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Uniform regularity

X — Banach space
Q::{Ql,...,Qm}(m>1) )_(Eﬂlr-ilﬂ,'

Definition

Q is uniformly regular at X if do,d > 0 such that

m

(@i —wi—x)(((PB) #0  Vpe(0,0)

i=1

Vw; € Q;N Bs(x) and x; € X (i =1,...,m) with max |xil| < ap
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Q is uniformly regular at X if do,d > 0 such that

m

(@i —wi—x)(((PB) #0  Vpe(0,0)

i=1

Vw; € Q;N Bs(x) and x; € X (i =1,...,m) with max |xil| < ap

4

sup{r > 0] F] (Q —wi —x)N(pB) # 0, Vx; € rIB%}
[Q(%):=liminf =

UJ,‘&)_( p

pl0

>0
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© Metric and dual characterizations
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Metric characterizations

X — Banach space
Q::{Ql,...,Qm}(m>l) )_(Eﬂlr-ilﬂ,'

maxi<i<m d(x, Qi — x;)

0[Q](x) = liminf

X0 (1<i<m) d(X, Nizy (i — Xi))
x¢NL1(Qi—x;)
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Metric characterizations

X — Banach space
Q::{Ql,...,Qm}(m>1) )_(Eﬂ;llﬂi

maxi<i<m d(x, Qi — x;)

0[Q](x) = liminf
X0 (1<i<m) d<X> Nimy (i — Xi))
X€MLy (Qi—x;)

4

Uniform regularity

Q is uniformly regular at X <= 37,9 > 0 such that

vd (X,

for any x € Bs(X), x; € B (i=1,...,m)

IDE

l(Q,' — X,')) S lrgia;n d(X, Q,‘ — X,')
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Collections of sets vs set-valued mappings

X — Banach space
Q::{Ql,...,Qm}(m>1) )_(Eﬂlr-ilﬂ,'

F:X=2X™ F(x):=(Q —x)x...x(Qm—x) (loffe, 2000)

Proposition

Q is uniformly regular at X <= F is metrically regular at (x,0),
i.e., 3v,6 > 0 such that

vd (x, F'(y)) < d(y,F(x)) Vx € Bs(x), y € 0B™
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Collections of sets vs set-valued mappings

X, Y — Banach spaces
F:X=2Y,(x,y)€gphF

Q]_:gphF, QQZXX{_)_/}EXX Y,QZ:{Q]_,QQ}
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Collections of sets vs set-valued mappings

X, Y — Banach spaces
F:X=2Y,(x,y)€gphF

Q]_:gphF, QQZXX{)_/}EXX Y,QZ:{Ql,Qz}

Proposition

F is metrically regular at (X,y) <= S is uniformly regular at
(%.7)
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Dual characterizations: Fréchet normals

xeQ
Fréchet normal cone to Q at x:

No(x) = {x* ex*| limsup EHUTX) 0}

u—rx, ueQ\{x} H u— XH
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Dual characterizations

X — Asplund space, €, ...,8,, — closed

A[Q](x) = lim inf X
CIORY TR >

i=1 i
wiEQ;ﬂBg()_(), XI*ENQ,'(wi) (i:l,...,m)
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Dual characterizations

X — Asplund space, €, ...,8,, — closed

01Q1(%) = i inf
[ ](X) 5‘?3 Z}’;lmx, | .

wiEQ;ﬂBg()_(), XI-*ENQI.(W,') (i:l,...,m)

m
*
2%
i=1

| A

Uniform regularity
Q is uniformly regular at X <= Ja,d > 0 such that

m
*
D%
i=1

Vi € QN Bs(X), x* € Ney(wi) (i =1,...,m) with 7 x| =1

>«
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Uniform regularity in Hilbert spaces

X — Hilbert space, Q3,2 — closed, 2 := {Q;,Q,},
X € bd Q]_ N bd QQ
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Uniform regularity in Hilbert spaces

X — Hilbert space, Q3,2 — closed, 2 := {Q;,Q,},
X € bd Q]_ N bd QQ

Q is uniformly regular at x <= 0[Q](X) > 0 J
0[Q](x) = li inf +
[21() = lir Il =1 lva el

wi€QiNBs(X), vi€Ng, (wi) (i=1,2)
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0[Q](x) = li inf +
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1. .
—lim inf |lvi + wo|
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610 (,{J,'GQ,’I’WBg()?)7 V,'ENQI.(UJ,')QS (121,2)
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0[Q](x) = li inf +
[21() = lir Il =1 v vl
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1. .
—lim inf |lvi + wo|
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Uniform regularity in Hilbert spaces

X — Hilbert space, Q3,2 — closed, 2 := {Q;,Q,},
X € bd Q]_ N bd QQ

Q is uniformly regular at X <<= ¢[Q](X) < 1
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Uniform regularity in Hilbert spaces

X — Hilbert space, Q3,2 — closed, 2 := {Q;,Q,},
X € bd Q]_ N bd Qz

Q is uniformly regular at X <<= ¢[Q](X) < 1 )

Proposition

Q is uniformly regular at x <= dc<1, § >0 s.t.

—<V1, V2> <c Vv € NQl(CL)l) OS, Vo € NQZ(LUQ) NS

when w; € Q1 N Bs(X), wa € QN Bs(X)
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@ Alternating projections
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X — Hilbert space, Q # () — closed,

Po(x) ={w e Q| [[x —wl| =d(x,Q)}
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X — Hilbert space, Q # () — closed,

Po(x) ={w e Q| [[x —wl| =d(x,Q)}

Q If dim X < oo, then Pqo(x) # 0
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X — Hilbert space, Q # () — closed,

Po(x) ={w e Q| [[x —wl| =d(x,Q)}

Q If dim X < oo, then Pq(x) # 0
@ If dim X < oo and Q is convex, then Pg(x) is a singleton
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X — Hilbert space, Q # () — closed,

Po(x) ={w e Q| [[x —wl| =d(x,Q)}

Q If dim X < oo, then Pq(x) # 0
@ If dim X < oo and Q is convex, then Pg(x) is a singleton
Q@ we Py(x) = x—we Ng(w)
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X — Hilbert space, Q # () — closed,

Po(x) ={w e Q| [[x —wl| =d(x,Q)}

Proximal normal cone to Q at w € Q: N5(w) := cone (Pg*(w) — w)
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X — Hilbert space, Q # () — closed,

Po(x) ={w e Q| [[x —wl| =d(x,Q)}

Proximal normal cone to Q at w € Q: N5(w) := cone (Pg*(w) — w)

N5(w) C Ng(w)
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Super-regularity of a set

X — Hilbert space, Q # () — closed,
Definition (Lewis, Luke, Malick, 2009)

Q is super-regular at x € Q if
(x —w,u—w) <qllx —w| lu—wl|

Vy >0, x € X and u € Q near X, w € Py(x)
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Super-regularity of a set

X — Hilbert space, Q # () — closed,
Definition (Lewis, Luke, Malick, 2009)

Q is super-regular at x € Q if
(x —w,u—w) <qllx —w| lu—wl|

Vy >0, x € X and u € Q near X, w € Py(x)

Convexity = Super-regularity )
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Alternating projections

X — Hilbert space, Q1,Q, — closed, 2 := {Q;, 2} C X, ©yNQ # 0

Problem: Find a point in 2; N €2,

Definition

(xk) is generated by the alternating projections for Q if
Xok41 € PQl(XQk) and Xoky2 € PQz(X2k+1) (k =0,1,.. )

0
Xk
Q,
Xk+1 Xk—1
Alexander Kruger (FedUni Australia) Uniform Regularity of Collections of Sets
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Linear convergence

Definition
(xx) linearly converges to x if there is a constant ¢ € (0,1) s.t.

Ixk+1 — x|| < c|lxk — x|| Yk sufficiently large

1 s X —x|]
cC= 5 [im SF2—l =1
V2 koo IXk—xIl
Xk
Xk
X X
Xk+1 Xk—1 Xk+1 Xk—1
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Alternating projections: linear convergence

dim X < oo, Ql,Qg — closed, Q.= {Ql,QQ} C X, Ql ﬂQg 7é @
Problem: Find a point in 2; N2,

@ 1, are convex and €2 is subregular
(Bauschke, Borwein, 1993)
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Alternating projections: linear convergence

dim X < oo, Ql,Qg — closed, Q.= {Ql,QQ} C X, Ql sz 7é @
Problem: Find a point in 2; N2,

@ 1, are convex and €2 is subregular
(Bauschke, Borwein, 1993)

@ 2y is super-regular and €2 is uniformly regular
(Lewis, Luke, Malick, 2009)

@ Q is Qy-super-regular and € is inherently transversal
(Bauschke, Luke, Phan, Wang, 2013)

@ Q is intrinsically transversal
(Drusvyatskiy, loffe, Lewis; preprint 2014)
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Alternating projections: linear convergence

X — Hilbert space, Q1,Q, — closed, Q := {Q;, 2}, Q3N #0
Problem: Find a point in ; N €,

Theorem (Lewis, Luke, Malick, 2009)

Suppose that Q2 is uniformly regular at x € €2, N, and 1 is
super-regular at X. Then, for any c € (¢[Q1,2](X),1), a sequence
generated by alternating projections for Q2 linearly converges to a
point in Q1 N Q, with rate \/c, provided xq is close enough to X
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