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In Memoriam

In his ‘23’ “Mathematische Probleme” lecture to
the Paris ICM in 1900∗, David Hilbert wrote

“Besides it is an error to believe that rigor
in the proof is the enemy of simplicity.”

Simon Fitzpatrick† (1953–2004).
∗See Ben Yandell’s fine account of the Hilbert Problems and
their solvers in The Honors Class, AK Peters, 2002.
(He also died young in 2004.)

†At his blackboard with Regina Burachik
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Abstract. We study maximal monotone inclusions from the perspec-
tive of (convex) gap functions.

We propose a very natural gap function and will demonstrate how
this function arises from the Fitzpatrick function — a convex function
used effectively to represent maximal monotone operators.

• This approach allows us to use the powerful strong Fitzpatrick
inequality to analyse solutions of the inclusion.

– We also study the special cases of a variational inequality
and of a generalised variational inequality problem.

– The associated notion of a scalar gap is also considered.

– Corresponding local and global error bounds are developed
for the maximal monotone inclusion.



1 Introduction and Motivation

1.1 Monotone inclusions

We consider a set-valued map T : Rn ⇒ Rn which is maximal mono-
tone. Recall that a set-valued map T : Rn ⇒ Rn is said to be monotone
if for any x and y in Rn we have for all u ∈ T (y) and v ∈ T (x)

〈u− v, y − x〉 ≥ 0.

The graph of a set-valued map T is given as

gphT := {(x, y) : y ∈ T (x)}.

A monotone map T is said to be maximal monotone if there is no
monotone map whose graph properly contains the graph of T .



In this talk (article) we focus on the following well-studied problem [5]:

Given a set-valued map T : Rn ⇒ Rn which is maximal monotone
the monotone inclusion problem requests a point x ∈ Rn such that

0 ∈ T (x). (1)

It is clear that
T−1(0) := {x ∈ Rn : 0 ∈ T (x)}

is the solution set, which may be empty, of our inclusion problem (1).



1.2 Variational inequalities

We are interested in two special cases. First, we consider the case that

T (x) := S(x) +NC(x)

for each x ∈ Rn, where S : Rn ⇒ Rn is maximal monotone and NC the
normal cone map associated with the closed convex set C; we recall
that the normal cone map NC : Rn ⇒ Rn is given by

NC(x) := {v ∈ Rn : 〈v, y − x〉 ≤ 0 ∀y ∈ C},

when x ∈ C and NC(x) = ∅ if x 6∈ C.

• Thus domT = C ∩ domS. We assume (without much loss) that
C has a non-empty interior, and that domS ∩ int C 6= ∅ so that
S +NC is maximal monotone [5].



Since T = S+NC the monotone inclusion problem requires finding
x ∈ C and ξ ∈ S(x) such that

〈ξ, y − x〉 ≥ 0, ∀y ∈ C.

This is often referred to as the generalized variational inequality problem
determined by S and C, denoted by GV I(S,C).

• When S := ∂f for f : Rn → R a convex function then the gener-
alized variational inequality problem reduces to the well known
Rockafellar-Pschenychni condition [5] in convex optimization.

• We note that GV I(S,C) itself reduces to the inclusion problem
if C = Rn. Indeed we can also view 0 ∈ T (x) as GV I(T,Rn).



The second problem consists of the further specialisation

T (x) := F (x) +NC(x)

for all x ∈ Rn, where F : Rn → Rn is continuous and monotone (hence
maximal) and C as before is a closed convex set. Since domT = C and
domF = Rn it is clear that T = F +NC is maximal [5].

Thus, this inclusion problem reduces to finding x ∈ C such that

〈F (x), y − x〉 ≥ 0,∀y ∈ C.

This is traditionally known as the variational inequality problem deter-
mined by F and C denoted by V I(F,C).



• If C = Rn
+ then the problem reduces to the non-linear comple-

mentarity problem (NCP(F)) where one wishes to find x ∈ Rn

such that

x ∈ Rn
+, F (x) ∈ Rn

+, 〈x, F (x)〉 = 0.

If C = Rn then the variational inequality problem reduces to the
problem of solving equations i.e. finding an x ∈ Rn such that F (x) = 0.

• For more details on variational inequalities see, for example, the
two volumes of Facchinei and Pang [10] ; and for monotone op-
erators we refer to [6, Chapter 9].



1.3 Our goals

Gap functions have played a fundamental role in the study of varia-
tional inequalities (see for example Fukushima [11] and Facchinei and
Pang [10]). They allow us to:

• reformulate a (VI) as an optimization problem;

• and design error bounds for certain classes of (VI) .

Though there is a large literature regarding the monotone inclusion
problem, most of is geared towards developing algorithms. One of the
earliest such papers is due to Rockafellar [14].

• To our knowledge there has been no broad qualitative study of
monotone inclusions from the perspective of gap functions.



• More surprisingly, we show that the appropriate gap function for
a monotone inclusion is derived from the Fitzpatrick function.

• We will also see the pivotal role played by the strong Fitzpatrick
inequality [6]) in understanding aspects of the inclusion problem.

• We provide limiting examples to illustrate our results (most of
which extend to reflexive Banach space).



2 Gap Functions

A (convex) gap function associated with the maximal monotone inclu-
sion (1) is a function ϕ := ϕT is a (convex) function such that

i ) ϕ(x) ≥ 0 for all x ∈ Rn.

ii) ϕ(x) = 0 if and only if x ∈ T−1(0).

• We will show that a convex gap function can be constructed from
the celebrated Fitzpatrick function, [5, Ch. 8] and [6, Ch. 8].

The Fitzpatrick function representing a maximal monotone opera-
tor T is the convex function on Rn × Rn given as follows

FT (x, x∗) := sup
(y,y∗)∈gphT

{〈y∗, x− y〉+ 〈x∗, y〉}.



An immediate property is that for any maximal monotone T we have

FT (x, x∗) ≥ 〈x∗, x〉,

with equality holding if and only if (x, x∗) ∈ graph T .

• In particular, FT (x, 0) ≥ 0 while FT (x, 0) = 0 iff 0 ∈ T (x). Thus,
x 7→ FT (x, 0) is indeed a gap function for our monotone inclusion.

Let us set GT (x) := FT (x, 0). Then explicitly

GT (x) = sup
y∈dom T

sup
y∗∈T (y)

〈y∗, x− y〉. (2)

Moreover, GT is clearly a closed convex function.



• FT − 〈·, ·〉 is always separately convex but not often jointly con-
vex and produces the smallest translation invariant convex gap
function.

Remark 2.1 (Finitization of GT ). Without much loss we can assume
GT is finite-valued. This is achieved as follows. Following Crouzeix [7]

we consider GT̂ instead of GT where we define T̂ as follows

T̂ (y) := {z∗ : z∗ =
y∗

max(||y∗||, 1) max(||y||, 1)
, y∗ ∈ T (y)}.

• T̂ (y) is bounded for all y ∈ Rn as ||z∗|| ≤ 1 for any z∗ ∈ T̂ (y).
Further GT̂ is a gap function for the pseudo-monotone inclusion

0 ∈ T̂ (x).

The solution set coincides with that of the original inclusion 0 ∈ T (x).
Thus GT̂ is a gap function for the monotone inclusion 0 ∈ T (x). ♦



It is natural to ask when GT is finite-valued without recourse to Remark
2.1. The most natural assumption on T is its coercivity: Given x ∈ Rn

the operator T is (strongly) coercive at x if

lim inf
||y||→∞,y∗∈T (y)

〈y∗, y − x〉
||y||2

> 0. (3)

If T (x) is single-valued and continuous on its domain then we have

inf
y∗∈T (y)

〈y∗, y − x〉 ≥ qx(y) (4)

for some convex quadratic term qx(y) := cx‖y‖2 − bx with bx, cx > 0;
we call T lower quadratic at x.

• Clearly if T is lower quadratic at x, GT (x) is finite.



We obtain the following proposition.

Proposition 2.1 (Finiteness of GT ). Consider the maximal monotone
inclusion problem 0 ∈ T (x). Then GT is everywhere finite and convex,
hence continuous, if any one of the following conditions holds.

i) T is lower-quadratic for all x ∈ Rn.

ii) T is coercive for all x ∈ Rn, and is bounded on bounded sets.

iii) T is coercive for all x ∈ Rn, and is locally bounded on its domain.

Of course we can deduce the corresponding result that GT is finite on
domT by requiring the conditions to hold only on domT.

Corollary 2.1. Consider the monotone inclusion problem 0 ∈ T (x)
where T is maximal monotone with domT = Rn and suppose T is
everywhere coercive. Then GT is finite-valued, convex and continuous.



Proof: It is well known that a maximal monotone operator is locally
bounded on the interior of its domain [5, §8.2, Exercise 16]. In this
case it is locally bounded over Rn. Thus, if it is coercive, we conclude
GT is finite and the rest follows. �

Example 2.1 (Gap functions for V I(F,C) or GV I(S,C) ). In partic-
ular, under our hypotheses, for V I(F,C) or GV I(S,C) the variational
gap function is an extended-valued function ψ such that

i) ψ(x) ≥ 0 for all x ∈ C (or for all x ∈ Rn)

ii) ψ(x) = 0, x ∈ C if and only if x solves V I(F,C) or GV I(S,C).



Hence, for V I(F,C) the following is a convex gap function:

G(x) := sup
y∈C
〈F (y), x− y〉. (5)

If we set T := F + NC then V I(F,C) is the monotone inclusion 0 ∈
T (x). Without loss we assume int C 6= ∅ — otherwise we may use
relative interior. Then T is a maximal monotone operator. ♦

Proposition 2.2. If T = F+NC , then for each x ∈ C , GT (x) = G(x).

We next examine the gap function, g, for GV I(S,C) given by

g(x) := sup
y∈C

sup
y∗∈S(y)

〈y∗, x− y〉. (6)

• When C = Rn then we have g(x) = GS(x).



Proposition 2.3 (Gap function for GV I(S,C)). The function g of (6)
is a gap function for GV I(S,C), provided S is a non-empty compact
convex-valued, locally bounded, graph closed, monotone map on C.

Remark 2.2. This result was already proved in Crouzeix [7] under
similar assumptions. Our proof (via Minty’s (VI)) is completely differ-
ent and relies essentially on the use of gap functions.

If C = Rn and S is maximal then g is a gap function without any
additional assumptions on S. In this case g = GS. ♦



The scalar gap. Define

γ := γT = inf
x∈Rn

GT (x).

This scalar value γ = γT is called the gap associated with the gap
function GT . We have the following existence theorem.

Theorem 2.1. If the monotone inclusion 0 ∈ T (x) has a solution then
γ = 0. Conversely assume that γ = 0 and that GT is weakly coercive
in the following sense that

lim
||x||→∞

GT (x) = +∞.

Then the corresponding maximal monotone inclusion has a solution.



Proof: Let x̄ be a solution of the maximal monotone inclusion then
GT (x̄) = 0 and thus γ = 0.

Conversely if γ = 0 then GT is proper and lower-semicontinuous
and since GT is weakly coercive, the infimum of GT is attained. Thus,
there exists x̄ ∈ Rn such that 0 = G(x̄) and hence x̄ is a solution of
the inclusion. �



2.1 Complementarity problems

A cone complementarity problem is the special case of V I(F,C) where
C = K is a closed convex cone and consists of finding x ∈ Rn such that

x ∈ K,F (x) ∈ K∗, 〈F (x), x〉 = 0,

where K∗ is the dual cone

K∗ := {w ∈ Rn : 〈w, v〉 ≥ 0, ∀v ∈ K}.

We begin with K∗ = K := Rn
+ and with F (x) := Mx+ q, where M

is a positive semidefinite n× n matrix — but need not be symmetric.
This yields the linear complementarity problem denoted by LCP (M, q).
Following Borwein [4] define the gap associated with LCP (M, q) by

γ(q) := inf{〈Mx+ q, x〉 : Mx+ q ≥K 0, x ≥K 0}.



Proposition 2.4. Consider the problem LCP (M, q) where M is pos-
itive semi-definite. Then γ(q) = 0 and

argmin {〈Mx+ q, x〉 : Mx+ q ≥ 0, x ≥ 0} = sol(LCP (M, q)),

where sol(LCP (M, q)) denotes the solution set of LCP (M, q).

Proof: 1. The optimization problem which defines the gap is a
convex quadratic problem with linear constraints; indeed the objective
is 〈Qx + q, x〉, where Q = M+M∗

2
is symmetric. For any x which is

feasible for the above problem we have 〈Mx+ q, x〉 ≥ 0.
Thus, the problem is bounded below and using the Frank-Wolfe

Theorem we conclude there exists a minimizer. In other words

argmin {〈Mx+ q, x〉 : Mx+ q ≥ 0, x ≥ 0} 6= ∅.



2. We show that γ(q) = 0. The Lagrangian is given by

L(x, λ) := 〈Mx+ q, x〉 − 〈λ,Mx+ q〉.

Since γ(q) is the infimal value, by separation or subgradient arguments,
there exists λ̄ ∈ Rn

+ such that

L(x, λ̄) ≥ γ(q),∀x ∈ Rn. (7)

Since λ̄ ∈ Rn
+ = Rn

+
∗, we may set x := λ̄ in (7) and see γ(q) ≤ 0. This

shows γ(q) = 0. Having established that γ(q) = 0 it is simple to show

argmin {〈Mx+ q, x〉 : Mx+ q ≥ 0, x ≥ 0} = sol(LCP (M, q)),

This establishes the result. �



Remark 2.3 (Asymmetry). We emphasize we have not assumed M
to be symmetric. We can write M = S + A where S is the symmetric
part of M and A is the skew-symmetric part. If M is semidefinite then
we have 〈x, Sx〉 ≥ 0 for all x since 〈x,Ax〉 = 0 for all x. In important
cases F (x) = Mx+ q is be monotone without M being symmetric. ♦

Such is the case of abstract (conic) linear programming. Consider the
following pair of primal-dual linear programming problems:

min〈c, x〉 subject to Ax ≥ b, x ≥ 0, (8)

and
max〈b, y〉 subject to ATy ≤ c, y ≥ 0. (9)

where x ∈ Rn, y ∈ Rm, A is a m×n matrix, c ∈ Rn, and b ∈ Rm. Here
the inequalities are component-wise.



From [5, Ch. 8] it follows that primal and dual solvability of the
above primal-dual pair of linear programming problems is equivalent
to the variational inequality V I(F (x, y),Rn

+ × Rm
+ ), where

F (x, y) := Mz + q,

for z := (x, y)T while

M :=

[
0 −AT
A 0

]
and q := (c,−b)T .

Note M is semi-definite since it is skew: 〈(x, y),M(x, y)〉 = 0 for all
(x, y) ∈ Rn×Rm. Thus, F is monotone but M 6= 0 is never symmetric.



The variational inequality and primal-dual pair are equivalent in
that the solution set of V I(F (x, y),Rn

+ ×Rm
+ ) coincides with the com-

bined primal-dual solution set. For a general version for conic program-
ming, see [5, Thm 8.3.13].

• Even though the matrix above is skew symmetric the operator is
monotone. This tempts us to consider the nature of GT for the
equation 0 = Sx+ q where S is a skew-symmetric matrix.

Proposition 2.5 (Gap functions in the skew case). Consider the prob-
lem Sx+ q = 0 where S is a n×n skew-symmetric matrix and q ∈ Rn.
Then the following hold:

i) If x̄ is a solution of Sx+ q = 0 , then GT (x̄) = 〈q, x̄〉 = 0.

ii) If x is not a solution of Sx+ q = 0 , then GT (x) = +∞.



Remark 2.4. Consider the consequences for the variational inequality
V I(F,C), where F (x) = Sx+ q and S is skew-symmetric. We have

G(x) = 〈q, x〉+ sup
y∈C
〈−(Sx+ q), y〉. (10)

If x is a solution of the V I(F,C) we have G(x) = 0. If x is not a
solution of V I(Sx+ q, C) the value G(x) depends on the set C. ♦

Proposition 2.6. Consider the variational inequality associated the
pair of primal-dual linear programs as above. Then we have

G(x, y) = 〈c, x〉 − 〈b, y〉,

when (x, y) is feasible to the primal-dual pair of linear programming
problems. If (x, y) is not feasible to the primal-dual pair then we have
G(x, y) = +∞.



To conclude this section, consider the cone complementarity problem
where F (x) := Mx + q but K is any closed convex cone. This is the
generalized linear complementarity problem (GLCP) [4]. Thus, we have
the problem: find

x ∈ K,Mx+ q ∈ K∗, 〈x,Mx+ q〉 = 0 (11)

The associated gap problem as given in [4] is as follows,

γ(q) := inf{〈Mx+ q, x〉 : Mx+ q ∈ K∗, x ∈ K}.

Proposition 2.7 ((GLCP) [4] ). Consider the complementarity prob-
lem of (11) Assume that K is a closed and convex pointed cone so
K∗ has nonempty interior. Suppose the Slater condition holds, in that
there exists x ∈ K such that Mx+ q ∈ intK∗. Then γ(q) = 0.



3 Strong Fitzpatrick Inequality and Exis-

tence of Solutions

We focus on existence of solutions for the maximal monotone inclusion.
We also define and study approximate solutions.

• It is useful to compare Celina’s approximate selection theorem
for cuscos [5].



3.1 Exact solutions to inclusions

The main vehicle is two deep and recent results from the theory of
maximal monotone operators (see Thm 9.7.2 and Cor. 9.7.3 in [6]1).
They are a subtle consequence of Fenchel duality.

We combine these results, which hold for all maximal monotone
operators in reflexive Banach space, in the following theorem.

1As discussed in [6], the constant 1/4 is not best possible; 1/2 is.



Theorem 3.1 (Strong Fitzpatrick inequality). Let T : Rn ⇒ Rn be a
maximal monotone operator then

FT (x, x∗)− 〈x, x∗〉 ≥ 1

4
d2

gph (T )
(x, x∗). (12)

Moreover

d2

gph T
(x, x∗) ≥ max{d2

dom (T )
(x), d2

ran (T )(x
∗)}. (13)

• The first inequality above is the strong Fitzpatrick inequality.

• With no additional hypothesis imposed on T , we always have√
2GT (x) ≥ dgph (T )

(x, 0), (14)

when T is maximal monotone.
(Translating T yields the gap function for q ∈ T (x).)



An almost immediate application of the above result is:

Theorem 3.2. Suppose T is maximal monotone, is coercive in the
sense of (3), and is locally bounded in its domain. Then there is q ∈ Rn

such that ‖q‖ ≤ 2
√
GT (0) so that inclusion 0 ∈ T (x)−q has a solution.

3.2 Approximate solutions to inclusions

It is rarely easy to get the exact solutions to inclusions.
Given ε > 0 we say x is an ε-approximate solution of the maximal

monotone inclusion if there exists y∗ ∈ T (x) with ‖y∗‖ < ε. The
associated gap problem seeks a minimizer for the problem

γ = inf
x∈Rn

GT (x).



Thus it is reasonable to call x ∈ Rn an ε-approximate solution to the
gap problem if GT (x) < ε. The following result connects approximate
solutions of the inclusion and its associated gap problem.

Theorem 3.3 (Approximate solutions). Let ε > 0 be given. If z

is an
ε

2
-approximate solution of the gap problem, there exists y with

‖y−z‖ <
√
ε such that y is an

√
ε-approximate solution of the inclusion

problem 0 ∈ T (x).

Proof: Using Theorem 3.1 for the given ε > 0 we obtain existence of
(y, y∗) ∈ gph (T ) such that

‖y∗‖2 + ‖z − y‖2 ≤ GT (z) +
ε

2

As z is a
ε

2
-approximate minimizer of the gap function, GT (z) <

ε

2
.



From the above inequality we conclude that

‖y∗‖2 + ‖z − y‖2 < ε.

This certainly shows that ‖y∗‖ <
√
ε and that‖y− z‖ <

√
ε and hence

establishes the result. �.

• Theorem 3.3 is a variational principle for maximal monotone in-
clusions : if one as an approximate minimizer of the gap problem
then there is a nearby approximate solution of the inclusion.

The following is an obvious corollary.

Corollary 3.1. If the gap problem has γ = 0, then for any ε > 0 there
is a
√
ε-approximate solution to the inclusion problem 0 ∈ T (x).



4 Error Bounds for a Monotone Inclusion

4.1 Metric regularity and local error bounds

We begin by assuming the maximal monotone map is T to be metrically
regular in an appropriate sense.

We say the maximal monotone mapping T is metrically regular at
(x̄, ȳ) ∈ gphT if there exist numbers k > 0, δ > 0, and γ > 0 such that

dT−1(y)(x) ≤ kdT (x)(y) ∀x ∈ Bδ(x̄) and y ∈ Bγ(ȳ), (15)

and T is metrically regular over the graph if T is metrically-regular for
every (x̄, ȳ) ∈ gphT .



• Metric regularity is by itself a kind of error bound which can be
tuned in our setting to develop a local error bound.

• Sadly, even subdifferentials of simple convex functions can fail to
be metrically regular.

Nonetheless, (16) implies that

dT−1(0)(x) ≤ kdT (x)(0) ∀x ∈ Bδ(x̄) and y ∈ Bγ(0). (16)

• That said, as described in [8], for a monotone operator, metric
reqularity will force the mapping to be single valued and indeed
strongly monotone as discussed in Section 4.3.

Without any regularity assumption, (12) implies for all x in Bδ(x̄) that√
GT (x) ≥ 1

2
dgph (T )

(x, 0). (17)



Putting (16) and (17) together we deduce that when T is metrically
regular

4k
√
GT (x) ≥ dT−1(0)(x), (18)

since we have y ∈ T (z) with max{‖x − z‖, ‖y‖} ≤
√
GT (x). The

inequality (18) follows by noting that x ∈ domT , so we can set z = x.

4.2 The convex case

The previous discussion motivates the need to exploit weaker notions
such as metric subregularity even for the subdifferential of a convex
function.

We say the subdifferential map ∂f of a convex function f : Rn →
R is metric-subregularity at a point (x̄, ȳ) ∈ gph (∂f) if there exist



neighbourhoods U and V of x̄ and ȳ respectively and k > 0 such that

d(∂f)−1(ȳ)(x) ≤ kd∂f(x)∩V (ȳ) ∀x ∈ U.

Then ∂f metrically subregular if it is metrically subregular at each
(x̄, ȳ) ∈ gph ∂f .

• Note that f(x) := |x| , x ∈ R is indeed metrically subregular.
This leads to the following simple consequence of [1, Thm 3.3 ].

Proposition 4.1. Let f : Rn → R be convex and let S the denote the
set of all global minimizers of f . Assume S is non-empty and that ∂f
is metrically sub-regular.



Let α := infx∈Rn f . Then for any x̄ in the boundary of S there
exists a neighbourhood Ux̄ and cx > 0 such that

dS(x) ≤

√
f(x)− α

cx̄
∀x ∈ Ux̄.

• By contrast, we can exploit Theorem 3.1 for any proper lower
semicontinuous convex function f , as soon as µ := inf f is finite.

We begin by checking that for all x, x∗, in terms of the Fenchel
conjugate

F∂f (x, x
∗) ≤ f(x) + f ∗(x∗),



Thus, when µ = −f ∗(0) is finite, we derive

G∂f (x) ≤ f(x)− µ. (19)

Hence √
G∂f (x) ≤

√
f(x)− µ (20)

and also γ = 0.

Rosetta orbit



4.3 Error bounds in the strongly monotone case

Finally, we present a new gap function for the maximal monotone in-
clusion when T : Rn ⇒ Rn is strongly monotone. That is, there exists
ρ > 0 for all ξ ∈ T (y) and η ∈ T (x) we have

〈ξ − η, y − x〉 ≥ ρ‖y − x‖2, ∀x, y ∈ Rn.

The scalar ρ > 0 is the modulus of strong monotonicity. This gap
function is based on regularization of the gap function GT and extends
an approach of Nesterov and Scrimali [13].

We define the function ĜT as follows

ĜT (x) := sup
y∈Rn

{
sup

y∗∈T (y)

〈y∗, x− y〉+
ρ

2
‖y − x‖2

}
. (21)

We begin with the following result.



Proposition 4.2. If T is strongly monotone with modulus ρ then the
function ĜT is a finite-valued, strongly convex and continuous function.

Under natural conditions ĜT is a gap for the associated inclusion.

Theorem 4.1. Let T be strongly monotone with non-empty compact-
values throughout its domain. Suppose T is locally bounded and graph
closed. Then ĜT is a gap function for the monotone inclusion 0 ∈ T (x).

This leads to:

Theorem 4.2. Let T be strongly monotone and let x̄ be the unique
solution of the monotone inclusion 0 ∈ T (x). Further assume that T
is nonempty compact-valued, locally bounded and graph closed. Then
for any x ∈ Rn we have

‖x− x̄‖ ≤
√

2

ρ
ĜT (x).



5 Related Examples

We provide some examples associated with GT and the gap γ.

Example 5.1 (Non-coercivity). Consider the convex function

f(x) = − log x, x > 0.

Then for x > 0 let us set

T (x) := ∂f(x) =

{
−1

x

}
.

Now GT (x) = 1 for all x ≥ 0 and GT (x) = +∞, otherwise. Hence
γ = 1. Since γ 6= 0 the inclusion problem has no solution. That is,
infR f = +∞, which indeed is true. Since GT is not finite we conclude
that T = ∇f is not coercive in the sense of (3). ♦



We have shown that coercivity of T leads to finiteness of GT . The
following example shows that coercivity of T is only sufficient and not
necessary.

Example 5.2 (Finiteness of GT ). Consider T (x) := ex. Simple calcu-
lations show that GT (x) = ex−1. Thus GT is finite even though T is
not coercive in the sense needed in this work. Also note that the gap
γT = 0 but is not attained. ♦

Example 5.3 (Affine variational inequalities). Consider the problem
V I(F,C) for F (x) = Mx+q where F is a monotone map. As observed,
this is equivalent to the monotone inclusion problem where

T (x) := F (x) +NC(x).

We shall try to compute the gap function G(x) under various assump-
tions on M and C.



First consider the case where M is skew-symmetric and thus monotone,
so we have shown in Section 2 that

G(x) = 〈q, x〉+ sup
y∈C
〈−(Sx+ q), y〉.

If for example we choose C = B the unit ball in Rn then we have

G(x) = 〈q, x〉+ ‖Mx+ q‖.

When M is symmetric and positive definite it was shown in [?] that

G(x) = 〈My(x) + q, x− y(x)〉,

where

y(x) := pM,C

(
1

2
(x−M−1q)

)
.



In the above expression pM,C is the oblique projection (see [10]) on C
with respect to the matrix M . When M is only positive semi- definite it
becomes difficult to provide an explicit expression for G. In these cases
we can always define GT to be equal to G on C and +∞ otherwise. ♦

Let us show GT can be weakly coercive without being lower quadratic.

Example 5.4. Let us again consider f(x) := |x|, x ∈ R and the
inclusion 0 ∈ T (x) := ∂f(x). The unique solution is x = 0. Thus

G∂f (x) = sup
y∈R

sup
y∗∈∂f(y)

y∗(x− y).

Now GT (0) = 0, GT (x) = x, if x > 0 and GT (x) = −x if x <
0. Thus we see that GT is a coercive function in the sense that
lim inf |x|→+∞GT (x)/|x| → 1. ♦



Example 5.5 ( Computation of ĜT ). It is hard to compute the reg-

ularised gap function ĜT (x). We can simplify the computation when
we consider a strongly convex function given as f(x) := g(x) + ρ

2
‖x‖2,

where ρ > 0. Now ∇f is strongly monotone with modulus ρ
2

since
∂f(x) = ∂g(x) + x. Hence we have

ĜT (x) = sup
y∈Rn

{
sup

y∗∈∂g(y)

〈ρy∗ + ρy, x− y〉+
ρ

2
‖y − x‖2

}
.

This reduces:

ĜT (x) = sup
y∈Rn

{
g′(x, x− y) + ρ〈x, y〉 − ρ‖y‖2 +

ρ

2
‖y − x‖2

}
.



Consider g(x) := |x| , x ∈ R. Then x = 0 is the minimizer of f
over Rn = R. Thence

ĜT (0) = sup
y∈Rn

{
−|y| − ρ

2
|y|2
}

= 0.

and so on. ♦

• It is also possible to explicitly compute the gap function GT in
various other interesting cases. For example, if we start again
with f(y) = − log y, y > 0 and look for solutions of 0 ∈ T (x) :=
∂f(x)− z we arrive, for z < 0, at the gap function

GT (x) = FT (x, z)− 〈x, z〉 = (1−
√
−zx)2.

• Finally, we note that the construction in [12] can be used to show
that the gap γ in Proposition 2.7 may be finite and positive.
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