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Motivation

Cuntz (2008) introduces QN as the universal C∗-algebra generated by
isometries {sn}n∈N and a unitary u satisfying

smsn = smn, snu = unsn, and
n−1∑
k=0

uksn s∗n u−k = 1.

Larsen and Li (2012) define Q2 as the universal C∗-algebra generated by
an isometry s2 and a unitary u satisfying

s2u = u2s2 and s2 s∗2 + us2 s∗2 u∗ = 1.

We think of QN as coming from the set S = {all primes}, and Q2 as
coming from S = {2}. It is computed that

K0(QN) ∼= Z∞ ∼= K1(QN) and K0(Q2) ∼= Z ∼= K1(Q2).

The more general versions can have torsion in their K -groups.
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The algebras QS

Definition
Let S be a set of mutually relatively prime numbers ≥ 2.
Define the algebra QS as the universal C∗-algebra generated by a unitary
u and isometries {sp}p∈S satisfying
(i) s∗p sq = sq s∗p ,
(ii) spu = upsp, and
(iii)

∑p−1
k=0 ek+pZ = 1

for all p, q ∈ S, where ek+pZ := uksp s∗p u−k .

Let (ξn)n∈Z denote the standard orthonormal basis for `2(Z). If we define

Uξn = ξn+1 and Spξn = ξpn,

then U and {Sp}p∈S satisfy (i)–(iii). This representation on `2(Z) is
faithful, so we can also think of QS as a subalgebra of B(`2(Z)).
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Crossed product description
Let H+ be the submonoid of N× generated by S. Then

QS ∼= (DS o Z) oe H+ ∼= DS oe (Z o H+),

where
DS = C∗{ek+qZ : q ∈ S, k ∈ Z}.

Set N = Z[{ 1
p : p ∈ S}] ⊆ Q and let H be the subgroup of Q×+ generated

by S. Then it follows from the dilation theory of Laca that

QS ∼M C0(Ω) o N o H,

where Ω is the completion of N w.r.t. to the subgroup topology generated
by {hZ : h ∈ H}, and the action is the natural ax + b-action.
Let ∆ be the closure of Z in Ω, then DS ∼= C(∆).
Moreover, QS is isomorphic to the full corner of C0(Ω) o N o H cut down
by the projection χ∆ ∈ C0(Ω).
If P = {p ∈ N× : p prime and p|q for some q ∈ S},
then ∆ '

∏
p∈P Zp and Ω '

∏′
p∈P Qp.
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Boundary quotients of semigroup C ∗-algebras

QS can also be constructed from either No H+ or Z o H+ using the
theory of boundary quotients of semigroup C∗-algebras.
Relatively primeness of S gives that No H+ and Z o H+ are right LCM.
Both are also left Ore semigroups with enveloping group
N o H ⊆ QoQ×+ , where still N = Z[{ 1

p : p ∈ S}].

First, note that (No H+,N o H) forms a quasi-lattice ordered group.
Hence we can form the Toeplitz algebra T (No H+,N o H) using the
work of Nica, which coincides with C∗(No H+).
To define C∗(Z o H+), we use Xin Li’s theory of semigroup C∗-algebras,
which generalizes Nica’s approach.
Boundary quotients were introduced by Crisp and Laca for quasi-lattice
ordered groups, and later generalized to right LCM semigroups by several
people. In this setting

BQ(No H+) = BQ(Z o H+) = QS .
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Kirchberg algebra

Theorem
For every set S of relatively prime numbers, the algebra QS is a unital
Kirchberg algebra in the UCT class.
Consequently, the K -theory is a complete isomorphism invariant for QS
(Kirchberg-Phillips).

We can use that QS is a full corner of C0(Ω) o N o H to see this:
The ax + b-action of N o H on Ω is minimal, locally contractive, and
topologically free, implying that C0(Ω) o N o H is purely infinite and
simple (Archbold-Spielberg, Laca-Spielberg).
Separability, nuclearity, UCT hold because:
N o H is discrete countable amenable, C0(Ω) is commutative separable,
and the transformation groupoid of (Ω,N o H) is amenable (Tu).
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Main theorem

Let S be a set of mutually relatively prime numbers. Define

g = gcd{p − 1 : p ∈ S} = max{q ∈ N× : q|p − 1 for all p ∈ S}.

If 2 ∈ S, then g = 1.

Theorem

Ki (QS) ∼= Z2|S|−1
⊕ Ti , i = 0, 1,

where T0 and T1 are torsion groups, which are finite if S is finite.
Moreover, if g = 1, then T0 and T1 are both trivial.

Case |S| = 1, i.e., S = {r} is previously studied (Hirshberg, Katsura).
These are graph C∗-algebras and their K -theory is given by

K0(QS) ∼= Z⊕ Z/(r − 1), [1]0 = (0, 1), K1(QS) = Z.

Hence, Q{r} ∼= Q{q} if and only if r = q.
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Two generator case and conjecture

Theorem
Assume |S| = 2, i.e., S = {q, r} and g = gcd{q − 1, r − 1}. Then

K0(QS) ∼= Z2 ⊕ Z/gZ, [1]0 = (0, 1), K1(QS) = Z2 ⊕ Z/gZ.

E.g. Q{4,13} ∼= Q{7,10}.

When |S| ≥ 3 and g > 1, we can only show that |Ti | divides g2|S|−2 .

Conjecture
For |S| ≥ 2 we have

T0 ∼= (Z/gZ)2|S|−2 ∼= T1,

and consequently, QS ∼= QS′ if and only if |S| = |S ′| and g = g ′.
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The algebras QH

Definition
Let H ⊆ Q×. Define the algebra QH as the universal C∗-algebra
generated by a unitary u and partial isometries {sh}h∈H satisfying
(i) s∗h = sh−1 and s∗h sh sg = s∗h shg for all g , h ∈ H.
(ii) shuq = upsh when h = p/q.
(iii)

∑p−1
k=0 ek+pZ = 1,

where ek+pZ := uksh s∗h u−k and h = p/q.

Let (ξn)n∈Z denote the standard orthonormal basis for `2(Z). If we define

Uξn = ξn+1 and Shξn = ξhn if hn ∈ Z and 0 else,

then U and {Sh}h∈H satisfy (i)–(iii). This representation on `2(Z) is
faithful, so we can also think of QH as a subalgebra of B(`2(Z)).
Moreover, if h = p/q with gcd(p, q) = 1, then Sh = Sp S∗q so that
S∗h Sh = EqZ and Sh S∗h = EpZ.

Tron Omland, UiO C∗-algebras arising from integral and rational dynamics 9/1



Kirchberg algebra

Set N = Z[{h : h ∈ H}] ⊆ Q and let Ω be the completion of N w.r.t. to
the subgroup topology generated by {hZ : h ∈ H}, i.e., N is dense in Ω.
Let ∆ be the closure of Z in Ω.

Proposition
The algebra QH embeds into C0(Ω) o N o H as a full corner, cut down by
the projection χ∆ ∈ C0(Ω).
Thus, when H is infinite, QH is a UCT Kirchberg algebra, and its K -theory
is a complete isomorphism invariant (Kirchberg-Phillips).
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Partial actions

Definition
A partial action of a group G on a set X is a collection {Dg}g∈G of
subsets of X , and a collection of maps {θg}g∈G , θg : Dg−1 → Dg such that

De = X , θe = idX

θgh is an extension of θg ◦ θh

Example
Every H ⊆ Q× acts partially on Z as follows: For h = p/q ∈ H with
gcd(p, q) = 1, set Dh = pZ, and define θh : qZ→ pZ by qn→ pn.
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Generalized partial C ∗-dynamical systems

Let BH be the C∗-subalgebra of QH generated by u and projections
{ek+qZ : k ∈ Z, 1/q ∈ N}. Recall that BH ∼= DH o Z is a Bunce-Deddens
algebra.
The group H acts partially by α on BH , where each αh is a ∗-isomorphism
from its domain Dh−1 = eqZBHeqZ to its range Dh = epZBHepZ. In terms
of the generators u and eX , the map αh for h = p/q with gcd(p, q) = 1 is
defined by
(i) for X ⊆ qZ by αh(eX ) := ehX , and
(ii) for n ∈ qZ by αh(un) = uhn.

Remark
In Exel’s definition of a partial C∗-dynamical systems, the domains are
required to be ideals, which is not the case here. We would still like to
think about our QH as a partial crossed product BH opart

α H.
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Main theorem

Let H ⊆ Q×+ be nontrivial and choose a minimal generating set {pi/qi}i∈I
such that gcd(pi , qi ) = 1 and pi > qi for all i ∈ I. Define

g = gcd{pi − qi : i ∈ I} = max{r ∈ N× : r |(pi − qi ) for all i ∈ I}.

Theorem
Let H ⊆ Q×+ be nontrivial of rank m ≥ 1, i.e., H ∼= Zm. Then

Ki (QH) ∼= Z2m−1
⊕ Ti , i = 0, 1,

where T0 and T1 are torsion groups, which are finite if H is
finitely-generated. If g = 1, then T0 = T1 = 0.
Moreover, there is a C∗-subalgebra AH of QH such that

Ki (AH) = Ti for i = 1, 2.
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Two-generator case and conjecture

Remark (one-generator case)
Let H = 〈p/q〉, with gcd(p, q) = 1 and p > q.
Then T0 = Z/(p − q)Z and T1 = 0.

Theorem (two-generator case)
Assume H = 〈p1/q1, p2/q2〉 ∼= Z2, and set g = gcd{p1 − q1, p2 − q2}.
Then

K0(QH) ∼= Z2 ⊕ Z/gZ, [1]0 = (0, 1), K1(QH) = Z2 ⊕ Z/gZ.

Conjecture
When the rank m of H is at least 2, we have

Ki (AH) = Ti ∼= (Z/gZ)2m−2
for i = 1, 2,

and consequently, QH ∼= QH′ if and only if m = m′ and g = g ′.
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Techniques involved in the proof

Step 1 (comparing with real dynamics)

Again, let H be the subgroup of Q×.
Recall that N = Z[{h : h ∈ H}] and Ω is a completion of N, and that
QH ∼M C0(Ω) o N o H.
Then we apply a “duality theorem” (Kaliszewski-O.-Quigg, 14):

C0(Ω) oax+b (N o H) ∼M C0(R) oax+b (N o H)

Hence, the problem is to compute the K -theory of C0(R) o N o H.
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Techniques involved in the proof

Step 2 (decomposition)

The embedding C0(R) o H ↪→ C0(R) o N o H induces an injection in
K -theory onto the free abelian part of K∗(C0(R) o N o H) = K∗(QH).
The action of H is homotopic to the trivial action, so

K∗(C0(R) o H) = K∗(C0(R)⊗ C∗(H)) = K∗(C0(R)⊗ C∗(Zm)) = Z2m−1

There is a certain H-invariant subalgebra A ⊂ C0(R) o N such that

K∗(C0(R) o N o H) ∼= K∗(C0(R) o H)⊕ K∗(A o H),

where K∗(A o H) is a torsion group.
(for this, one first shows that K∗(C0(R) o N) ∼= K∗(C0(R))⊕ K∗(A))
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Techniques involved in the proof

Step 3 (the torsion part)
The algebra AH can be described as follows:
Consider MH ⊂ BH ∼= C(∆) o Z = χ∆(C0(Ω) o N)χ∆.
There is an H-invariant C∗-subalgebra B of C0(Ω) o N, such that MH is a
full corner of B cut down by χ∆.
Since QH embeds as a full corner of C0(Ω) o N o H cut down by χ∆, we
can find a C∗-subalgebra AH of QH that embeds as a full corner of B o H
cut down by χ∆.
There exists an H-equivariant isomorphism C0(Ω) o N ∼= C0(R) o N, and
then the A above is defined as the image of B under this map.
The partial action of H on BH restricts to a partial action on MH ⊂ BH ,
where the domains become Dh = eqZMHeqZ. One might then think of AH
as MH opart

α H.
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Other descriptions of AS

In general, it remains to find good descriptions of AH , but in the original
case where H is generated by a set S of mutually relatively prime numbers,
we have that

Define AS = C∗{umsp | p ∈ S, 0 ≤ m ≤ p − 1} ⊂ QS .

Moreover, recall that

QS ∼= (DS o Z) oe H+,

and the UHF-algebra Md∞ , for d =
∏

p∈S p, is a subalgebra of DS o Z
invariant under H+, so

AS ∼= Md∞ oe H+,

and we can show that AS is a UCT Kirchberg algebra.
For |S| ≥ 2, both K -groups of

⊗
p∈S Op are (Z/gZ)2|S|−2

.
Hence, our conjecture about K∗(QS) is equivalent with the following:

Conjecture (restated for QS)
The algebra AS is isomorphic to

⊗
p∈S Op.
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