About Uniform Regularity of Collections of Sets in Hilbert Spaces

Alexander Kruger

Centre for Informatics and Applied Optimization, Faculty of Science & Technology Federation University Australia a.kruger@federation.edu.au

South Pacific Continuous Optimization Meeting Adelaide, 8–12 February, 2015

Outline

Uniform regularity

Metric and dual characterizations

Uniform regularity in Hilbert spaces

Alternating projections

Outline

Uniform regularity

2 Metric and dual characterizations

Uniform regularity in Hilbert spaces

4 Alternating projections

Uniform regularity

X – Banach space

$$\mathbf{\Omega} := \{\Omega_1, \ldots, \Omega_m\} \ (m > 1) \quad \bar{x} \in \bigcap_{i=1}^m \Omega_i$$

Definition

 Ω is uniformly regular at \bar{x} if $\exists \alpha, \delta > 0$ such that

$$\bigcap_{i=1}^{m} (\Omega_{i} - \omega_{i} - \mathsf{x}_{i}) \bigcap (\rho \mathbb{B}) \neq \emptyset \qquad \forall \rho \in (0, \delta)$$

$$\forall \omega_i \in \Omega_i \cap B_\delta(\bar{x}) \text{ and } x_i \in X \text{ } (i=1,\ldots,m) \text{ with } \max_{1 \leq i \leq m} \|x_i\| < \alpha \rho$$

Uniform regularity

$$\mathbf{\Omega} := \{\Omega_1, \ldots, \Omega_m\} \ (m > 1) \quad \bar{x} \in \bigcap_{i=1}^m \Omega_i$$

Definition

 Ω is uniformly regular at \bar{x} if $\exists \alpha, \delta > 0$ such that

$$\bigcap_{i=1}^{m} (\Omega_{i} - \omega_{i} - x_{i}) \bigcap (\rho \mathbb{B}) \neq \emptyset \qquad \forall \rho \in (0, \delta)$$

$$\forall \omega_i \in \Omega_i \cap B_\delta(\bar{x}) \text{ and } x_i \in X \text{ } (i=1,\ldots,m) \text{ with } \max_{1 \leq i \leq m} \|x_i\| < \alpha \rho$$

$$\widehat{\theta}[\Omega](\bar{x}) := \liminf_{\substack{\Omega_i \\ \omega_i \to \bar{x} \\ \rho \downarrow 0}} \frac{\sup \left\{ r \ge 0 \, | \, \bigcap_{i=1}^m (\Omega_i - \omega_i - x_i) \bigcap (\rho \mathbb{B}) \ne \emptyset, \, \forall x_i \in r \mathbb{B} \right\}}{\rho} > 0$$

Outline

- Uniform regularity
- Metric and dual characterizations

Uniform regularity in Hilbert spaces

Alternating projections

Metric characterizations

$$\mathbf{\Omega} := \{\Omega_1, \dots, \Omega_m\} \ (m > 1) \quad \bar{x} \in \bigcap_{i=1}^m \Omega_i$$

$$\hat{\theta}[\Omega](\bar{x}) = \liminf_{\substack{x \to \bar{x} \\ x_i \to 0 \ (1 \le i \le m) \\ x \notin \bigcap_{i=1}^m (\Omega_i - x_i)}} \frac{\max_{1 \le i \le m} d(x, \Omega_i - x_i)}{d(x, \bigcap_{i=1}^m (\Omega_i - x_i))}$$

Metric characterizations

$$\mathbf{\Omega} := \{\Omega_1, \dots, \Omega_m\} \ (m > 1) \quad \bar{x} \in \bigcap_{i=1}^m \Omega_i$$

$$\hat{\theta}[\Omega](\bar{x}) = \liminf_{\substack{x \to \bar{x} \\ x_i \to 0 \ (1 \le i \le m) \\ x \notin \bigcap_{i=1}^{m} (\Omega_i - x_i)}} \frac{\max_{1 \le i \le m} d(x, \Omega_i - x_i)}{d(x, \bigcap_{i=1}^{m} (\Omega_i - x_i))}$$

Uniform regularity

 $oldsymbol{\Omega}$ is uniformly regular at $ar{x} \iff \exists \gamma, \delta > 0$ such that

$$\gamma d\left(x,\bigcap_{i=1}^{m}(\Omega_{i}-x_{i})\right)\leq \max_{1\leq i\leq m}d(x,\Omega_{i}-x_{i})$$

for any $x \in B_{\delta}(\bar{x}), x_i \in \delta \mathbb{B} \ (i = 1, ..., m)$

Collections of sets vs set-valued mappings

X - Banach space

$$\mathbf{\Omega} := \{\Omega_1, \ldots, \Omega_m\} \ (m > 1) \quad \bar{x} \in \bigcap_{i=1}^m \Omega_i$$

$$F:X \rightrightarrows X^m$$
: $F(x):=(\Omega_1-x)\times\ldots\times(\Omega_m-x)$ (loffe, 2000)

Proposition

 Ω is uniformly regular at $\bar{x}\iff F$ is metrically regular at $(\bar{x},0)$, i.e., $\exists \gamma, \delta > 0$ such that

$$\gamma d\left(x, F^{-1}(y)\right) \leq d\left(y, F(x)\right) \quad \forall x \in B_{\delta}(\bar{x}), \ y \in \delta \mathbb{B}^{m}$$

Collections of sets vs set-valued mappings

X, Y – Banach spaces

 $F:X \rightrightarrows Y, (\bar{x},\bar{y}) \in \operatorname{gph} F$

$$\Omega_1 = \operatorname{gph} F$$
, $\Omega_2 = X \times \{\bar{y}\} \in X \times Y$, $\mathbf{\Omega} := \{\Omega_1, \Omega_2\}$

Collections of sets vs set-valued mappings

X, Y – Banach spaces

 $F:X \rightrightarrows Y$, $(\bar{x},\bar{y}) \in \operatorname{gph} F$

$$\Omega_1 = \operatorname{gph} F$$
, $\Omega_2 = X \times \{\bar{y}\} \in X \times Y$, $\mathbf{\Omega} := \{\Omega_1, \Omega_2\}$

Proposition

F is metrically regular at $(\bar{x}, \bar{y}) \iff \Omega$ is uniformly regular at (\bar{x}, \bar{y})

Dual characterizations: Fréchet normals

 $x \in \Omega$

Fréchet normal cone to Ω at x:

$$N_{\Omega}(x) := \left\{ x^* \in X^* \middle| \limsup_{u \to x, \ u \in \Omega \setminus \{x\}} \frac{\langle x^*, u - x \rangle}{\|u - x\|} \le 0 \right\}$$

Dual characterizations

X – Asplund space, $\Omega_1, \ldots, \Omega_m$ – closed

$$\hat{ heta}[m{\Omega}](ar{x}) = \lim_{\delta \downarrow 0} \inf_{\substack{\sum_{i=1}^m \left\| x_i^*
ight\| = 1 \ \omega_i \in \Omega_i \cap B_\delta(ar{x}), \ x_i^* \in N_{\Omega_i}(\omega_i) \ (i=1,...,m)}} \left\| \sum_{i=1}^m x_i^*
ight\|$$

Dual characterizations

X – Asplund space, $\Omega_1, \ldots, \Omega_m$ – closed

$$\hat{ heta}[m{\Omega}](ar{x}) = \lim_{\delta \downarrow 0} \inf_{\substack{\sum_{i=1}^m \left\| x_i^*
ight\| = 1 \ \omega_i \in \Omega_i \cap B_\delta(ar{x}), \ x_i^* \in N_{\Omega_i}(\omega_i) \ (i=1,...,m)}} \left\| \sum_{i=1}^m x_i^*
ight\|$$

Uniform regularity

 Ω is uniformly regular at $\bar{x} \iff \exists \alpha, \delta > 0$ such that

$$\left\| \sum_{i=1}^{m} x_i^* \right\| \ge \alpha$$

 $\forall \omega_i \in \Omega_i \cap B_\delta(\bar{x}), \ x_i^* \in N_{\Omega_i}(\omega_i) \ (i = 1, \dots, m) \ \text{with} \ \sum_{i=1}^m \|x_i^*\| = 1$

Outline

Uniform regularity

Metric and dual characterizations

Uniform regularity in Hilbert spaces

Alternating projections

X – Hilbert space, Ω_1,Ω_2 – closed, $\mathbf{\Omega}:=\{\Omega_1,\Omega_2\}$, $ar{x}\in\operatorname{bd}\Omega_1\cap\operatorname{bd}\Omega_2$

X – Hilbert space, Ω_1,Ω_2 – closed, $\mathbf{\Omega}:=\{\Omega_1,\Omega_2\}$, $ar{x}\in\operatorname{bd}\Omega_1\cap\operatorname{bd}\Omega_2$

$$\hat{\theta}[\boldsymbol{\Omega}](\bar{x}) = \lim_{\delta \downarrow 0} \inf_{\substack{\|v_1\| + \|v_2\| = 1 \\ \omega_i \in \Omega_i \cap B_\delta(\bar{x}), \, v_i \in N_{\Omega_i}(\omega_i) \, (i = 1, 2)}} \|v_1 + v_2\|$$

X – Hilbert space, Ω_1,Ω_2 – closed, $\mathbf{\Omega}:=\{\Omega_1,\Omega_2\}$, $ar{x}\in\operatorname{bd}\Omega_1\cap\operatorname{bd}\Omega_2$

$$\begin{split} \hat{\theta}[\mathbf{\Omega}](\bar{x}) &= \lim_{\delta \downarrow 0} \inf_{\substack{\|v_1\| + \|v_2\| = 1 \\ \omega_i \in \Omega_i \cap B_\delta(\bar{x}), \ v_i \in \mathsf{N}_{\Omega_i}(\omega_i) \ (i = 1, 2)}} \|v_1 + v_2\| \\ &= \frac{1}{2} \lim_{\delta \downarrow 0} \inf_{\omega_i \in \Omega_i \cap B_\delta(\bar{x}), \ v_i \in \mathsf{N}_{\Omega_i}(\omega_i) \cap \mathbb{S} \ (i = 1, 2)} \|v_1 + v_2\| \end{split}$$

X – Hilbert space, Ω_1,Ω_2 – closed, $\mathbf{\Omega}:=\{\Omega_1,\Omega_2\}$, $ar{x}\in\operatorname{bd}\Omega_1\cap\operatorname{bd}\Omega_2$

$$egin{aligned} \hat{ heta}[oldsymbol{\Omega}](ar{x}) &= \lim_{\delta\downarrow 0} \inf_{egin{array}{c} \|v_1\| + \|v_2\| = 1 \ \omega_i \in \Omega_i \cap B_\delta(ar{x}), v_i \in N_{\Omega_i}(\omega_i) \ (i=1,2) \ \end{aligned}} \|v_1 + v_2\| \ &= rac{1}{2} \lim_{\delta\downarrow 0} \inf_{\omega_i \in \Omega_i \cap B_\delta(ar{x}), v_i \in N_{\Omega_i}(\omega_i) \cap \mathbb{S} \ (i=1,2)} \|v_1 + v_2\| \ \hat{c}[oldsymbol{\Omega}](ar{x}) &= -\lim_{\delta\downarrow 0} \inf_{\omega_i \in \Omega_i \cap B_\delta(ar{x}), v_i \in N_{\Omega_i}(\omega_i) \cap \mathbb{S} \ (i=1,2)} \langle v_1, v_2
angle \end{aligned}$$

X – Hilbert space, Ω_1,Ω_2 – closed, $\mathbf{\Omega}:=\{\Omega_1,\Omega_2\}$, $ar{x}\in\operatorname{bd}\Omega_1\cap\operatorname{bd}\Omega_2$

$$\begin{split} \hat{\theta}[\mathbf{\Omega}](\bar{x}) &= \lim_{\delta \downarrow 0} \inf_{\substack{\|\mathbf{v}_1\| + \|\mathbf{v}_2\| = 1 \\ \omega_i \in \Omega_i \cap B_{\delta}(\bar{x}), \ \mathbf{v}_i \in N_{\Omega_i}(\omega_i) \ (i=1,2)}} \|\mathbf{v}_1 + \mathbf{v}_2\| \\ &= \frac{1}{2} \lim_{\delta \downarrow 0} \inf_{\substack{\omega_i \in \Omega_i \cap B_{\delta}(\bar{x}), \ \mathbf{v}_i \in N_{\Omega_i}(\omega_i) \cap \mathbb{S} \ (i=1,2)}} \|\mathbf{v}_1 + \mathbf{v}_2\| \\ \hat{c}[\mathbf{\Omega}](\bar{x}) &= -\lim_{\delta \downarrow 0} \inf_{\substack{\omega_i \in \Omega_i \cap B_{\delta}(\bar{x}), \ \mathbf{v}_i \in N_{\Omega_i}(\omega_i) \cap \mathbb{S} \ (i=1,2)}} \langle \mathbf{v}_1, \mathbf{v}_2 \rangle \\ &\quad 2(\hat{\theta}[\mathbf{\Omega}](\bar{x}))^2 + \hat{c}[\mathbf{\Omega}](\bar{x}) = 1 \end{split}$$

X – Hilbert space, Ω_1, Ω_2 – closed, $\mathbf{\Omega} := \{\Omega_1, \Omega_2\}$, $\bar{x} \in \operatorname{bd}\Omega_1 \cap \operatorname{bd}\Omega_2$

X – Hilbert space, Ω_1,Ω_2 – closed, $\mathbf{\Omega}:=\{\Omega_1,\Omega_2\}$, $\bar{x}\in\operatorname{bd}\Omega_1\cap\operatorname{bd}\Omega_2$

 $oldsymbol{\Omega}$ is uniformly regular at $ar{x} \iff \hat{c}[oldsymbol{\Omega}](ar{x}) < 1$

Proposition

 Ω is uniformly regular at $\bar{x} \iff \exists c < 1, \ \delta > 0 \ s.t.$

$$-\langle \mathbf{v}_1, \mathbf{v}_2 \rangle < \mathbf{c} \quad \forall \mathbf{v}_1 \in \mathbf{N}_{\Omega_1}(\omega_1) \cap \mathbb{S}, \ \mathbf{v}_2 \in \mathbf{N}_{\Omega_2}(\omega_2) \cap \mathbb{S}$$

when $\omega_1 \in \Omega_1 \cap B_{\delta}(\bar{x}), \ \omega_2 \in \Omega_2 \cap B_{\delta}(\bar{x})$

Outline

Uniform regularity

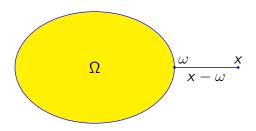
2 Metric and dual characterizations

Uniform regularity in Hilbert spaces

Alternating projections

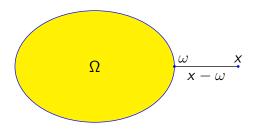
X – Hilbert space, $\Omega \neq \emptyset$ – closed,

$$P_{\Omega}(x) := \{ \omega \in \Omega \mid ||x - \omega|| = d(x, \Omega) \}$$



X – Hilbert space, $\Omega \neq \emptyset$ – closed,

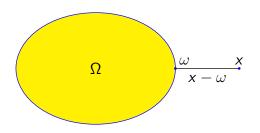
$$P_{\Omega}(x) := \{ \omega \in \Omega \mid ||x - \omega|| = d(x, \Omega) \}$$



• If dim $X < \infty$, then $P_{\Omega}(x) \neq \emptyset$

X – Hilbert space, $\Omega \neq \emptyset$ – closed,

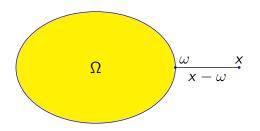
$$P_{\Omega}(x) := \{ \omega \in \Omega \mid ||x - \omega|| = d(x, \Omega) \}$$



- If dim $X < \infty$, then $P_{\Omega}(x) \neq \emptyset$
- ② If dim $X < \infty$ and Ω is convex, then $P_{\Omega}(x)$ is a singleton

X – Hilbert space, $\Omega \neq \emptyset$ – closed,

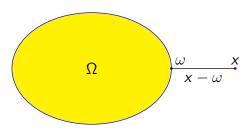
$$P_{\Omega}(x) := \{ \omega \in \Omega \mid ||x - \omega|| = d(x, \Omega) \}$$



- If dim $X < \infty$, then $P_{\Omega}(x) \neq \emptyset$
- ② If dim $X < \infty$ and Ω is convex, then $P_{\Omega}(x)$ is a singleton

X – Hilbert space, $\Omega \neq \emptyset$ – closed,

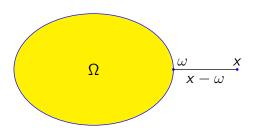
$$P_{\Omega}(x) := \{ \omega \in \Omega \mid ||x - \omega|| = d(x, \Omega) \}$$



Proximal normal cone to Ω at $\omega \in \Omega$: $N_{\Omega}^{p}(\omega) := \operatorname{cone} \left(P_{\Omega}^{-1}(\omega) - \omega\right)$

X – Hilbert space, $\Omega \neq \emptyset$ – closed,

$$P_{\Omega}(x) := \{ \omega \in \Omega \mid ||x - \omega|| = d(x, \Omega) \}$$



Proximal normal cone to Ω at $\omega \in \Omega$: $N_{\Omega}^{p}(\omega) := \operatorname{cone} \left(P_{\Omega}^{-1}(\omega) - \omega\right)$

Super-regularity of a set

X – Hilbert space, $\Omega \neq \emptyset$ – closed,

Definition (Lewis, Luke, Malick, 2009)

 Ω is super-regular at $ar{x} \in \Omega$ if

$$\langle x - \omega, u - \omega \rangle \le \gamma \|x - \omega\| \|u - \omega\|$$

 $\forall \gamma > 0$, $x \in X$ and $u \in \Omega$ near \bar{x} , $\omega \in P_{\Omega}(x)$

Super-regularity of a set

X – Hilbert space, $\Omega \neq \emptyset$ – closed,

Definition (Lewis, Luke, Malick, 2009)

 Ω is super-regular at $\bar{x} \in \Omega$ if

$$\langle x - \omega, u - \omega \rangle \le \gamma \|x - \omega\| \|u - \omega\|$$

 $\forall \gamma > 0$, $x \in X$ and $u \in \Omega$ near \bar{x} , $\omega \in P_{\Omega}(x)$

Convexity \Rightarrow Super-regularity

Alternating projections

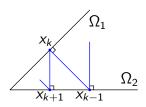
$$X$$
 – Hilbert space, Ω_1,Ω_2 – closed, $\mathbf{\Omega}:=\{\Omega_1,\Omega_2\}\subset X$, $\Omega_1\cap\Omega_2\neq\emptyset$

Problem: Find a point in $\Omega_1 \cap \Omega_2$

Definition

 (x_k) is generated by the alternating projections for Ω if

$$x_{2k+1} \in P_{\Omega_1}(x_{2k})$$
 and $x_{2k+2} \in P_{\Omega_2}(x_{2k+1})$ $(k = 0, 1, ...)$

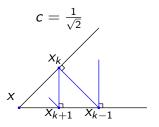


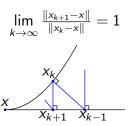
Linear convergence

Definition

 (x_k) linearly converges to x if there is a constant $c \in (0,1)$ s.t.

$$||x_{k+1} - x|| \le c||x_k - x|| \quad \forall k \text{ sufficiently large}$$





$$\dim X < \infty$$
, Ω_1, Ω_2 – closed, $\mathbf{\Omega} := \{\Omega_1, \Omega_2\} \subset X$, $\Omega_1 \cap \Omega_2 \neq \emptyset$

Problem: Find a point in $\Omega_1 \cap \Omega_2$

History

• Ω_1, Ω_2 are convex and Ω is subregular (Bauschke, Borwein, 1993)

dim $X<\infty$, Ω_1,Ω_2 – closed, $\Omega:=\{\Omega_1,\Omega_2\}\subset X$, $\Omega_1\cap\Omega_2\neq\emptyset$ Problem: Find a point in $\Omega_1\cap\Omega_2$

History

- Ω_1, Ω_2 are convex and Ω is subregular (Bauschke, Borwein, 1993)
- Ω_1 is super-regular and Ω is uniformly regular (Lewis, Luke, Malick, 2009)

dim $X<\infty$, Ω_1,Ω_2 – closed, $\Omega:=\{\Omega_1,\Omega_2\}\subset X$, $\Omega_1\cap\Omega_2\neq\emptyset$ Problem: Find a point in $\Omega_1\cap\Omega_2$

History

- Ω_1, Ω_2 are convex and Ω is subregular (Bauschke, Borwein, 1993)
- Ω_1 is super-regular and Ω is uniformly regular (Lewis, Luke, Malick, 2009)
- Ω_1 is Ω_2 -super-regular and Ω is inherently transversal (Bauschke, Luke, Phan, Wang, 2013)

 $\dim X < \infty$, Ω_1, Ω_2 – closed, $\Omega := \{\Omega_1, \Omega_2\} \subset X$, $\Omega_1 \cap \Omega_2 \neq \emptyset$ Problem: Find a point in $\Omega_1 \cap \Omega_2$

History

- Ω_1, Ω_2 are convex and Ω is subregular (Bauschke, Borwein, 1993)
- Ω_1 is super-regular and Ω is uniformly regular (Lewis, Luke, Malick, 2009)
- Ω_1 is Ω_2 -super-regular and Ω is inherently transversal (Bauschke, Luke, Phan, Wang, 2013)
- Ω is intrinsically transversal (Drusvyatskiy, Ioffe, Lewis; preprint 2014)

X – Hilbert space, Ω_1,Ω_2 – closed, $\mathbf{\Omega}:=\{\Omega_1,\Omega_2\}$, $\Omega_1\cap\Omega_2\neq\emptyset$

Problem: Find a point in $\Omega_1 \cap \Omega_2$

Theorem (Lewis, Luke, Malick, 2009)

Suppose that Ω is uniformly regular at $\bar{x} \in \Omega_1 \cap \Omega_2$ and Ω_1 is super-regular at \bar{x} . Then, for any $c \in (\hat{c}[\Omega_1, \Omega_2](\bar{x}), 1)$, a sequence generated by alternating projections for Ω linearly converges to a point in $\Omega_1 \cap \Omega_2$ with rate \sqrt{c} , provided x_0 is close enough to \bar{x}

References

- A. Y. Kruger and B. S. Mordukhovich, Extremal points and the Euler equation in nonsmooth optimization, Dokl. Akad. Nauk BSSR 24:8 (1980), 684–687, in Russian.
- A. Y. Kruger, Stationarity and regularity of set systems, Pacif.
 J. Optimiz. 1 (2005), 101–126.
- A. Y. Kruger, *About regularity of collections of sets*, Set-Valued Anal. **14** (2006), 187–206.
- A. Y. Kruger and N. H. Thao, About uniform regularity of collections of sets, Serdica Math. J. 39 (2013), 287–312.
- A. Y. Kruger and N. H. Thao, Quantitative characterizations of regularity properties of collections of sets, J. Optim. Theory Appl. 164 (2015), 41–67.
- A. Y. Kruger and N. H. Thao, Regularity of collections of sets and convergence of inexact alternating projections, Submitted.

References

- H. H. Bauschke and J. M. Borwein, On the convergence of von Neumann's alternating projection algorithm for two sets.
 Set-Valued Anal. 1 (1993), 185–212.
- A. Lewis, D. Luke, and J. Malick, Local linear convergence for alternating and averaged nonconvex projections, Found. Comput. Math. 9 (2009), 485–513.
- H. H. Bauschke, D. R. Luke, M. H. Phan, and X. Wang, Restricted normal cones and the method of alternating projections: theory, Set-Valued Var. Anal. 21 (2013), 431–473.
- D. Drusvyatskiy, A. D. Ioffe, and A. S. Lewis, Alternating projections and coupling slope, arXiv: 1401.7569 (2014).
- D. Noll and A. Rondepierre, *On local convergence of the method of alternating projections*, arXiv: 1312.5681v2 (2014).

