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Outline

1. C*-algebras from monoids and categories (my interpretation)
2. regular representations

3. Wiener-Hopf algebras

4. relation with some other constructions
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G - discrete group. What should be C*(G)?

¢ —Y—uH)
'l 1 universal for unitary representations.

P - discrete monoid. What should be C*(P)?

P . B(H)
1 — Not clear what is desired.
. 3'
iC*(P)?

6 /52



G - discrete group. What should be C*(G)?

¢ —Y +umh)
] !
C*(G) --=5-> B(H)

universal for unitary representations.

P - discrete monoid. What should be C*(P)?

p—T1 Isom(H)

[ ]

(C*(P)? --= > B(H)

universal for representations by
isometries. Not generally “right” —
too big. Should use a quotient.

~

]






Gy

U(2(G)) G U . u(H)

! 1 !

B(P(6)) — CH(6) +— C*(G) ===~~~ B(H)
lsom(£2(P)) ~—— p—TL— Isom(H)
1 ] 1
B(E2(P)) <> “C;(P)" +— (C*(P)? -~ B(H)

f

“C}(P)" is a reasonable choice for the “smallest” quotient that is
“right”.

What universal property/ies should be used to characterize C*(P)?



Example P = [ free semigroup.

For a, B € P write « < 8 if 8 = aa’ for some o/ € P (( is an
extension of ). Nica observed: for P = F}', if a, 3 have a
common extension then they have a unique minimal common
extension:
aPNpP # @ = Jly € P such that aP N P = ~P.

(P is called singly aligned or LCM.) We write v = o V 3.
Letting T,, = m¢() € Isom(£?(P)) we have

T\ T, if~vy=aV
(¥) TaTy - TpTy =4 7 779 &

0, if aPNBP =o.
Nica: define C*(P) to be universal for (x).

10/52



Example P = [ free semigroup.

For a, B € P write « < 8 if 8 = aa’ for some o/ € P (( is an
extension of ). Nica observed: for P = F}', if a, 3 have a
common extension then they have a unique minimal common
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Nica: define C*(P) to be universal for (x).
Q: Why is this “right”?

11 /52



Example P = [ free semigroup.

For a, B € P write « < 8 if 8 = aa’ for some o/ € P (( is an
extension of ). Nica observed: for P = F}', if a, 3 have a
common extension then they have a unique minimal common
extension:
aPNBP # @ = dly € P such that aP N BP = ~vP.

(P is called singly aligned or LCM.) We write v = o V 3.
Letting T,, = m¢() € Isom(£?(P)) we have

T\ T, if~vy=aV
(¥) TaTy - TpTy =4 7 779 é

0, if aPNBP =o.
Nica: define C*(P) to be universal for (x).
Q: Why is this “right"? A: C*(F}) = TO,.



There ought to be a more fundamental reason . . .
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There ought to be a more fundamental reason . . .

(F}, <) is a tree, W,. For a € — oW
Fl, 7@ : B+ af is an endo- 1 OV

morphism. W

7%, 0% = (7%)~! extend to partial homeomorphisms of W, UdW,,.

o is the one-sided Bernoulli shift.

Renault: there is a groupoid G with GO = W, U oW, — the
groupoid of germs of {c®,7%}. Moreover C*(G) = T O,,.

We don’t have to “guess” at the relation (x).
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There ought to be a more fundamental reason . . .

(Fr,<)is a tree, W,. For a € — oW
Fﬁ T : B — af is an endo- 1 OV

morphism. W

7%, 0% = (1%)~! extend to partial homeomorphisms of W, UdW,,.

o is the one-sided Bernoulli shift.

Renault: there is a groupoid G with GO = W, U oW, — the
groupoid of germs of {c®,7%}. Moreover C*(G) = T O,,.

We don’t have to “guess” at the relation (x).

Many situations pose a similar problem: which came first, the
relations or the algebra? (E.g. graphs, higher rank graphs,
arbitrary monoids.) We can generalize the above construction.

15/52



N - a small category (like a monoid, only multiplication is not
always defined).

For a € A define the right shift 7@ : § € s(a)\N — af € aA.

Assume A is left cancellative: aff = oy = 3 =+. Then 7% is
one-to-one. Let 0@ = (7%)7L.

How to imitate the construction of 9W,,?
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N - a small category (like a monoid, only multiplication is not
always defined).

For a € A define the right shift 7@ : § € s(a)\N — af € aA.

Assume A is left cancellative: aff = oy = 3 =+. Then 7% is
one-to-one. Let 0@ = (7%)7L.
How to imitate the construction of 9W,,? One of many ways:
&/ = smallest ring of sets such that for all o € A,

(i) aN € &

(i) Ee &/ = 1%E), 0“(E) € o,
X = {ultrafilters in </}

(Equivalently, let A=3span{xg: E € &/} C (*°(A), an abelian
C*-algebra. Then X = A))

x € X <> Uy C o ultrafilter. 7%(Uy) # @ iff s(a)A\ € Uy. Then
T%(Uy) is an ultrafilter base; write Uz ) for the ultrafilter it

o~ o~ —~1 . .
generates. 7%, 0% = 7%  are partial homeomorphisms of X.
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What do typical sets in o look like? Consider the following LCSC
A:

with relations a~y; = 59;.

TP(N) = BN = {8, 861, 802, ...} = {B,am1, 072, .. .}.
o®o7(N) = {71,72,...} (Note: 3 is no longer in the domain.)
Let ( = (o, 3). Then A(¢) = dom(p¢) = {d1,02,...}, and
pc(07) = i-
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More generally,
B\ = 781(N)
o o 78n(N)

g% o 7—/81 o---00% o Tﬁn(/\)
Write ¢ = (a1, B1, ..., an, Bn) - @ zigzag:

r(¢)=s(a1)e =s(8n)

Z(N) = set of all zigzags; composition by concatenation.

e =00 P10 00% o 1P - zigzag map, partial bijection of A.

<p<_1 = ¢z, where C=(Bn,an,---,P1,01).
A(() :=dom(¢p¢) - the zigzag set (or constructible right ideal).
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DO = {A)#@:Ce Z(N)};

closed under intersection: A(¢) = A((C), A(¢) NA(0) = A(CCOH).

D={E\U,F:E FeDO U F CE}
o ={U",D;: Dj € D}.

o~ —~

b = 0% 0781005 o 1P - partial homeomorphism of X.
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DO = {A)#@:Ce Z(N)};

closed under intersection: A(¢) = A((C), A(¢) NA(0) = A(CCOH).

D={E\U,F:E FeDO U F CE}
o ={Um,D;: D; € D}.

o~ —~

b = 0% 0781005 o 1P - partial homeomorphism of X.

Define two groupoids with unit space X:

G1(A) = groupoid of germs of {®,: ( € Z(A)}
=Z(N)x X/ ~1,

where (¢, x) ~1 (¢, x') if x = x" and ®; = &/ near x.

Z(
where (C, x) ~2 (¢, ) if x =x" and ¢¢|g = | for some
E € U,x.
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Theorem. If A has no inverses then ~7 = ~»5.
(There are other sufficient conditions.)
Example. If Ais a group then Gi(A) = {pt} and Go(A) = A.

Definition. 7(A) = C*(Gz(A)) (or Ti(A) = C*(Gi(N)), i =1, 2) -
the Toeplitz algebra of A.

The example shows that Gy(A) is generally the more important
one.

N
N
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Theorem. If A has no inverses then ~7 = ~»5.
(There are other sufficient conditions.)

Example. If Ais a group then Gi(A) = {pt} and Gx(A\) =

Definition. T(A) = C*(Ga(A)) (or Ti(A) = C*(Gi(A)), i =1, 2) -

the Toeplitz algebra of A.

The example shows that Gy(A) is generally the more important
one.

Theorem. T;(A) is universal for representations of A by partial

isometries { T, : @ € A} C B(H) satisfying the following relations.

Let T< = Ta*l Tﬁl e TE;,, Tﬁn (Where C = (CYl,,B]_, ) amﬁn))-
() TC1 TC2 = TC1C2
(i) Te=T¢
(i) i A(C) = UL, A(G) then T2 T, = /I, T T,

(iv)1 if & = dA(C) then Te = T:T¢

or (iv)z if o¢c =ida() then Te = T T¢



(The relations again.)

(i) TaTo, = Tae

(i) TZ = Tg

(iii) if AC) = UL A(G) then T Te = Vil TE T,

(iv)1 if ¢C = IdA/(.Z) then TC = TC* Tg
or (iV)2 if e = 'dA(C) then Tg = Tg TC
The key aspect of these relations is the following
Theorem. Let {pg : E € D9} be projections in a C*-algebra B.
There is a ring homomorphism 1 : &7 — P(B) with p(E) = pg for
E € DO if and only if (iii) and pg,ne, = pE, pE, (which follows
from (i) and (ii)).



The Regular Representation

Lemma. 7, : A — B(/?(A\)) extends to a representation (also
called 7y) of T(A) = C*(Ga2(N)):

A —"L P.L(2(N))
| [
T(N) =z~ B(2(N)

(The map A — T(A) is given by o +— T,.)

Definition 1. 7y(A) := my(T(N)) - the regular Toeplitz algebra.



For x € X there is an induced representation Ind, of C*(Gz2(A)) on
(?(Ga(N)x); mr = D, x Indy is the regular representation of
C*(G(N): G (Ga(N) = 7 (C*(G2(N))).

Definition 2. 7,(A) = C}(Gz(N)) - the reduced Toeplitz algebra.
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For x € X there is an induced representation Ind, of C*(Gz2(A)) on
(?(Ga(N)x); mr = D, x Indy is the regular representation of
C*(G(N): G (Ga(N) = 7 (C*(G2(N))).

Definition 2. 7,(A) = C}(Gz(N)) - the reduced Toeplitz algebra.
Proposition. 7, factors through 7,(A\):

T(N) —— T;(A)




For x € X there is an induced representation Ind, of C*(Gz2(A)) on
(?(Ga(N)x); mr = D, x Indy is the regular representation of
C*(G(N): 7 (G2(N)) = mr(C*(G2(N))).

Definition 2. 7,(A) = C}(Gz(N)) - the reduced Toeplitz algebra.
Proposition. 7, factors through 7,(A\):

T(N) —— T;(A)

Which of 7; and 7, is “the" reduced C*-algebra of A?

Do we have to choose?



Some conditions giving an isomorphism 7, — 7.

(1) A'is finitely aligned if whenever E C A finite, there exists
F C A finite such that

ﬂaeE al = U,BQF 6/\

F is the set of minimal common extensions of E (well-defined up
to right multiplication by invertibles). (Recall that F}' is singly
aligned: |F| =0or1.)

Theorem. If A is finitely aligned then 7, — 7y is an isomorphism.



(2) The groupoid Gy(A) is not necessarily Hausdorff (but is always
ample, i.e. étale with totally disconnected unit space).

Theorem. If Gy(A) is Hausdorff then 7, — Ty is an isomorphism.

For example,

Theorem. If A is a subcategory of a groupoid then Gy(A) is
Hausdorff.

Corollary. If (G, P) is an ordered group (not necessarily pointed)
then 7, — 7T, is an isomorphism.
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In general, 7, — Ty is not an isomorphism.

Example. Let p > 1 be odd. In the following, i € Z, j € Z/pZ:

\\/
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with relations
(I) aoYij = Boé,j, forieZ, je Z/pZ

B18ij41, if i=1 (mod 3), j € Z/pZ

(i) v = {,315,.]., if iZ1 (mod3), j€Z/pZ

f26ij+1, ifi=2 (mod3), j€Z/pZ
(iii) a2y = . :
B26ij, if i£2 (mod 3), j€Z/pZ

) B30i43, if i=0 (mod 3), j € Z/pZ
(iv) azv; = . .
B36i;, if i #0 (mod 3), j € Z/pZ

(v) asvjj = Bady, if i £0 (mod 3), j € Z/pZ.



’Y,"J'Jr]_ ifi=1 (mod 3)
_ L a 0 i) =
01 = oorhghT™ 1) {% if i 1 (mod 3),
0y = goorfogharea ba(yy) = 4 0t if7=2 (mod 3)
Yij if i #2 (mod 3)
b3 = ooorfoglares vig3j ifi=0 (mod 3)
03(7ij) = L
By = 000 Po apon Vij if i 0 (mod 3),

0a(v;j) = v if i 0 (mod 3).

Let A :=dom@; =domb, =dom@z = {v; : all i,j}
B :=dom#bs = {vj : i #0 (mod 3)}.
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On A\ B:

01 =60, =id,
03 has no fixed points.
On B:

01 and 6> have only fixed points and orbits of length p,

01(p) = p iff O2(p) # 1,
03 = id.

On (2(A): there exists ¢ > 0 with

() [me(To,)S, )+ me(To,)8, &) | +1— Relme(Tp,)8, 6) = cll€]l?,

for all € € £2(A). (In fact, ¢ = 3(1 —cos T).)

Moreover B defines x € X such that if 7y is replaced by Indy then
the lefthand side of () equals 0. It follows that Indy is not weakly
contained in 7y, and hence 7, — 7, is not an isomorphism.
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The C*-algebra in this example is (very) type | (and A is nearly a
2-graph). One can identify the vertices of A to obtain a monoid
with the same properties (and a more complicated C-algebra).
(However, this monoid cannot be embedded in a group.)
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The C*-algebra in this example is (very) type | (and A is nearly a
2-graph). One can identify the vertices of A to obtain a monoid
with the same properties (and a more complicated C-algebra).
(However, this monoid cannot be embedded in a group.)

In general it is not clear how to describe 7;(A\) by generators and
relations.

36
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Some remarks on amenability.

1. If Go(A) is amenable (in the sense of Anantharaman-Delaroche
and Renault) then 7(A) = T;(A), but it need not be the case that
Tr(N) — Te(A) is an isomorphism.

2. If (G, P) is a quasi-lattice ordered group, Nica defines amenable
to mean that C*(P) — m,(C*(P)) is an isomorphism. In this case
Tr(N) = Ti(N), so this is equivalent to 7 (A) = T,(A) - an
ostensibly weaker condition than groupoid amenability.

3. In the quasi-lattice ordered case Nica showed that an equivalent
condition is that the conditional expectation

C*(P) — span{ T, T} : a € P} be faithful. For general A, one
ought to use span{ T/ T¢ : ( € Z(N)} (i.e. Co(X)). Then this is
equivalent to the condition that 7(A) = 7,(A).

4. Amenability of A is a much stronger condition. (Related to
independence, right reversibility, ...)
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Wiener-Hopf algebras

(G, P) - ordered group

J: 2(P) — 2(G)

L: G — U(?(G)) - left regular representation

For t € G, W, := J*L+J € B({?>(P)) - Wiener-Hopf operator
(compression of L; to /?(P))

W, # 0 iff t € PP71

Wi=C*({We:te G}), Wo :=C*({W, :a € P})

Theorem (Nica): If (G, P) is quasi-lattice ordered (and

PN P~1={e}) then W =W,.

(Recall: (G, P)is glo if for t € G,
(tPNP# @)= (3a€ Pst. tPNP =aP).)
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More generally. . .

Y - countable groupoid

A C Y - subcategory with AY = Y?©

((Y,N) is an ordered groupoid)

J:2(N) = 2(Y)

L:Y — P1(£?(Y)) - left regular representation

Fort € Y, W, := J*L:J € B(¢*(N\)) - Wiener-Hopf operator
W, # 0 iff t € AL

W= C({W: t e Y}), Wo = C*({W, : v € \})
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More generally. . .

Y - countable groupoid

A C Y - subcategory with AY = Y?©

((Y,N) is an ordered groupoid)

J:2(N) = 2(Y)

L:Y — P1(£?(Y)) - left regular representation

Fort € Y, W, := J*L:J € B(¢*(N\)) - Wiener-Hopf operator
W; # 0 iff t € A2

W= C({W: t e Y}), Wo = C*({W, : v € \})

LW:WQ?
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Definition. (Y, A) is finitely aligned if for t € Y,

(tANN# @) = (IF C Afinite s.t. tANA =, al).

Note that if (Y, A) is finitely aligned then A is finitely aligned (as
LCSQ).

Theorem. Let (Y, ) be an ordered groupoid. Suppose that A is a
finitely aligned LCSC. Then W = W iff (Y, A) is finitely aligned.

Key point: If A is finitely aligned, then for all ¢, A(¢) = Ui\
(i.e. every constructible right ideal is a finite union of principal
right ideals).
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In the general (nonfinitely aligned) case,

Proposition. Let t € Y. Then W; € W iff there is a finite set
F C Z(A) such that

(i) for C € F, ¢ = tla) (ie a7l By tBy = t)
(i) ANt A = Ueer A(Q)-
Corollaries.
1. Let t € AA7L If t € A7IA then W, € W
2. If Y is abelian then W = W).

Definition. A is right reversible if A\a N AS # @, for all a, B € A.

Lemma. Let (Y, ) be an ordered groupoid. Then A is right
reversible iff AA=1 C A7IA.

3. If Ais right reversible then W = W).



In the general (nonfinitely aligned) case,

Proposition. Let t € Y. Then W; € W iff there is a finite set
F C Z(A) such that

(i) for C € F, ¢ = tla) (ie a7l By tBy = t)
(i) ANt A = Ueer A(Q)-
Corollaries.
1. Let t e AA"L If t € AN then W, € W,
2. If Y is abelian then W = W)

Definition. A is right reversible if A\a N AS # @, for all a, B € A.

Lemma. Let (Y, ) be an ordered groupoid. Then A is right
reversible iff AA=1 C A7IA.

3. If Ais right reversible then W = W).

Proposition. There exist examples of ordered groupoids (Y, A)
with A not finitely aligned, both such that WW = W), and such that
W # Wy.
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Comparison with other semigroup algebras — joint with E.
Bedos, S. Kaliszewski, J. Quigg

X. Li (JFA 2012) described five C*-algebras associated to a left
cancellative monoid. We adapt to the case of a left cancellative
small category A.

Definition. Consider the universal C*-algebra generated by partial
isometries {v, : @ € A} and projections {pg : E € DO U {2}}
with some relations.

Relations. (1) v;va = ps(a)a
(2) vavg = vag if s(a) = s(B), (and = 0 otherwise)
(3) P =0
(4) PEPF = PENF
(5)

5) VaPEVy = Pra(E).-
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1. C*(A): use (1) - (5).
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1. C*(/\): use (1) - (5).
Let D(O) ) = {U1_,E : EEe DO U {2}}.
(4O, (5)V) - same as (4), (5) but using D)

(6) peur = PV pr, E,F € 7%
2. C*O(A): wse (1) - (3), (AW, (5)V, (6).
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1. C*(/\): use (1) - (5).

Let DO = {U7_E; : E; € DO U {a}}.
(4O, (5)V) - same as (4), (5) but using D)
(6) peur = PV pr, E,F € DTU)

2. CO(N): use (1) - (3), (4, (5), (6)

(7) If ¢ = idA(g‘) then Vzl Vgt V;n VB, = PA(¢) (where
C = (051761, <oy O, 6n))
3. CH(N): use (1) - (3), (7).
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1. C*(/\): use (1) - (5).
Let D(©) ) ={Ur E: E DO u{z}}.
(4)V), (5)V) - same as (4), (5) but using DO
(6) PEUF = PE V PF, E7F € ,15?6)
2. CHO(A): use (1) - (3), AV, (5)), (6).
(7) If ¢ = idA(g‘) then Vzl Vgt V;n VB, = PA(¢) (where
C = (051761, o 7an76n))
3. CX(N): use (1) - (3), (7).

4. ¢ (N): use (1) - (3), (6), (7).
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1. C*(/\): use (1) - (5).
Let DO ) = {U1_,E : EEe DO U {2}}.
(4)V), (5)V) - same as (4), (5) but using DO
(6) peuF = pe V pe, E,F € DO
2. CHO(A): use (1) - (3), (), (), (6).
(7) If ¢ = ida(c) then v vg, - v v, = pa(c) (where
¢=(a1,B1,...,an, Bn))
3. C(N): use (1) - (3), (7).
4. CZ(N): use (1) - (3), (6), (7).
5. T (C B(f?(N))
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There is a commutative diagram:

C*(N) —=— C(A)
W(U)l p(U)l

) 2 O () = TN
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There is a commutative diagram:

C*(\) —=— C:(N)

W(U)l p(U)l
C*O(A) L O p) s Ti(A)

S

We will expand this diagram to include the Toeplitz algebras
discussed earlier. First, one more algebra . . .

Definition. Let ZM(A) := {p¢ : ( € Z(A)} U {idz} (the set of all
zigzag maps).

ZM(A) is an inverse semigroup. We let C*(ZM(A)) denote its
universal C*-algebra.
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Theorem. There is a commutative diagram

C*(N) ==+ CX(N) & C*(ZM(N)) B(2(N))
<O o] ql i
c* () & cOpy L T(N) —T T — TN

1. u and g are isomorphisms.
2. s, ps, m. p) g 7. m are surjective.

3. ps is an isomorphism if A is finitely aligned, but not in general
(even if A is a submonoid of a group).

4. 7, 7 p() g are not isomorphisms in general (even if A is a
finitely aligned submonoid of a group).



