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Recall that for a discrete group G, TFAE:
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C*(G) is nuclear;

C;(G) is nuclear;

the left regular representation C*(G) — C5(G) is an isomorphism;

there is a character on C5(G).

vV v.v. vy

Do we have an analogue for semigroups?

Why not consider all isometric representations in the construction of full
semigroup C*-algebras?

Let P =N x N. This is an abelian semigroup, so it is amenable.

The C*-algebra universal for all isometric representations of N x N is

* * *
C*(Va, v | Viva=1, vive =1, Vavp = vpVa).

Murphy showed that this C*-algebra is not nuclear.
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Now consider P = N x N.
» This semigroup is not amenable.

» But C;(N*N) = 7. Hence C{(N = N) is nuclear.

» Moreover, T, = C* (va, vp | Viva =1, Vivp =1, vavivpy, =0).
So C;(N*N) 2 C*(N+N).

This looks strange compared to the group case.

» Goal: Find an explanation!
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The independence condition

Given a left cancellative semigroup P, let S = /;(P).

» Embed P into S sending p € P to the partial bijection
P — pP, x — px, which is an element in S.

» So we may view /2P as a subspace of £2S (or /25> if 0 € S).
» Cutting down by the corresponding orthogonal projection, we get a
homomorphism C5(S) - C(P).

When is this map an isomorphism?
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Definition

P satisfies the independence condition if for every X, Xy,..., X, €
Jp, X =Ui_; X; implies that X = X; for some 1 </ < n.

Theorem (Norling)

For a subsemigroup P of a group, C;(S) — C;(P) is an isomor-
phism if and only if P satisfies independence.



The independence condition. Examples

Every right LCM monoid P (i.e., J5° = {pP}) satisfies independence:
Let pP = U:.’:l piP. Then p=p-e € pP,sop e p;P forsomel << n.
But p;P is a right ideal, so p € p;P implies pP C p;P. Hence pP = p;P.



The independence condition. Examples

Every right LCM monoid P (i.e., J5° = {pP}) satisfies independence:
Let pP = U7:1 piP. Then p=p-e € pP,sop e p;P forsomel << n.
But p;P is a right ideal, so p € p;P implies pP C p;P. Hence pP = p;P.

Examples:

» Positive cones;
> Right-angled Artin monoids;
» R* and R x R* if R is a principal ideal domain.
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Every right LCM monoid P (i.e., J5° = {pP}) satisfies independence:
Let pP = U:.’:l piP. Then p=p-e € pP,sop e p;P forsomel << n.
But p;P is a right ideal, so p € p;P implies pP C p;P. Hence pP = p;P.

Examples:

» Positive cones;
> Right-angled Artin monoids;
» R* and R x R* if R is a principal ideal domain.

For a ring R of algebraic integers in a number field, R x R* always
satisfies independence (because R is a Dedekind domain).
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Let R = Z[iv/3]. R is not integrally closed in Q[iv/3]. Its integral closure
is Z[1(1 +iv/3)]. And R x R* does not satisfy independence.

P =N\ {1} does not satisfy independence:

24+ P ={2,4,5,...} and 3+ P ={3,5,6,...} are constructible ideals.
So5+N=1{5,6,7,...} = (2+ P)N(3+ P) is also a constructible ideal.
We have 5+ N = (5+ P)U (6 + P).

Butb5+PC5+Nand6+P C5+N.

Thus P does not satisfy independence.

A similar argument shows that for every numerical semigroup of the form
N\ F, where ) # F is finite, the independence condition does not hold.
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Theorem (L)

Let P be a cancellative semigroup which satisfies independence.
TFAE

> P is left amenable.
» C*(P) is nuclear and there is a character on C*(P).
» C;(P) is nuclear and there is a character on C*(P).

> The left regular representation C*(P) — C;(P) is an
isomorphism and there is a character on C*(P).

> There is a character on C5(P).

What about P = N % N? There is no character on C*(N % N):

viva=vivp=1= x(v5) = x(w) € T.
But then, 0 = x(vav;vbv) = |x(va) PIx(vs)* = 1.
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A partial dynamical system consists of a locally compact Hausdorff space
2, a group G, open subsets U, C 2, g € G, and local homeomorphisms
ag @ Ug—1 = Ug such that

> U. = Q, ae = idg;

> oz = O Whenever this makes sense.

Now let P C G. Let Qp = j;. Construct a partial dynamical system
G ~ Qp by setting “ag(X)(X) = x(g71X)" (whenever it makes sense).

Given a partial dynamical system G ~ €, we construct its transformation
groupoid G = G x Q: Let G = {(g,x) € G x Q: x € Uy}, with the
subspace topology from G x €. Its units are Q = {e} x Q C G. Define
s: G—=Q (g,x)—~xand r: G —=Q, (g,x) — ag(x). Multiplication
is given by (h,w)(g,x) = (hg, x) if w = ag(x). Inversion is given by
(g:x) ' = (g7 ag(x)). G x Qis an étale locally compact groupoid.
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Theorem

Let P C G, and let P satisfy independence. Then C;(P) =
C:((P)) = C(G x Qp) and C*(P) = C*(Ii(P)) 22 C*(G x Qp).

Theorem

Let P C G. Assume that P satisfies independence. Consider

(i) C*(P) is nuclear.

(i) CX(P) is nuclear.

(iii) G x Qp is amenable.
)

(iv) The left regular representation C*(P) — C;(P) is an
isomorphism.

Then (i) < (i) < (iii) = (iv).

In particular, (i) — (iv) are true if G is amenable.
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Examples

» This explains why C*(N % N) = C{(N N) is nuclear: N « N embeds
into an amenable group. The embedding N+ N — Z xZ =T,
induces an embedding N« N — F,/F/, and F,/F} is solvable.

» For every right-angled Artin monoid A, C;(A{) is nuclear.
Q: Do right-angled Artin monoids embed into amenable groups?

» Ci(R » R*) is nuclear for every integral domain R: R x R* embeds
into the amenable group K x K*, where K is the quotient field of R.



