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Semigroup C*-algebras. The boundary quotient

Motivating example: C5(N x N) = 7;. How can we go from 75 to 0,7

Let the two generators of N x N be a and b. Their isometries V, and V,,
satisfy VoV L V, V5. To get O, we must have V, V7 4 V,Vy = 1.

For P =N=xN, Qp can be identified with the space of all finite and
infinite words in a and b. V, V] is the characteristic function on the
subspace of all words starting with a, and similarly for V,, V.

VoV + Vi Vi =1 would mean that every word starts with either a or b.
But: There is the empty word.

Idea: Remove the empty word. To obtain a quotient, we have to remove
an invariant subspace, i.e., all finite words. We end up with the subspace
of all infinite words. This is 0Qp.
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For general P C G, 00p = {2p max Where Qp nax are the maximal filters.
These are all characters x : Jp — {0, 1} for which x (1) is maximal.

Definition
The boundary quotient of C;(P) is given by

OCL(P) := C;(G x 0Qp) = C(0Qp) x, G.

0€2p is the smallest G-invariant closed subspace of Qp, in particular
minimal, and G ~ 9Qp is purely infinite if 9Qp is not trivial.

Hence if G ~ 0Qp is topologically free, then OC;(P) will be a purely
infinite simple C*-algebra.
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The boundary quotient. Examples

Let A = ({o,: v € V} | 0,0, = 00, for all (v,w) € E)" be the
RAAM for the graph ' = (V/, E).

I" is co-irreducible, if we cannot find a non-trivial decomposition
V = ViUV, such that V; x V, € E. If T is co-irreducible and not a
singleton, 9C;(A[) is a unital UCT Kirchberg algebra.

Let R be an integral domain, and P = R x R*. What is the boundary
quotient of C¥(R x R*)?

On (%R, define U6, = §ppy for b € R, S.0, = 6y for a € R*. Set
A [R] = C*({Ub,Sa: be R ac RX} C L(2?R).

We have a canonical isomorphism 9C; (R x R*) = 2(,[R] if R is not a
field, and in that case, these are again unital UCT Kirchberg algebras.






Classification results

Let A" := ({o,: vE V} | 0y0, = 040, for all (v,w) € E)" be the
RAAM for the graph I = (V, E).



Classification results

Let A" := ({o,: vE V} | 0y0, = 040, for all (v,w) € E)" be the
RAAM for the graph I = (V, ) Let I'; = (V;, E;) be the co-irreducible
subgraphs of T



Classification results

Let A" := ({o,: vE V} | 0y0, = 040, for all (v,w) € E)" be the
RAAM for the graph I = (V, ) Let I'; = (V;, E;) be the co-irreducible
subgraphs of T

Let t(I') be the number of those I'; with |V;| = 1.



Classification results

Let A" := ({o,: vE V} | 0y0, = 040, for all (v,w) € E)" be the
RAAM for the graph I = (V, ) Let I'; = (V;, E;) be the co-irreducible
subgraphs of T

Let t(I') be the number of those I'; with |V;| = 1.
For fixed I';, and n € N, let K, be the set of all complete subgraphs of T;

with n+ 1 vertices.



Classification results

Let A" := ({o,: vE V} | 0y0, = 040, for all (v,w) € E)" be the
RAAM for the graph I = (V, ) Let I'; = (V;, E;) be the co-irreducible
subgraphs of T

Let t(I') be the number of those I'; with |V;| = 1.
For fixed I';, and n € N, let K, be the set of all complete subgraphs of T;

with n+ 1 vertices. Set x(I;) :=1— > 72 (—1)"|Kal.



Classification results

Let A" := ({o,: vE V} | 0y0, = 040, for all (v,w) € E)" be the
RAAM for the graph I = (V, ) Let I'; = (V;, E;) be the co-irreducible
subgraphs of T

Let t(I') be the number of those I'; with |V;| = 1.

For fixed I';, and n € N, let K, be the set of all complete subgraphs of T;
with n+ 1 vertices. Set x(I;) :=1— > 72 (—1)"|Kal.

For k € Z, let Ni(I") be the number of I'; with x(I';) = k.



Classification results

Let A" := ({o,: vE V} | 0y0, = 040, for all (v,w) € E)" be the
RAAM for the graph I = (V, ) Let I'; = (V;, E;) be the co-irreducible
subgraphs of T

Let t(I') be the number of those I'; with |V;| = 1.

For fixed I';, and n € N, let K, be the set of all complete subgraphs of T;
with n+ 1 vertices. Set x(I;) :=1— > 72 (—1)"|Kal.

For k € Z, let Ni(T') be the number of I'; with x(I';) = k.

Theorem (Eilers-L-Ruiz)

Let I and A be finite graphs. The following are equivalent:
L G (AF) = C(AY)

2. » t(I) =t(A)
> Ni(F) + N_i(T) = Nie(A) + N_i(A) for all k € Z
> No(T) >0 o0r 3,0 Ni(T) = 3,00 N(A) mod 2.
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In particular, for Galois extensions K, L with the same number of
roots of unity, C¥(R x R*) = C;(S x §*) if and only if K = L.



Classification results

Theorem (L)

Let K and L be number fields with rings of algebraic integers R
and S. If there exists an isomorphism C;(R x R*) = C{(S x §*)
sending Dx(R x R*) to Dx(S % S*), then (x = ¢; and Clx = Cl;.

Here Dy(P) = C{(P) N ¢>(P).
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Outlook: Nuclearity and embeddings into amenable groups

We observed: If a semigroup P embeds into an amenable group, then
C;(P) is nuclear. What about the converse?

Question

Let P be a semigroup which embeds into a group. If C¥(P) is
nuclear, does P embed into an amenable group?

More concrete questions:
Do right-angled Artin monoids embed into amenable groups?

Do Baumslag-Solitar monoids embed into amenable groups?
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Outlook: K-theory

Does our K-theory formula really require the Toeplitz condition?
Does it require the Baum-Connes conjecture?

Question

Given a left cancellative right LCM monoid P, do we always have
K (Cx(P)) = K.(CX(P*))?
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Outlook: Left vs right

Let P be a cancellative semigroup. Then we can construct C*-algebras
Cx(P) and C;(P) attached to left and right regular representations.

These algebras can be very different.

However, their K-theories coincide in all our computations. Also, there is
no example where one is nuclear and the other one is not.

Task

Find a cancellative semigroup P for which C(P) and C;(P) differ
in K-theory, or with respect to nuclearity.



Thank you very much for your attention!



