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Cuntz (2008) introduces Qy as the universal C*-algebra generated by
isometries {s,}nen and a unitary u satisfying

n—1
SmSn = Smn, Snu = u"s,, and E uks,,s,*;u_k =1.
k=0

Larsen and Li (2012) define Q, as the universal C*-algebra generated by
an isometry s, and a unitary u satisfying

su=u’s, and 5,85 +us,s;ut = 1.

We think of Qn as coming from the set S = {all primes}, and Q, as
coming from S = {2}. It is computed that

Ko(Qn) = Z> = Ki(Qn) and  Ko(Q2) = Z = Ki(Q2).

The more general versions can have torsion in their K-groups.
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The algebras Qg

Definition
Let S be a set of mutually relatively prime numbers > 2.
Define the algebra Qs as the universal C*-algebra generated by a unitary
u and isometries {s,},cs satisfying
. * _

(i) SpSq = SqSp

(i) spu = uPsp, and

—1

(iii) D-h_p extpz =1

k

.k * o —
for all p,q € S, where ez := u*s,spu™".

v

Let (£,)nez denote the standard orthonormal basis for £2(7Z). If we define

U =&npr and 5pgn = fpna

then U and {S,},cs satisfy (i)—(iii). This representation on ¢?(Z) is
faithful, so we can also think of Qs as a subalgebra of B((*(Z)).
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Crossed product description

Let HT be the submonoid of N* generated by S. Then
Qs 2 (Ds X Z) x® HT =2 Ds x¢ (Z x HT),

where

Ds = C*{ek+qz e IS S ke Z}

Set N = Z[{% :p €S} CQ and let H be the subgroup of Q7 generated
by S. Then it follows from the dilation theory of Laca that

QS ~M Co(Q) x N x H,

where Q is the completion of N w.r.t. to the subgroup topology generated
by {hZ : h € H}, and the action is the natural ax + b-action.

Let A be the closure of Z in Q, then Ds = C(A).

Moreover, Qs is isomorphic to the full corner of Go(Q2) x N x H cut down
by the projection xa € Go(R).

If P={p e N*:p prime and p|q for some g € S},

then A ~ [, pZp and Q ~ H;ePQP'
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Boundary quotients of semigroup C*-algebras

Qs can also be constructed from either N x H™ or Z x H* using the
theory of boundary quotients of semigroup C*-algebras.

Relatively primeness of S gives that N x H* and Z x H" are right LCM.
Both are also left Ore semigroups with enveloping group
N xHCQxQ, wherestill N =Z[{} : p € S}].

First, note that (N x H*, N x H) forms a quasi-lattice ordered group.
Hence we can form the Toeplitz algebra T (N x HY N x H) using the
work of Nica, which coincides with C*(N x HT).

To define C*(Z x HT), we use Xin Li's theory of semigroup C*-algebras,
which generalizes Nica's approach.

Boundary quotients were introduced by Crisp and Laca for quasi-lattice
ordered groups, and later generalized to right LCM semigroups by several
people. In this setting

BQ(N x H') = BQ(Z x H') = Qs.
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Kirchberg algebra

For every set S of relatively prime numbers, the algebra Qg is a unital
Kirchberg algebra in the UCT class.

Consequently, the K-theory is a complete isomorphism invariant for Qs
(Kirchberg-Phillips).

We can use that Qg is a full corner of Go(2) x N x H to see this:
The ax + b-action of N x H on  is minimal, locally contractive, and
topologically free, implying that Go(€2) X N x H is purely infinite and
simple (Archbold-Spielberg, Laca-Spielberg).

Separability, nuclearity, UCT hold because:

N x H is discrete countable amenable, Co(Q2) is commutative separable,
and the transformation groupoid of (2, N x H) is amenable (Tu).
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Let S be a set of mutually relatively prime numbers. Define
g=gcd{p—1:pe S} =max{geN*:qg|p—1forall peS}.

If2€ S, then g =1.

Ki(Qs)=72""aT, i=0,1,

where Ty and T; are torsion groups, which are finite if S is finite.
Moreover, if g =1, then Ty and T; are both trivial.

Case |S| =1, i.e,, S = {r} is previously studied (Hirshberg, Katsura).
These are graph C*-algebras and their K-theory is given by

Ko(Qs)=ZZ®Z/(r—1), [llo=(0,1), Ki(Qs)="7Z.

Hence, Q) = Qyqy if and only if r = q.
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Two generator case and conjecture

Assume |S| =2, ie., S={q,r} and g = gcd{qg—1,r — 1}. Then

Ko(Qs) = Z* @ Z/gZ, [l]o=(0,1), Ki(Qs)=7Z’&Z/gL.

E.g. Qua13) = Qq7,10)-

When |S| >3 and g > 1, we can only show that |T;| divides g2~ .

For |S] > 2 we have

~ A=z
To = (Z/gZ) =T,

and consequently, Qs = Qg if and only if |S| = |S’| and g = g’.
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The algebras Qy

Definition
Let H C Q*. Define the algebra Oy as the universal C*-algebra
generated by a unitary u and partial isometries {sp}necp satisfying

(i) sy =s,1 and s;s,s5, = s;'5,,, forall g, h € H.
(ii) shu? = uPs, when h=p/q.

(iii) Y-hzp enrpz = 1,

where ey p7 = ukshs;;‘u*k and h=p/q.

Let (£,)nez denote the standard orthonormal basis for £2(Z). If we define
Uy =E&pp1 and Sp€, = Epp if hn € Z and 0 else,

then U and {Sy} ey satisfy (i)—(iii). This representation on (?(Z) is
faithful, so we can also think of Qy as a subalgebra of B(¢?(Z)).
Moreover, if h = p/q with gcd(p, q) = 1, then S, = S,5; so that
S;:Sh = EqZ and ShS/T = Epz.
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Kirchberg algebra

Set N=Z[{h: he H}] CQ and let Q be the completion of N w.r.t. to
the subgroup topology generated by {hZ : h € H}, i.e., N is dense in Q.
Let A be the closure of Z in Q.

Proposition

The algebra Qp embeds into Go(Q2) X N x H as a full corner, cut down by
the projection xa € Go(Q).

Thus, when H is infinite, Qy is a UCT Kirchberg algebra, and its K-theory
is a complete isomorphism invariant (Kirchberg-Phillips).
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Partial actions

A partial action of a group G on a set X is a collection {Dg}zcc of
subsets of X, and a collection of maps {0, }¢cc, 0g: Dg—1 — D, such that

D.=X, 0.=idx

Ogp is an extension of 0 o O

Example

| A

Every H C Q* acts partially on Z as follows: For h=p/q € H with
ged(p, q) = 1, set Dy, = pZ, and define 6,,: gZ — pZ by qn — pn.
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Generalized partial C*-dynamical systems

Let By be the C*-subalgebra of Qp generated by v and projections
{€k+qz : k € Z,1/q € N}. Recall that By = Dy x Z is a Bunce-Deddens
algebra.

The group H acts partially by « on By, where each «, is a *-isomorphism
from its domain Dy-1 = egzBpeqz to its range Dy = e;zBHepz. In terms
of the generators u and ex, the map ay, for h = p/q with ged(p,q) =1 is
defined by

(i) for X C gZ by ap(ex) := enx, and
(ii) for n € qZ by ap(u") = uh".

*

In Exel's definition of a partial C*-dynamical systems, the domains are
required to be ideals, which is not the case here. We would still like to
think about our Q as a partial crossed product By xPt H.
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Main theorem

Let H C QX be nontrivial and choose a minimal generating set {p;/q;}ic
such that ged(p;, gi) = 1 and p; > q; for all i € I. Define

g=gcd{pi—qi:iel} =max{re N*:r|(p; — q;) for all i € [}.

Theorem
Let H C (@_f be nontrivial of rank m>1, i.e., H=Z™. Then

K(Qu) =2z & T, i=0,1,
where Ty and T3 are torsion groups, which are finite if H is

finitely-generated. If g =1, then To = T; = 0.
Moreover, there is a C*-subalgebra Ay of Qg such that

Ki(Ap) = T, for i = 1,2.
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Two-generator case and conjecture

Remark (one-generator case)

Let H= (p/q), with gcd(p,q) =1 and p > q.
Then To=Z/(p—q)Z and T; = 0.

Theorem (two-generator case)

Assume H = (p1/q1, p2/q2) = 72, and set g = gcd{p1 — q1, P> — 92}
Then

Ko(Qn) = Z° ® Z/gZ, [l]o=(0,1), Ki(Qn)=7’®Z/gZL.

Conjecture

When the rank m of H is at least 2, we have

Ki(An) =T, = (Z/gZ)2m_2 fori=1,2,

and consequently, Oy = Qu if and only if m=m’ and g = g'.
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Techniques involved in the proof

Step 1 (comparing with real dynamics)

Again, let H be the subgroup of Q*.

Recall that N = Z[{h: h € H}] and Q is a completion of N, and that
QH ~M CO(Q) x N x H.

Then we apply a “duality theorem” (Kaliszewski-O.-Quigg, 14):

Co(Q) N ax+b (N X H) ~M C()(R) X ax+b (N X H)

Hence, the problem is to compute the K-theory of Co(R) x N x H.
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Techniques involved in the proof

Step 2 (decomposition)

The embedding Co(R) x H < Co(R) x N x H induces an injection in
K-theory onto the free abelian part of K.(Cy(R) x N x H) = K.(Qp).
The action of H is homotopic to the trivial action, so

K.(Go(R) x H) = K.(Go(R) @ C*(H)) = K.(Go(R) ® C*(Z™) = 22"
There is a certain H-invariant subalgebra A C Co(R) x N such that
K (G(R) x N x H) 2 K. (G(R) x H) & K.(A x H),

where K, (A x H) is a torsion group.
(for this, one first shows that K.(G(R) x N) = K. (G(R)) & K. (A))
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Techniques involved in the proof

Step 3 (the torsion part)
The algebra Ay can be described as follows:
Consider My C By = C(A) X Z = xa(Go(2) x N)xa.

There is an H-invariant C*-subalgebra B of Co(€2) x N, such that My is a
full corner of B cut down by xAa.

Since Qp embeds as a full corner of Co(2) x N x H cut down by xa, we
can find a C*-subalgebra Ay of Qy that embeds as a full corner of B x H
cut down by xa.

There exists an H-equivariant isomorphism Co(2) x N = Co(R) x N, and
then the A above is defined as the image of B under this map.

The partial action of H on By restricts to a partial action on My C By,
where the domains become Dy = e,7,Mpeqz. One might then think of Ay
as My xP H.
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Other descriptions of Ag

In general, it remains to find good descriptions of Ay, but in the original
case where H is generated by a set S of mutually relatively prime numbers,
we have that

Define As = C*{u™s, | p€ S5,0<m<p—1} C Qs.
Moreover, recall that
Qs = (Ds x Z) x° HT,
and the UHF-algebra My, for d = HpES p, is a subalgebra of Ds x Z
invariant under HT, so

./45 = Mdoo ><1e H+,

and we can show that As is a UCT Kirchberg algebra.

For [S| > 2, both K-groups of &),.5 O, are (Z/gZ)z\SFQ.
Hence, our conjecture about K. (Qs) is equivalent with the following:

Conjecture (restated for Qs)

The algebra As is isomorphic to @ s Op
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