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Semigroup C*-algebras. Nuclearity and amenability

Recall that for a discrete group G , TFAE:

I G is amenable;

I C∗(G ) is nuclear;

I C∗λ(G ) is nuclear;

I the left regular representation C∗(G )→ C∗λ(G ) is an isomorphism;

I there is a character on C∗λ(G ).

Do we have an analogue for semigroups?

Why not consider all isometric representations in the construction of full
semigroup C*-algebras?
Let P = N× N. This is an abelian semigroup, so it is amenable.
The C*-algebra universal for all isometric representations of N× N is

C∗ (va, vb v∗a va = 1, v∗b vb = 1, vavb = vbva) .

Murphy showed that this C*-algebra is not nuclear.
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Semigroup C*-algebras. Nuclearity and amenability

Now consider P = N ∗ N.

I This semigroup is not amenable.

I But C∗λ(N ∗ N) ∼= T2. Hence C∗λ(N ∗ N) is nuclear.

I Moreover, T2
∼= C∗ (va, vb v∗a va = 1, v∗b vb = 1, vav

∗
a vbv

∗
b = 0).

So C∗λ(N ∗ N) ∼= C∗(N ∗ N).

This looks strange compared to the group case.

I Goal: Find an explanation!
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The independence condition

Given a left cancellative semigroup P, let S = Il(P).

I Embed P into S sending p ∈ P to the partial bijection
P → pP, x 7→ px , which is an element in S.

I So we may view `2P as a subspace of `2S (or `2S× if 0 ∈ S).

I Cutting down by the corresponding orthogonal projection, we get a
homomorphism C∗λ(S) � C∗λ(P).

When is this map an isomorphism?
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The independence condition

Definition

P satisfies the independence condition if for every X ,X1, . . . ,Xn ∈
JP , X =

⋃n
i=1 Xi implies that X = Xi for some 1 ≤ i ≤ n.

Theorem (Norling)

For a subsemigroup P of a group, C∗λ(S) → C∗λ(P) is an isomor-
phism if and only if P satisfies independence.
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The independence condition. Examples

Every right LCM monoid P (i.e., J×P = {pP}) satisfies independence:
Let pP =

⋃n
i=1 piP. Then p = p · e ∈ pP, so p ∈ piP for some 1 ≤ i ≤ n.

But piP is a right ideal, so p ∈ piP implies pP ⊆ piP. Hence pP = piP.

Examples:

I Positive cones;

I Right-angled Artin monoids;

I R× and R o R× if R is a principal ideal domain.

For a ring R of algebraic integers in a number field, R o R× always
satisfies independence (because R is a Dedekind domain).
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The independence condition. Counterexamples

Let R = Z[i
√

3]. R is not integrally closed in Q[i
√

3]. Its integral closure
is Z[ 1

2 (1 + i
√

3)]. And R o R× does not satisfy independence.

P = N \ {1} does not satisfy independence:
2 + P = {2, 4, 5, . . .} and 3 + P = {3, 5, 6, . . .} are constructible ideals.
So 5 + N = {5, 6, 7, . . .} = (2 + P) ∩ (3 + P) is also a constructible ideal.
We have 5 + N = (5 + P) ∪ (6 + P).
But 5 + P ( 5 + N and 6 + P ( 5 + N.
Thus P does not satisfy independence.

A similar argument shows that for every numerical semigroup of the form
N \ F , where ∅ 6= F is finite, the independence condition does not hold.
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Nuclearity and amenability

Theorem (L)

Let P be a cancellative semigroup which satisfies independence.
TFAE

I P is left amenable.

I C∗(P) is nuclear.

I C∗λ(P) is nuclear.

I The left regular representation C∗(P)→ C∗λ(P) is an
isomorphism.

I There is a character on C∗λ(P).

What about P = N ∗ N?

v∗a va = v∗b vb = 1 ⇒ χ(va) = χ(vb) ∈ T.
But then, 0 = χ(vav

∗
a vbv

∗
b ) = |χ(va)|2|χ(vb)|2 = 1.
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Partial dynamical systems attached to semigroups

A partial dynamical system consists of a locally compact Hausdorff space
Ω, a group G , open subsets Ug ⊆ Ω, g ∈ G , and local homeomorphisms
αg : Ug−1

∼= Ug such that

I Ue = Ω, αe = idΩ;

I αgαh = αgh whenever this makes sense.

Now let P ⊆ G . Let ΩP := ĴP . Construct a partial dynamical system
G y ΩP by setting “αg (χ)(X ) = χ(g−1X )” (whenever it makes sense).

Given a partial dynamical system G y Ω, we construct its transformation
groupoid G = G n Ω: Let G =

{
(g , χ) ∈ G × Ω: χ ∈ Ug−1

}
, with the

subspace topology from G × Ω. Its units are Ω ∼= {e} × Ω ⊆ G. Define
s : G → Ω, (g , χ) 7→ χ and r : G → Ω, (g , χ) 7→ αg (χ). Multiplication
is given by (h, ω)(g , χ) = (hg , χ) if ω = αg (χ). Inversion is given by
(g , χ)−1 = (g−1, αg (χ)). G n Ω is an étale locally compact groupoid.
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Now let P ⊆ G . Let ΩP := ĴP . Construct a partial dynamical system
G y ΩP by setting “αg (χ)(X ) = χ(g−1X )” (whenever it makes sense).

Given a partial dynamical system G y Ω, we construct its transformation
groupoid G = G n Ω:

Let G =
{

(g , χ) ∈ G × Ω: χ ∈ Ug−1

}
, with the

subspace topology from G × Ω. Its units are Ω ∼= {e} × Ω ⊆ G. Define
s : G → Ω, (g , χ) 7→ χ and r : G → Ω, (g , χ) 7→ αg (χ). Multiplication
is given by (h, ω)(g , χ) = (hg , χ) if ω = αg (χ). Inversion is given by
(g , χ)−1 = (g−1, αg (χ)). G n Ω is an étale locally compact groupoid.



Partial dynamical systems attached to semigroups

A partial dynamical system consists of a locally compact Hausdorff space
Ω, a group G , open subsets Ug ⊆ Ω, g ∈ G , and local homeomorphisms
αg : Ug−1

∼= Ug such that

I Ue = Ω, αe = idΩ;

I αgαh = αgh whenever this makes sense.
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Nuclearity and amenability

Theorem

Let P ⊆ G , and let P satisfy independence. Then C∗λ(P) ∼=
C∗λ(Il(P)) ∼= C∗λ(G nΩP) and C∗(P) = C∗(Il(P)) ∼= C∗(G nΩP).

Theorem

Let P ⊆ G . Assume that P satisfies independence. Consider

(i) C∗(P) is nuclear.

(ii) C∗λ(P) is nuclear.

(iii) G n ΩP is amenable.

(iv) The left regular representation C∗(P)→ C∗λ(P) is an
isomorphism.

Then (i) ⇔ (ii) ⇔ (iii) ⇒ (iv).
In particular, (i) – (iv) are true if G is amenable.
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Nuclearity and amenability

Examples

I This explains why C∗(N ∗ N) ∼= C∗λ(N ∗ N) is nuclear:

N ∗ N embeds
into an amenable group. The embedding N ∗ N ↪→ Z ∗ Z = F2

induces an embedding N ∗ N ↪→ F2/F′′2 , and F2/F′′2 is solvable.

I For every right-angled Artin monoid A+
Γ , C∗λ(A+

Γ ) is nuclear.
Q: Do right-angled Artin monoids embed into amenable groups?

I C∗λ(R oR×) is nuclear for every integral domain R: R oR× embeds
into the amenable group K oK×, where K is the quotient field of R.
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