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“Generalized Equations” / “Variational Inequalities”

extending the classical paradigm of solving a system of equations

Variational inequality problem — in finite dimensions
For C € R" nonempty closed convex, F : R" — R" continuous,
determine x € C such that —F(x) € N¢(x)
e, F(x)(xX —x)>0vx' € C

Modeling territory: optimality conditions, equilibrium conditions

Reduction to equation case: N¢(x) = {0} when x € int C
= incaseof C=R", —F(x)e N¢c(x) < F(x)=0



Extending to a “Stochastic Environment”?

Underlying probability space: (=, A, P)

Problem elements subjected to uncertainty: ¢ € =
e C(£) C R" closed convex # (), depending measurably on ¢
e F(x,£): R" x = — R" continuous in x, measurable in £

BUT WHAT “PROBLEM” IS TO BE SOLVED?
Key question: which comes first, decision or observation?

Observation first: knowing &, respond by deciding x(&)
—F(x(£),€) € N¢(gy(x(€)) a:s. a “random” V.I. problem?

Decision first: a single x must cope in advance with all £
—F(x,8) € N¢(g)(x) as. but is this hopeless to “solve”?

Conceptual limitation: anyway, why not more interaction?
maybe with information revealed and responded to in stages?



Review of Modeling Motivations for —F(x) € N¢(x)

Elementary optimization: minimizing g(x) over x € C
—Vg(x) € Nc(x) — first-order optimality, take F = Vg

Lagrangian V.l.: for /(y,z) on Y x Z closed convex
-~V I(y,z) € Ny(y), V:l(y,z) € Nz(z), corresponding to
x=(xy), C=YxZ F(x)=VI(y,z),—V:l(y,2))
— this encompasses KKT conditions in NLP and much more!

Hierachical optimization/equilibrium:
e agent choosing u € U “controls” agenta(s) determining (y, z)
e minimization of g(u,y,z) over u € U is desired

- Ug(uvyv Z) € NU(U)v —(Vy/(u,y, 2)7_VZ/(U7y7 Z)) € NYXZ(yv Z)
— modeled as a variational inequality in x = (u,y, z) by taking:

C=UxYxZ, F(x)=(Vug(u,y,z),Vyl(u,y,z),—V.I(u,y,z))



Back to Issues in S.V.l. Problem Formulation

Popular research focus:  “solving” —F(x,{) € N¢g)(x) as.
like finding a common solution to many optimization problems!

Fallback approach 1: ‘“take expectations on both sides”
solve —E¢[F(x,€)] € Np(x) for D = {x|x € C(£)as.}
solving a single V.I., but ad hoc? what interpretation?

Fallback approach 2: “find a best approximate solution”

minimize E¢[f(x,&)] for some error or “gap” function f
not really “solving a V.I." and why useful to accomplish?

Imperatives for what a ‘“stochastic variational inequality” should be

Formulations must be able to extend to a stochastic setting
the modeling capabilities of ordinary variational inequalities!

applications in stochastic programming? stochastic equilibrium?



Passing Instead to a Function Space Framework

e Consider x(-) : £ — x(€) in a space Lh = LP(Z, A, P; R")
pair £ with £, taking (x(-), v(-)) = Eel (x(€), v(€))]
e Introduce the closed convex set
C = {x(-) € Lh| x(&) € C(§) as. }
e Introduce F as taking x(-) € L} to an element F(x(-)) € L7,
F(x(-)) : &= F(x(§)),&) maybe under more assumptions

<

Important formula to record:
—F(x(1)) € Ne(x(+)) <= — F(x(£):€) € Nee)(x(€)) ass.
but this true V.1. in £} isn't what we really want to solve

The challenge: adapt somehow to x(£) NOT depending on ¢



Constancy as a Function Space Constraint

Substitute V.I. to investigate?

—F(x(+) € Ncconst(x(')) for Ceonst = {X() eC ‘ x(1) = xconst}

Insight from stochastic optimization: a likely formula is
N (X()) = {v () = w() [ V(") € Ne(x()), Ee[w(€)] = 0}
w(-) € L] serves as a Lagrange multiplier for constancy!
Conjecture: —F(x()) € Ne. . (x(1)) <
x(-) = x const and Jw(-) € L], Eg[w(&)] =0,
such that  — F(x,§) + w(§) € N¢(g(x) as.

Example: if C(&) = D, this is equivalent to —E¢[F(x,&)] € Np(x)!

Justification hurdle: a “constraint qualification” is needed, and
that may require working in £3°, BUT generally £} # £5°*
however there's no trouble in the finitely stochastic case



Multistage Format

Pattern of “decisions” and “observations” in N stages:
x1, §1, X2, &2,y xn, v with xe € R™, & € =
X:(Xl,...,X/\/)GRn, f:(fl,...,f/\/)€:::1><“':/\/

Nonanticipativity constraint

X, can respond to &1,...,&k_1 but not to &, ..., EN:

x(€) = (x1,x2(61), x3(€1,62)5 - -+ xv(€1, 62, - -, En—1))

Nonanticipativity subspace: N C L
N = {x(:) | x«(-) depends only on &,..., &1}
—  x(-) is nonanticipative <= x(:) € N/
Martingale subspace: M C L}
M ={w() | E,. .. eylwalérs - €1, 6k - én)] = O}
— in particular E¢[wi(£)] =0 and wy(£) =0
Complementarity: M =N+, N =M"‘
Single-stage example: N +— x(-)const, M +— E[w(:)]=0




Proposed S.V.l. Problem Formulation

Other model ingredients as before:

C={x(")[x(&) € C(&) as. },  F(x(1): &= F(x(€)),€)
but with C C L, F:LP® — Ll Ceonst upgraded to CNN

Stochastic variational inequalities — fundamentally
Basic form: —F(x(-)) € Neapr(x(+)) “expandable to": (?)
Extensive form: x(-) € A/ and 3w(-) € M such that
—F(x(€),€) + w(§) € Ne(e)(x(€)) ass.

or equivalently as a V.I. on x(-) and w(+) jointly:

—(F(x()) +w(), =x(-)) € Nexm(x(+), w(-))

Stochastic variational inequalities — more broadly
—F(x(+)) € Nicaar(x(+)) for a closed convex set K C C
along with “Lagrange muliplier elaborations” of this

Orientation:  reducing such a V.l. to basic or extensive form



S.V.l. Basic Form Versus Extensive Form

Outlook on the relationship:
e In the extensive form, w(-) is a nonanticipativity multiplier
e Invoking a multiplier rule requires a constraint qualification
e Otherwise the two conditions on x(-) should be equivalent
e Equivalence corresponds to confirming that

Nean (x()) = Ne(x(-)) + Nar(x(+)), using Ny (x(-)) = M

The finitely stochastic case: (=, A, P) with = finite, A = 2=
e £ L1 finite-dimensional, both identifiable as one “L,"
e relative interiors can serve in constraint qualifications

The more general stochastic case:
o L1 L% £ with £L2°*\ L] consisting of “singular elements”
e Singular elements could spoil the calculation of Npar(x(+))
e Some way must be found to confine normals to £}, not £3°*
e It will come from a 1976 Rock./Wets paper in multistage S.P.



Equivalence Results, First Part

Review of technical assumptions:  behind C and F
e C(&) # 0, closed, convex, depending measurably on &
e F(x,&) continuous in x, measurable and integrable in ¢
the integrability ensures that F(x(-)) € £

Sufficiency Theorem

If x(-) solves the S.V.I. in extensive form in partnership with some
w(-), then x(-) also solves the corresponding S.V.l. in basic form

| A\

Necessity Theorem for the Finitely Stochastic Case
Suppose that the following constraint qualification is satisfied:
3%(-) € N such that %(&) € ri C(£) a.s.

In that case, if x(-) solves the S.V.I. in basic form then x(-) with
some w(-) also solves the corresponding S.V.l. in extensive form

y

this relies on calculus rules of finite-dimensional convex analysis



Additional Assumptions for the General Stochastic Case

Constraint boundedness — for the mapping C : £ — C(§)
dp > 0 such that C(§) C pB a.s. (B = unit ball in R")

on the side, this guarantees C # () in £°

Induced constraints? the choice of x, in stage k can respond
only to (Xl, R 7Xk71) and (51, ce. ,fkfl), and hence is limited to

Ck(Xl7 e ,kal,f) = {Xk | E(XkJrl’ - .XN)
such that (x1,. .., Xk—1, Xk, Xk+1,- - - Xn) € C(g)}
If this depends on future (&, ..., &y) it is necessary to constrain
X to the essential intersection with respect to such information

Constraint nonanticipativity — no “induced constraints”

CK(x1,...,xk_1,€) does not depend on (&, ..., EN)




Equivalence Results, Second Part

Necessity Theorem for the General Stochastic Case

Assume constraint boundedness and nonanticipativity, and

suppose the following constraint qualification is satisfied:
3%(-) € N, € > 0 such that X(¢) +eB C int C(§) a.s

In that case, if x(+) solves the S.V.I. in basic form, then x(-) with
some w(-) also solves the corresponding S.V.l. in extensive form

V.

Method of proof: —F(x()) € Ner(y()) says that
()Eargmln () VF(x( ) y() [y() €CNN}
e Recall that (F(x ())7)/( )) = Ee[(F(x(£),€),y(£))]
e Introduce f(y,&) = (F(x(£).€),y) + dce)(y)

e Thus translate —F(x(-)) € NCON'(X( )) into multistage S.P.:
x(-) € argmin { E¢[f(y(£), )] | y(-) € N}
e Get w(-) € M from result of that subject in Rock./Wets [1976]



Lagrangian Representations of Constraint Normals

Basic constraint system:
x(§) € C(§) < x(£§) € X and G(x(§),§) € D
for X € R", D C R™ closed convex and G: R" x = — R™

Multiplier rule: when D is a cone with polar Y there can be
under a constraint qualification a Lagrangian formula

v(€) € Neey(x(§)) <= 3Fy(€) € Y such that

v(€) = (¥(£),VxG(x(§),£)) € Nx(x(§)),  G(x(£),8) € Ny(y(§))

Lagrangian S.V.l. representation

Then for X ={x(-) ’ (§) € X as.} and Y={y() |y(§) €Yas.}
the V.I. —F(x(+)) € Nep(x(-) becomes a V.I. in (x(-),y(+)):

—(FO)H (), VG (X(), ), = G (x(4): ) € Ny <y (X () ¥ (+))

this is actually an S.V.I. of basic type with “y(-) = xy11(-)"!



Constraints Added to Basic Constraints

Expectation constraints: define /L C C C £;° by adding

<0 fori=1,...,r,
Eg[gi(X(f),f)]{ =0 fori=ral,....m

and as S.V.I. consider instead —F(x(-)) € Ncrpr(x(+))

Reduction tactic: introduce multipliers A; for these constraints
A=Ay, Am) € A=[0,00)" X (—00,00)""
Multiplier rule: under a constraint qualification
v(:) € Ni(x(-)) <= I\ €A such that
v(-) = 22 AiVgi(x(1), ) € Ne(x(+)) and G(x(-)) € Na(A)
where  G(x(-)) = Ec[ (81(x(€). ), - gm(x(£). ©))]

Reduced version of —F(x(+)) € Ninc(x(+)) in these circumstances
—(F(x() + 221 AiVagi(x(4), ), =G(x()) € Nierwyxn(x(+): A)

this is actually an S.V.I. of basic type with “x; augmented by \"!
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