned, both such that W =W0, and such that
W 6=W0.
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Comparison with other semigroup algebras — joint with E.
Bedos, S. Kaliszewski, J. Quigg

X. Li (JFA 2012) described five C ∗-algebras associated to a left
cancellative monoid. We adapt to the case of a left cancellative
small category Λ.

Definition. Consider the universal C ∗-algebra generated by partial
isometries {vα : α ∈ Λ} and projections {pE : E ∈ D(0) ∪ {∅}}
with some relations.

Relations. (1) v∗αvα = ps(α)Λ

(2) vαvβ = vαβ if s(α) = s(β), (and = 0 otherwise)

(3) p∅ = 0

(4) pEpF = pE∩F

(5) vαpEv
∗
α = pτα(E).
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1. C ∗(Λ): use (1) - (5).

Let D̃(0) = {∪ni=1Ei : Ei ∈ D(0) ∪ {∅}}.

(4)(∪), (5)(∪) - same as (4), (5) but using D̃(0)

(6) pE∪F = pE ∨ pF , E ,F ∈ D̃(0)

2. C ∗ (∪)(Λ): use (1) - (3), (4)(∪), (5)(∪), (6).

(7) If ϕζ = idA(ζ) then v∗α1
vβ1 · · · v∗αn

vβn = pA(ζ) (where
ζ = (α1, β1, . . . , αn, βn))

3. C ∗s (Λ): use (1) - (3), (7).

4. C
∗ (∪)
s (Λ): use (1) - (3), (6), (7).

5. T` (⊆ B(`2(Λ)))
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There is a commutative diagram:

C ∗ (∪)(Λ)

C ∗(Λ)

C
∗ (∪)
s (Λ)

C ∗s (Λ)

T`(Λ)

πs

ρs

π(∪) ρ(∪)

π`

We will expand this diagram to include the Toeplitz algebras
discussed earlier. First, one more algebra . . .

Definition. Let ZM(Λ) := {ϕζ : ζ ∈ Z(Λ)} ∪ {id∅} (the set of all
zigzag maps).

ZM(Λ) is an inverse semigroup. We let C ∗(ZM(Λ)) denote its
universal C ∗-algebra.
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Theorem. There is a commutative diagram

C ∗ (∪)(Λ)

C ∗(Λ)

C
∗ (∪)
s (Λ)

C ∗s (Λ)

T (Λ)

C ∗(ZM(Λ))

Tr (Λ) T`(Λ)

B(`2(Λ))
πs

ρs

π(∪) ρ(∪)

µ

g

πr π`

q

1. µ and g are isomorphisms.

2. πs , ρs , π
(∪), ρ(∪), q, πr , π` are surjective.

3. ρs is an isomorphism if Λ is finitely aligned, but not in general
(even if Λ is a submonoid of a group).

4. πs , π
(∪), ρ(∪), q are not isomorphisms in general (even if Λ is a

finitely aligned submonoid of a group).
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