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Semigroup C*-algebras. The Toeplitz condition

Definition

P ⊆ G is Toeplitz if for every g ∈ G with P ∩ g−1P 6= ∅, the
partial bijection P ∩ g−1P → gP ∩ P, x 7→ gx lies in Il(P).

Equivalent formulation: Let λ be the left regular representation of G on
`2G , and write 1P for the orthogonal projection `2G � `2P ⊆ `2G .
P ⊆ G satisfies the Toeplitz condition if for every g ∈ G with
1Pλg1P 6= 0, 1Pλg1P = Vp1V

∗
q1
· · ·VpnV

∗
qn for some pi , qi ∈ P.

Theorem (L)

If P ⊆ G is Toeplitz, then C∗λ(P) ∼M DP⊆G or G ∼= C0(ΩP⊆G )or

G . Here DP⊆G is the smallest G -invariant subalgebra of `∞(G )
containing 1P , and ΩP⊆G = Spec (DP⊆G ).
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The Toeplitz condition. Examples

Let P be cancellative and right reversible (i.e., Pp ∩ Pq 6= ∅ for all
p, q ∈ P). Then P ⊆ G = P−1P is Toeplitz:

Take g ∈ G , and write
g = q−1p for some p, q ∈ P. Then g−1P ∩ P → P ∩ gP, x 7→ gx is the
composition of q−1 : qP → P, qx 7→ x and p : P → pP, x 7→ px . This
is because
g−1P ∩ P = p−1qP ∩ P = p−1(qP) = p−1(dom(q−1)) = dom(q−1p),
and we have gx = q−1px = (q−1p)(x).

I In particular, given an integral domain R, let K be its quotient field.
Then the canonical embedding R o R× ⊆ K o K× is Toeplitz.

I A right-angled Artin monoid embeds into its right-angled Artin
group, and this embedding is Toeplitz. More generally, the Toeplitz
condition is preserved under graph products.
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The Toeplitz condition. Counterexamples

I The embedding N ∗ N ↪→ F2/F′′2 is not Toeplitz.

I For the Thompson group
F = 〈x0, x1, x2, . . . | xnxk = xkxn+1 for k < n〉 , the homomorphism
N ∗ N→ F , a 7→ x0, b 7→ x1 is an embedding which is not Toeplitz.

In general, if P embeds into a group, then there is a universal embedding
P ↪→ Guniv. It turns out that if there is a group embedding P ↪→ G
which is Toeplitz, then P ↪→ Guniv must be Toeplitz.

I Let P =
〈
a, b | a = bdabc

〉+
. Then Guniv =

〈
a, b | a = bdabc

〉
.

For c > 1, P ↪→ Guniv is not Toeplitz [Spielberg].
Hence there is no embedding P ↪→ G which is Toeplitz.
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K-theory

Let P ⊆ G . Consider JP⊆G :=
{⋂n

i=1 giP: gi ∈ G
}

, and let

J×P⊆G = JP⊆G \ {∅}. G acts on J×P⊆G by left translations, and we form

the set of orbits G\J×P⊆G . For X ∈ J×P⊆G , let GX = {g ∈ G : gX = X}.

Theorem (Cuntz-Echterhoff-L)

Let P ⊆ G . Assume that P satisfies independence, P ⊆ G is
Toeplitz, and that G satisfies the Baum-Connes conjecture with
coefficients. Then

K∗(C
∗
λ(P)) ∼=

⊕
[X ]∈G\J×

P⊆G

K∗(C
∗
λ(GX )).
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K-theory. Examples

I Let P be a right LCM monoid, and assume that P ⊆ G is Toeplitz.
Then J×P⊆G = {gP: g ∈ G}. Hence G\J×P⊆G = {[P]}. Moreover,
GP = P∗. So if G satisfies the Baum-Connes conjecture with
coefficients, then K∗(C

∗
λ(P)) ∼= K∗(C

∗
λ(P∗)).

I In particular, for right-angled Artin monoids, K∗(C
∗
λ(A+

Γ )) ∼= K∗(C).

I Let P = R o R×, where R is the ring of algebraic integers in a
number field K . P embeds into G = K oK×, and this embedding is
Toeplitz. G is amenable, hence satisfies the Baum-Connes
conjecture with coefficients. Moreover, we have
G\J×P⊆G ∼= ClK , [a× a×]↔ [a], and Ga×a× = ao R∗. So

K∗(C
∗
λ(R o R×)) ∼=

⊕
[a]∈ClK

K∗(C
∗
λ(ao R∗)).
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A general K-theory formula

Let Γ y Ω be a topological dynamical system, Ω totally disconnected.

Definition

Γ y Ω satisfies independence if there is a Γ-invariant, linearly
independent, (up to 0) multiplicatively closed set of projections E
in C0(Ω) such that C0(Ω) = C∗(E ).

Theorem (Cuntz-Echterhoff-L)

Let Γ y Ω satisfy independence. If Γ satisfies the Baum-Connes
conjecture with coefficients, then

K∗(C0(Ω) or Γ) ∼=
⊕

[e]∈Γ\E

K∗(C
∗
r (Γe)).

Here Γe is the stabilizer group of e ∈ E .

For instance, Bernoulli shifts Γ y {0, . . . ,N}Γ satisfy independence.
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