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A Story in Three Parts



Prologue



In the beginning...













The Main Game



Spaces of non-positive curvature

“Equations are just the boring parts of
mathematics. I attempt to see things in terms of
geometry.” - Stephen Hawking







The study of spaces of non-positive curvature
originated with the discovery of hyperbolic spaces,
the work of Jacques Hadamard at the beginning of
the last century, and the work of Élie Cartan in the
1920’s.



The idea of what it means for a geodesic metric
space to have non-positive curvature (or, more
generally, curvature bounded above by a real
number κ) goes back to the independent, but very
similar, discoveries of the American mathematician
Herbert Busemann and the Russian mathematician
A.D. Alexandrov in the 1950’s.



Of particular importance to the revival of interest in
this topic are the lectures which Mikhael Gromov
gave in 1981 at the Collège de France in Paris. In
these lectures Gromov explained the main features
of global Riemannian geometry especially by basing
his account wholly on the metric structure of the
so-called CAT(0) spaces.



The acronym CAT is derived from the names
Cartan, Alexandrov and Toponogov in recognition
of their pioneering work in the area.



About ten years ago mathematicians realized that
many of the standard ideas and methods of
nonlinear analysis and Banach space theory, with
particular emphasis on fixed point theory, carry over
nicely to the CAT(0) spaces. Generally speaking,
while there are many many similarities between
Hilbert spaces and CAT(0) spaces, there are
fundamental differences.



CAT(0) spaces are characterised by the fact that
angles in geodesic triangles are no larger than
corresponding angles in the euclidean plane and
therefore in many ways have a similar geometric
structure. Thus Hilbert spaces are CAT(0) spaces.





However, in addition to an euclidean geometric
structure, Hilbert spaces have an underlying
algebraic framework which the CAT(0) spaces lack.
As a result certain corresponding properties that
Hilbert spaces enjoy are not available in this more
general framework and the Hilbert space theory
does not automatically carry over.





There is an increasing interest in analysis in the
absence of linear structure (such as in the analysis
of a state space) either from a pure research or
applications perspective.
Interest in both of these aspects has been expanding
for some time and continues to grow.



Areas of application currently include, phylogenomic
trees, configuration spaces for robotic movements,
cognitive models employing prototype theory and
the application of the projection methods in inverse
problems.



The feasibility problem associated with nonempty
closed convex sets A and B is to find some
x ∈ A ∩B. Projection algorithms in general aim to
compute such a point. These algorithms play key
roles in optimization and have many applications
outside mathematics - for example in medical
imaging.



Until recently convergence results were only
available in the setting of linear spaces (more
particularly, Hilbert spaces) and where the two sets
are closed and convex. The extension into geodesic
metric spaces allows their use in spaces where there
is no natural linear structure.





The alternating projection method

Let X be a complete CAT(0) space with A,B ⊂ X
closed convex sets. Then the alternating projection
method produces the sequence
x2n−1 = PA(x2n−2), x2n = PB(x2n−1) n ∈ N

where x0 ∈ X is a given starting point.



In CAT(0) space

Let X be a complete CAT(0) space and A,B ⊂ X
convex, closed subsets such that A ∩B 6= ∅. Let
x0 ∈ X be a starting point and (xn) ⊂ X be the
sequence generated by the algorithm above. Then

(xn) weakly converges to a point x ∈ A ∩B.





 



Reflections in CAT(0) spaces

To discuss reflections in CAT(0) spaces we require
the geodesics to be extendable and unique (eg
spaces with curvature bounded below have
non-bifurcating geodesics).

With the above conditions we can define the
reflection of a point x in a closed convex set C of a
CAT(0) space as the point RC(x) such that

d(RC(x), PC(x)) = d(x, PC(x)),

where PCx is the projection of x onto the set C.
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It is well known that reflections in Hilbert space are
non-expansive. This follows since the closest point
projection is firmly nonexpansive. While projections
are also firmly nonexpansive in an appropriate sense
in CAT(0) spaces, it no longer follows that
reflections are nonexpansive.



Aurora Fernández-Leon and Adriana Nicolae proved
reflections in the space Mn

κ of constant curvature to
be nonexpansive.

They also established convergence of the
Douglas-Rachford algorithm in Mn

κ . Strong
convergence is obtained since the model spaces are
proper metric spaces. A space is proper if every
closed ball is compact.



Let κ ≤ 0 and n ∈ N . Suppose A and B are two
nonempty closed and convex subsets of Mn

κ with
A ∩B 6= ∅ and T : X → X defined by

T =
I +RARB

2
. Let x0 ∈Mn

κ and (xn) be the

sequence starting at x0 generated by the
Douglas-Rachford algorithm. Then
(xn) converges to some fixed point x of the
mapping T and PB(x) ∈ A ∩B.



However reflections in CAT(0) spaces need not in
general be nonexpansive. To see this we created a
prototype CAT(0) space of non-constant curvature.
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If P1 := i
2 and P2 := 0.5439 + 0.4925i

we have Q1 := RC(P1) = 1.6931i and
Q2 := RC(P2) = 1.453eΠ/4. So
d(Q1, Q2) = 0.9135 < d(P1, P2) = 1.0476.



The Douglas-Rachford algorithm in

a CAT(0) of non-constant curvature



n = 1 n = 2 n = 3

xn (0.733799, 0.735867) (0.872208, 2.341632) (0.874992, 2.365024)

PC2xn (1, 0.785398) (1, 2.332662) (1, 2.356056)

RC2xn (1.452881, 0.785398) (1.190054, 2.332662) (1.189967, 2.356056)

PC1RC2xn (1, 3π4 ) (1, 3π4 ) (1, 3π4 )

RC1RC2xn (0.903444, 3.005137) (0.877656, 2.387882) (0.875025, 2.365298)

xn+1 (0.872208, 2.341632) (0.874992, 2.365024) (0.875008, 2.365161)

1



n = 1 n = 2

xn (1.75, π16) (1.464634, 2.442068)

PC2xn (1, π16) (1, 3π4 )

RC2xn (0.882893, 0.152446) (0.707278, 2.320714)

PC1RC2xn (1, 3π4 ) (1, 3π4 )

RC1RC2xn (1.179269, 3.115386) (1.464634, 2.442068)

xn+1 (1.464634, 2.442068) (1.464634, 2.442068)

1



Section 3

Epilogue









The remaining story ....
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