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Definition

P C G is Toeplitz if for every g € G with PN g~ 1P # (), the
partial bijection PN g~ 1P — gP N P, x — gx lies in I;(P).

Equivalent formulation: Let A be the left regular representation of G on
£?G, and write 1p for the orthogonal projection £2G — (2P C %G.

P C G satisfies the Toeplitz condition if for every g € G with

1pAglp #0, 1pAglp =V, ;1 Vo, V;,, for some p;, g; € P.

Theorem (L)
IfPCGis Toeplitz, then C:\k(P) ~M DPQG X, G = CO(QPQG) X,

G. Here Dpcg is the smallest G-invariant subalgebra of ¢°°(G)
containing 1p, and Qpc¢ = Spec (Dpcg).
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Let P be cancellative and right reversible (i.e., Pp N Pg # 0 for all
p,q € P). Then P C G = P~1P is Toeplitz: Take g € G, and write
g =q !pforsome p,gc P. Then g 1PN P — PNgP, x> gx is the
composition of g7t : gP — P, gx+— x and p: P — pP, x — px. This
is because
g 'PNP=ptgPnP=p *(gP)=p *(dom(q ') = dom(q~p),
and we have gx = g~ 1px = (¢ 1p)(x).

» In particular, given an integral domain R, let K be its quotient field.

Then the canonical embedding R x R* C K x K* is Toeplitz.

» A right-angled Artin monoid embeds into its right-angled Artin
group, and this embedding is Toeplitz. More generally, the Toeplitz
condition is preserved under graph products.
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» The embedding N * N < F,/F/ is not Toeplitz.

» For the Thompson group

F = (x0,x1,%2, ... | XoXk = XkXn+1 for k < n), the homomorphism
NxN — F, a+> xp, b+ xg is an embedding which is not Toeplitz.

In general, if P embeds into a group, then there is a universal embedding
P < Guniv. It turns out that if there is a group embedding P — G
which is Toeplitz, then P < Gupn;vy must be Toeplitz.

> Let P=(a,b|a=b%ab)". Then Guuiv = (a,b | a= b¥ab°).
For ¢ > 1, P < Guniv is not Toeplitz [Spielberg].
Hence there is no embedding P < G which is Toeplitz.
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Let P C G. Consider Jpcc := {(\'_; &P: g € G}, and let
Jpce = JIpce \ {0}. G acts on ijgG by left translations, and we form
the set of orbits G\Jp. For X € Jpcg, let Gx = {g € G: gX = X}.

Theorem (Cuntz-Echterhoff-L)

Let P C G. Assume that P satisfies independence, P C G is
Toeplitz, and that G satisfies the Baum-Connes conjecture with
coefficients. Then

K(G(PN= D KC(Gx)).
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» Let P be a right LCM monoid, and assume that P C G is Toeplitz.
Then Jpcc = {gP: g € G}. Hence G\Jp = {[P]}. Moreover,
Gp = P*. So if G satisfies the Baum-Connes conjecture with
coefficients, then K, (C5(P)) = K.(C5(P*)).

» In particular, for right-angled Artin monoids, K.(C;(Al)) = K.(C).

> Let P = R x R*, where R is the ring of algebraic integers in a
number field K. P embeds into G = K x K*, and this embedding is
Toeplitz. G is amenable, hence satisfies the Baum-Connes
conjecture with coefficients. Moreover, we have
G\JTpc¢ = Clk, [ax a*] > [a], and Guyqx = a x R*. So

K.(C{(R x R*)) = @ K.(Ci(a x R*)).

[a]eClk






A general K-theory formula

Let ' ~ Q be a topological dynamical system, Q2 totally disconnected.



A general K-theory formula

Let ' ~ Q be a topological dynamical system, Q2 totally disconnected.
Definition
I ~ Q satisfies independence if there is a [-invariant, linearly

independent, (up to 0) multiplicatively closed set of projections E
in Co(Q2) such that Go(Q) = C*(E).



A general K-theory formula

Let ' ~ Q be a topological dynamical system, Q2 totally disconnected.
Definition
I ~ Q satisfies independence if there is a [-invariant, linearly
independent, (up to 0) multiplicatively closed set of projections E
in Co(Q2) such that Go(Q) = C*(E).
Theorem (Cuntz-Echterhoff-L)

Let ' ~ Q satisfy independence. If T satisfies the Baum-Connes
conjecture with coefficients, then

K(Go() =, T)= P K.(C(T

[e]eM\E

Here I is the stabilizer group of e € E.
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Let ' ~ Q be a topological dynamical system, Q2 totally disconnected.
Definition

I ~ Q satisfies independence if there is a [-invariant, linearly
independent, (up to 0) multiplicatively closed set of projections E
in Co(Q2) such that Go(Q) = C*(E).

Theorem (Cuntz-Echterhoff-L)

Let ' ~ Q satisfy independence. If T satisfies the Baum-Connes
conjecture with coefficients, then

K. (Co(Q )= P K(CH(T

[e]eM\E

Here I is the stabilizer group of e € E.

For instance, Bernoulli shifts T ~ {0,..., N}" satisfy independence.



