C*-algebras from
self-similar actions,
and their states

The significance of examples

Because of topological closure, the study of C*-algebras does not
reduce to the study of simple components.

Simple algebras are still important, but the classification of
C*-algebras is, by necessity, an examples-driven endeavour.

Techniques used in the study of C*-algebras include

» the construction of large classes of examples which can be
studied using common tools.

» the development of invariants that allow you to readily(?!)
identify two examples as being isomorphic.

Overview

Background
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The actions
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The bigger picture
A path space perspective
The obstruction to generalisation

Self-similar actions of groupoids
Transformation groupoids
Constructing self-similar groupoid actions
The algebras
The states

One way automorphisms of graphs can help

Suppose we have a graph with a countable number of vertices.
Each vertex can represent a basis vector.

A graph automorphism represents a linear map sending each
basis vector to the image of the corresponding vertex.

The edges between the vertices restrict the operators that can be
represented by automorphisms.
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The alphabet X and the tree Ty

Suppose X is a finite set, X is the set of k-tuples inX, with
X0 = {x}, and define X* := | |, X¥ = {finite words in X}.

T = Tx is an infinite homogeneous
rooted tree with

> vertex set T9 = X* = {u € X*} Tixyy
» edge set T) =

{{p, ux}: p € X* and x € X} /*\
» root the empty word, *

X y
We label /\ / N\

» edges in Tx with elements of X fof /xy\ /yx\ /yy\

» pathsin Tx with elements of X*.

The boundary X“ of Tx can be identified with semi-infinite words
in X starting at x,so  X“ = {x1x2... : x; € X}.

2 Self-similar actions of groups

THE UNIVERSITY OF

Automorphisms of T = Ty

From a traditional graph-theoretic perspective, an automorphism «
of T consists of a family of bijections ay : XX — X* for k > 0 such
that for all u, v € X*

{ok(n), k1 (W)} € T & {p,v} € TV,

If 3 = {Bk} is an automorphism, then each {5k (1), Bk+1(px)} is
an edge in T, and hence Si11(ux) € Bi(u)X.
So an automorphism satisfies the, ostensibly weaker, property (??)

Lemma
Suppose o.: T° — TO is a bijection satisfying

a(X¥) = XX for all k, and o(ux) € ap)X forall € XX and x € X.

Define a := a|yx. Then{«ay} is an automorphism o of T. The
inverse is also an automorphism of T, and also satisfies (??).



Action of a group on Ty Definition of a self-similar action

A group G acts (by automorphisms) on Ty if it preserves

adjacency (and hence depth). A self-similar action is a pair (G, X) consisting of a group G and a
, finite alphabet X with a faithful action of G on X* satisfying

Consider actions on X* consistent with an action on Ty. g-2=oand

In particular, the action of g € G can not split a path apart, but its .

action on an edge labelled x € X may differ depending on the level. for all (g, x) € G x X, there exist (h, y) € G x X such that

So,ingeneral, g-(vw) # (g-v)(g-w) forge G, v,we X*. g-(w)=y(h-w) forallweX

Tixyy g (T{X ) It follows that

*
/ \ / \ forall g € G, v € X*, there exists a unique h € G such that

X y g-y=x
A N N

XX XY ¥YX YW o gam=x W og-(w) =y g (o) =y Call this h € G the restriction of g at v and write h = g, .
\ /' \ \ \ \

g-(vw)=(g-v)(h-w) forallwe X*

7/ \ /AN /AN

An example - the odometer Another example - the Basilica group

Let X = {0,1} and
Let G=7Z = (a) and X = {0, 1}.

G=(ab:c"([a,a"])forallne N
Define an action of Z on X* recursively by (& b: o"(|a, &) for all n )

where o is the substitution o(b) = aand o(a) = b°.

a-(0w) = 1w
a-(1w) = 0(a-w) Define an action of G on X* recursively by
a-(0w)=1(b-w) b-(0w) =0(a-w)
This corresponds to the diadic adding machine; a-(1w) = 0w b-(1w) =1w

it coincides with the rule of adding one to a diadic integer

(with place value increasing towards the right). The Basilica group is an iterated monodromy group with many

interesting properties, including being amenable.



Other interesting examples The nucleus

A nucleus of a self-similar action (G, X) is a minimal set V' C G
satisfying the property

for each g € G, there exists N € N such that

> Iterated monodromy groups gly € N for all words v € X" with n > N.

» The Grigorchuk group A self-similar action is contracting if it has a finite nucleus.
» Branch groups Fo(rja conltrtacting self-similar action (G, X), the nucleus is unique
and equal to

N = N{gl:vex,|v>n}

geGn>0

The bimodule M is a free right Hilbert C*(G)-module with

Given a self-similar action (G, X), let C*(G) be the full group > right C*(G)-action

C*-algebra of G and define (My)xex - @= (Mxa)xex

M= Mx) = @ c*(G). via componentwise multiplication within C*(G)
xeX

So » C*(G)-valued inner product
M = {(my)xex | mx € C*(G)}. ) = Zm*n
bl - x'1x

xeX
For each y € X we write e, for the element of M satisfying

form = (mX)XGXa n= (nX)XEX eM
(6,)x = {10*(6) ifx=y

0 otherwise. » basis {ex | x € X} is a C*(G)-basis for M, so

M = span{ex-a| x € X,ac C*(G)}.



The representation of G

Let (G, X) be a self-similar action and M = @ C*(G).
xeX

Denote by 64 € C*(G) the point mass at g € G.
For each g € G, define a linear operator Uy on M via
Ug(ex - @) = eg.x - (dg|, @)

forx € X and a € C*(G).

Lemma
The map U: G — UL(M) given by g — Uy is a faithful
nondegenerate unitary representation of G with (Uy)* = Ug-1-

The Toeplitz algebra of (G, X)

Theorem (Laca, R., Raeburn, Whittaker)
Let (G, X) be a self-similar action and M = @ C*(G).
xeX

The Toeplitz algebra T (G, X) := T (M) is the universal C* algebra
generated by a unitary representation u: G — UL(M) and a family
of isometries {sx: x € X} satisfying

(SSR1) sysx =1 and sis, =0ifx #y.

(SSR2) Ung == Sg.x Ug‘x

forallg € Gand x € X.

Moreover, T(G, X) = span{s,ugs; : u,v € X*, g € G}
where s, := Sy, ... Sy, for = pq---pp € X".

The Cuntz-Pimsner algebra of (G, X)

Theorem (Nekrashevych)
Let (G, X) be a self-similar action and M = @ C*(G).

xeX
The Cuntz-Pimsner algebra O(G, X) := O(M) is the universal

C*-algebra generated by a unitary representation u: G — UL(M)
and a family of isometries {sx: x € X} satisfying

(CR) ) sesp =1
xeX
(SSR1) sysx =1 and sys, =0ifx #y.

forallg € Gand x € X.

If (G, X) is contracting with nucleus N then O(G, X) is generated
by {ug,sx: g € N,x € X}.
If (G, X) is contracting with nucleus {e} then O(G, X) = O\

The states

States are linear functionals on algebras that satisfy properties of
significance in statistical mechanics. A state ¢ of a system

(B,R, ) is a KMSg state if p(ab) = ¢(bajs(a)) for all a,bin a
family of analytic elements spanning a dense subspace of B.

Given = p1 ... up € X*, define s, :=s,,---s,, € M.

There is an action o : R — Aut 7 (G, X) given by
or(su) = eitlu‘su ot(ug) = Ug
forp e X*and g € G. Astate ¢ : T(G, X) — Cis a KMSj state iff

P((svUgsy)(syuns;)) = o((syuns;)oip(svlgSy))

= e PUM=I"D (s, upst) sy UgSE))-



States on the Cuntz-Pimsner algebra

Lemma
Let (G, X) be a self-similar action.
If ¢ is a KMSg state on O(G, X), then 3 = In|X]|.

Lemma
Let (G, X) be a contracting self-similar action with nucleus N'. For
eachg € N\ {e}, let

Fg={pneX" g-p=pandgl|, = e}.

The sequence {|X|~"|FJ|} is increasing and converges to a limit
cq satisfying 0 < ¢q < 1 and there is a unique KMS, x| state ¢ for
O(G, X) satisfying

P(Ug) = Cg.

States on the Toeplitz algebra: 15 .,

Suppose that (G, X) is a self-similar action and 5 > In | X|.
Suppose ¢ is the trace on C x (G) satisfying

Te<6g)={1 - e

0 otherwise.
For g € Gand k > 0, we set
FZ; ={peX.g.-p=pandg|, = el
Then there is a KMSg state 13 -, on (T(G, X), o) such that
e M1 — Xle#)> e KIFS| ifv=w

V8, (SvlgSy) = s
0 otherwise.

States on the Toeplitz algebra

Theorem
Let (G, X) be a self-similar action, M = @ C*(G) and

xeX
o: R — Aut T (G, X) satisfy

or(syugst,) = etlvi="g, ugss, forv,w € X* and g € G.
1. For 8 < In|X|, there are no KMSg states.
2. For 3 =In|X|, every KMSy, x| state satisfies
& x| (Ugn) = din|x|(Unug) for all g, h € G,

e_('”‘x|)|"|¢|n‘x|(ug) ifv=w
0 otherwise,

P x| (SvUgSy) = {

and factors through O(G, X).

3. For B > In|X|, the simplex of KMSg-states of T (M) is
homeomorphic to the simplex of normalized traces on C*(G)
via an explicit construction T — g .

States on the Toeplitz algebra: s -,

Suppose that (G, X) is a self-similar action and 5 > In|X|.
Suppose 71 : C*(G) — C is the integrated form of the trivial
representation sending g — 1 forall g € G.

Forg € Gand k > 0, we set

Gy ={neX g p=np}
Then there is a KMSj state 3 -, on (T(G, X), o) such that
oo
e M1 — |Xle#)> e Pk|Gh| ifv=w

Va7 (sv Ug3*w) = k=0
0 otherwise.



Computing F/ and GJ: the Moore diagram
Suppose (G, X) is a self-similar action.

A Moore diagram is a directed graph whose vertices are elements
of G and edges are labelled by pairs of elements of X.

In a Moore diagram the arrow

()
g

means that g- x = y and g|x = h.

We can draw a Moore diagram for any subset S of G that is closed
under restriction.

The Moore diagram of the nucleus helps us calculate F¥ and Gf;
we look for labels of the form (x, x), called stationary paths.

Example: basilica group
Recall the basilica group

G=(ab: 0"([a,a"]) forall n € N),

where o is the substitution o(b) = aand o(a) = b?, with a
self-similar action (G, X) where X = {0, 1} satisfying

a-(0w)=1(b-w) b-(0w)=0(a-w)
a-(lw) =0w b-(1w) =1w

b h—1
Proposition (x.y) (’ wy) ) \(y,x)
The basilica group action (x,x) CONG T
a ~— y S
( oL
(x,x) )

(G, X) is contracting, with

nucleus 7 Sy b
N: {e’ a, b7 a_17b_17ab_17ba_1}; v:x)/ (r.x) \(x,y)

i ; azb*f/_\ba*1
the Moore diagram of N is ~_~

Computing the nucleus

Proposition

Suppose (G, X) is a self-similar action and S is a subset of G that
is closed under restriction. Every vertex in the Moore diagram of S
that can be reached from a cycle belongs to the nucleus.

Proof.

Suppose g € Gis a vertex in the Moore diagram of S, and there is
a cycle of length n > 1 consisting of edges labelled

(X1, 1), (%2, ¥2), -+ (Xn, ¥n) With s(x1, y1) = g,

r(xi, ¥i) = s(Xi+1, Yi+1), and r(xn, ¥n) = g. By definition of the
Moore diagram we have g - (X1 -+ Xp) = y1---¥nand g|x,..x, = 9-
Thus g = g|(x,...x,)m for all m € N and

ge [ alv:veX |v/=n = geN.
n>0

A similar argument shows that if g can be reached from a cycle,
then there are arbitrarily long paths ending at g. O

Example: basilica group
The critical value for KMSg states is 5 = In | X| = In2.

Proposition
The system (O(G, X), o) has a unique KMS;, » state, which is
given on the nucleus N' = {e,a,b,a ',b~',ab~" ba~'} by

1 forg=-e
P(ug) =< 5 forg=b,b~"
0 forg=aa’',ab~ " ba.

The proof relies on the fact that there are no stationary paths from

ge{aa’' ab™' ba '} to e, so for such g we have Fj = o for all
k and ¢(ug) = ¢4 = 0.

For g € {b, b=}, the only stationary paths go straight from g to e,

and there are 24~ of them; thus |X| 7| FX| = 27k2k=1 = ], and

d(Ug) = g = 3.



Path space interpretation

The tree Ty, ,, alongside
‘% THE UNIVERSITY OF 5 T
SYDNEY represents the path space of ot

the graph .
y /N
X y
() AVVA

xx Xy yx yy

/N VAR VAR

Tx represents the path space of a bouquet of | X| loops.

More general path spaces: from trees to forests Small changes make big differences
The path space of a finite directed graph E is a forest Tg of rooted
trees.
E Te

j LT P~ N, VAN
e TG U <A A AA

P YA A NAY 2 SR O A
A AT AT A T AN AR AR

. F T}
Problems arise: g

» the trees in the forest are not necessarily homogeneous; ,f:\ . / \eg\e e\
> restrictions need not be uniquely determined; «C ”\/4” \ \ \ N\

€18 €162 er€e3 €264 €364 €481 €462 €4€3

» automorphisms of Tg need not be graph automorphisms of E. & N\ | NN /\ |

In particular, the source map may not be equivariant:
s(g - e) # g- s(e) in general. This distinguishes our work.



% THE UNIVERSITY OF
@ SYDNEY

Path space T of finite directed graph E
The analogue of the tree Tx is the (undirected) graph Tg with
vertex set T9 = E* and edge set
T'={{u.pne}: pc E*,ec E', and s(n) = r(e)} .

The subgraph vE* = {i € E*: r(u) = v} is a rooted tree with root
v € E% and Tg = | |, VE* is a disjoint union of trees, or forest.

o VN VAN
\_2/ 11/ \12 23/ \24 31/ \32 41/ \42
NANA AN AN

Path spaces of finite directed graphs, £

Generalise: replace X by edges E' in a finite directed graph E.

Suppose E = (E°, E', r, s) is a directed graph with vertex set E°,

edge set E', and range and source maps r,s: E' — E°. Write
EX = {u=p1- e i € E',s(ui) = r(pis1)}

for the set of paths of length k in E, E° for the set of vertices, and

define E* := | |, EX.

We recover the previous work by taking E to be the graph
({*}, X, r,s) inwhich r(x) = r(y) = s(x) = s(y) = = for all
X,y € X = E"and E* = X*.

Partial isomorphisms

Restrictions become problematic in this context; knowing an action
on one tree in the forest doesn’t constrain the action on other trees.

Suppose E = (E°, E', r, s) is a directed graph.

A partial isomorphism of Tg consists of two vertices v, w € E® and
a bijection g : vE* — wE™* such that

9|,ex is a bijection onto wEX for k € N, and
g(ue) € g(p)E" for all pe € ve*.

For v € E9, we write id, : vVE* — VvE* for the partial isomorphism
given by id, () = u for all u € vE™.
Denote the set of all partial isomorphisms of Tg by Plso(E™).

Define domain and codomain maps d, ¢: Plso(E*) — E° so that
g:d(9)E" — c(9)E".



Groupoids

Working with partial isomorphisms means working with groupoids.

A groupoid differs from a group in two main ways:
» the product in a groupoid is only partially defined, and
» a groupoid typically has more than one unit.

A groupoid is a small category with inverses.

(Plso(E*), E®, ¢, d) is a groupoid

Proposition
Suppose that E = (E°, E', r, s) is a directed graph with associated
forest Tk.

Then (Plso(E*), E°, ¢, d) is a groupoid in which:
» the product is given by composition of functions,
» the identity isomorphism atv € E° isid, : vE* — VE*, and

» the inverse of g € Plso(E™) is the inverse of the function
g:d(9)E" — c(9)E™.

Groupoids

So a groupoid consists of
» aset G° of objects (the unit space of the groupoid),
» aset G of morphisms,
» two functions ¢, d : G — G°, and
» a partially defined product (g, h) — gh from

G?:={(g,h):d(g) =c(h)}to G

such that (G, G°, ¢, d) is a category and such that each g € G has
aninverse g~ '.

We write G to denote the groupoid. If |G°| = 1, then G is a group.

Groupoid action

Suppose that E is a directed graph and G is a groupoid with unit
space E°.

An action of G on the path space E* is a (unit-preserving) groupoid
homomorphism ¢ : G — Plso(E*).

The action is faithful if ¢ is one-to-one.

If the homomorphism is fixed, we usually write g - 11 for ¢g(11).

This applies in particular when G arises as a subgroupoid of
Plso(E*).



Self-similar groupoid action (G, E)

Definition
Suppose E = (E° E', r, s) is a directed graph and G is a groupoid
with unit space E° which acts faithfully on Tg.

The action is self-similar if for every g € G and e € d(g)E", there
exists h € G such that

g-(en) = (g-e)(h-pu)forall u € s(e)E*. (1)

Since the action is faithful, there is then exactly one such h € G,
and we write g|e := h. Say (G, E) is a self-similar groupoid action.

):ﬁz €1 / \62\ €3 6‘4
) C V\\_/w e e/ >e2\e e3 e ‘e e ‘e e e/ >e2\e e
" S A VA A \ U

Action on paths

We want to be able to deal with paths rather than just edges.

Proposition
Suppose E = (E®, E', r, s) is a directed graph and G is a groupoid
with unit space E° acting self-similarly on Tg.

Thenforallg,h € G, n € d(g9)E*, and v € s(p) E* we have:
- Gl = (91u)
idr(u) |u = sy,

- (hg)|u = hlg..9l., and
g = (glg—,)7"

—

Vs

A W N

Consequences of self-similar groupoid definition

Lemma
Suppose E = (E®, E', r, s) is a directed graph and G is a groupoid
with unit space E° acting self-similarly on Te.

Then for g, h € G with d(h) = c(g) and e € d(g)E", we have

> d(gle) = s(e) and c(gle) = s(g - e),

> r(g-e)=g-r(e) and s(g-e)=gle-s(e),

> ifg = idy(e), then gle = idg(e), and

> (hg)le = (hlg-e)(gle)-
Note that in general s(g - €) # g - s(e), ie the source map is not
G-equivariant.
Indeed, g - s(e) will often not make sense: g maps d(g)E* onto
c(g)E*, and s(e) is notin d(g)E* unless s(e) = d(g).

Constructing self-similar groupoid actions

We use automata to construct self-similar groupoid actions.

An automaton over E = (E®, E', rg, sg) is
» a finite set A containing E°, with

» functions ra, sa: A — E° such that ra(v) = v = sa(v) if
ve EYC A and

» a function
A.x, E' - E'_x, A

SpA N IE SE"TA
(a,e) —  (a-e ale)
such that:
(A1) forevery ac A, e a- eis abijection sa(a)E' — ra(a)E";
(A2) sa(ale) = se(e) forall (a,e) € Ag, %, E';

SA" e

(A3) re(e)-e=eandre(e)|le = se(e) forall e € E'.



Constructing self-similar groupoid actions

Since sg(v) = re(v) = sa(v) = ra(v) = vforall v € E, the range
and source maps are consistent whenever they both make sense.

We can extend restriction to paths by defining

aly = (- (@) uo) s )i

The point is that sa(al,,) = se(u1) = re(pe), for example, and
hence (a|,,)|., makes sense.

We use automata over E to construct subgroupoids of Plso(E*).

Constructing self-similar groupoid actions

Theorem
Suppose that E is a directed graph and A is an automaton over E.

For a € A, let f; be the partial isomorphism of Tg just described.

Let G be the subgroupoid of Plso(E*) generated by {f, : a € A}.
By convention this includes the identity morphisms {id, : v € E°}.

Then Gp acts faithfully on the path space E*, and this action is
self-similar.

The action of Gg is faithful because Gy is constructed as a
subgroupoid of Plso(E*).

It should be possible to construct unfaithful actions from some
automata.

Constructing self-similar groupoid actions

Proposition
Suppose that E is a directed graph and A is an automaton over E.
We recursively define maps

fak : s(a)EX — r(a)E*
forac Aandk € N by f,1(e) = a- e and
fakvi(en) = (a- €)fq,k(p) forep € sa(a)E**!.

Then for every a € A, fy = {fax} is a partial isomorphism of
s(a)E* onto r(a)E* so that d(f;) = s(a) and c(fs) = r(a).

Fora=ve AN E® we have f, =id,: VE* — VE*.

Toeplitz algebra of a self-similar groupoid action

Suppose that G is a (discrete) groupoid.

The groupoid elements g € G give point masses iy in C¢(G), and
Cc(G) = span{iyg : g € G}.

For g, h € G, the involution and product are determined by

L iy ifd(g) = c(h)
F=i 1 and yxip=214 7
g~ g g*h {0 otherwise.



Toeplitz algebra of a self-similar groupoid action

A function U : G — B(H) is a unitary representation of G if

» for v € G°, U, is the orthogonal projection on a closed
subspace of H,

» foreach g € G, Uy is a partial isometry with initial projection
Ua(g) and final projection Ug(g), and

» for g, h € G, we have

if =c(h
Uy, — { U 110) = clh)
0 otherwise.

Note that each Uy is a unitary isomorphism Uyg)H — Ug(g)H.

There’s a similar notion of unitary representation with values in a
C*-algebra, and then the map i: g — iy is a unitary representation
of Gin C¢(G) C C*(G).

The pair (C*(G), i) is universal for unitary representations of G.

Gauge action on 7 (G, E)

Suppose that E is a finite graph with no sources and that (G, E) is
a self-similar groupoid action over E.

There is a strongly continuous gauge action
v:T — AutT(G, E)

such that
V2(ic(6)(a)) = ic+(a)(@)
and vz(im(m)) = ziy(m) for a € C*(G) and m € M.

The gauge action gives rise to a periodic action o of the real line (a
dynamics) by the formula o; = ~4¢. This dynamics satisfies

or(suugss) = elr="s ysk. @)

Toeplitz algebra of a self-similar groupoid action
We construct a Hilbert bimodule over C*(G), M, and define the
Toeplitz algebra of (G, E) to be T(G, E) := T(M).

If E is a finite graph without sources, we show that 7(G, E) is
generated by {ug: g € G} U{p,: v € E°} U {se: e € E'} where
> U is a unitary representation of G with u, = p, for v € EO;
> (p, s) is a Toeplitz-Cuntz-Krieger family in 7(G, E), and

> vego Pv is an identity for 7(G, E);
» forge Gandec E',

s, — 3 Sa-elgle if d(g) =r(e)
ge 0 otherwise;

» forge Gand v € EC,

Pgvig ifd(g) =v
u, —=
gbv {0 otherwise.

T(G,E) =span{s,ugs;, : p,v € E*,g€ Gand s(i) = g- s(v)}.

KMS;-states on 7 (G, E)

Proposition
Let E be a finite graph with no sources and vertex matrix B, and let
p(B) be the spectral radius of B.

Suppose that (G, E) is a self-similar groupoid action.

Leto : R — AutT(G,E), oi(s.ugsy) = eH=1"Ds, ugss.
» For 3 < Inp(B), there are no KMSg-states for o.

» For 3 > Inp(B), a state ¢ is a KMSg-state for o if and only if
¢ o ic+(g) Is a trace on C*(G) and

A(S.UgSs) = 8u,005(,1).0(0)s(v).d(e) € M d(ug)

forge Sandpu,v € E*.
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