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Motivation: Optimal Control with ODEs

A car powered by a rocket engine has to reach its aim as precise as possible
in a given time ty > 0. Therefor let x1(7) be the position, x2(7) the
velocity and u(z) the acceleration (control) of the car at time 7 € [0, 77].
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Motivation: Optimal Control with ODEs

o1 o
min = (x1(t)* + x2(t)%) + 5 i

s.t. X1(t) = x2(¢), x2(t) = u(t) a.e. on[0,1r],
x1(0) =6,  x2(0) =1,
u() € [-1,1] a.e. on [0,].

X1 ...position of the car
X2 ...velocity of the car
u ...acceleration of the car (control)
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Motivation: Optimal Control with ODEs

Optimal control for @ = 0 and o =1 (ty = 5):

u : u
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-1 : -1
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T t

-1, forO0<t<rt,

0
u(t) = 1
© +1, forz <t =<tr u®(t) = Pri_1,1 [—&A%‘(t)]
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Motivation: Optimal Control with ODEs

Parts 3 and 4 are joint work with Walter Alt and Martin Seydenschwanz.

Part 5 is joint work with Walter Alt and Yalcin Kaya.
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Discretization and Dualization of LQPs

Part

Linear-Quadratic Control Problems

Basic Results
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Linear-Quadratic Control Problems

Problem (PQ)

min  f(x,u)

s.t.  x(t) = A@)x () + B(t)u(t) + b(t) a.e. on [to,1r],
x(0) = xo,

u(t) € U:={u eR™| by <u < by} a.e. on [ty 7],

where f is a linear-quadratic cost functional defined by

1
Sfx,u) = Ex(lf)TQx(ff) +q ' x(ty)

+ /U%X(t)TW(t)x(t) +w(@)Tx(0) + x0T SOu) + @) u()dr.

to
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Linear-Quadratic Control Problems

u(t) € L®(to.tr:R™) is the control and x(t) € Wolo(to,tf;]R") is the
state of the system at time ¢. The functions W, S, w, r, A, B, and b are
Lipschitz continuous.

(AC) The matrices Q and W(t), t € [to.1r], are symmetric and

x(tr)TOx(ty) + f tfx(t)TW(t)x(t) +2x()TS()u(r)dr = 0
to
for all (x,u) € X with
x(t) = A(t)x(t) + B@)u(t) a.e. on [to. tr],
x(t()) =0,
ui)eU —-U a.e. on [fo, tr].

Then (PQ) is a convex optimization problem and a solution exists.
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Linear-Quadratic Control Problems

Optimality Conditions

(x*,u*) is a solution for Problem (PQ) iff there exists a function A* such
that the adjoint equation

—A*(1) = A@®)TA* (1) + W()x* () + S(OHu* () +w(t) a.e. on [to, trl.
A (tp) = Ox*(tr) + 4.,

holds, and the minimum principle
.
[B(t)T)L*(t) + S()Tx* (1) + r(t)] (u—u*t)) >0 foralluelU

is satisfied for a.e. 1 € [tg,17].
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Linear-Quadratic Control Problems

Bang-Bang Structure

We denote the switching function by

o(t) := B)TA* (1) + S(0) "x* (@) + r (7).

Then the minimum principle implies for i € {1,...,m}
by, if 07 () >0,
uy(t) = by, if 07(1) <0,
undetermined , if 0;(z) =0.

If the switching function o has only finitely many isolated zeros, the
optimal control u™* is of bang-bang type.

Christopher Schneider | University of Jena — Institute of Mathematics 10



Linear-Quadratic Control Problems

(B1) The set X of zeros of the components o;, i = 1...,m, of the
switching function o is finite and 79,7y ¢ X', i.e., ¥ = {s1,...,5}
with fg <51 < ... <y <tf.

Let d(sj) := {1 <i <m | 0i(s;) = 0} be the set of active indices for the
components of the function o. In order to obtain stability of the bang-bang
structure under perturbations, we need an additional assumption:

(B2) There exist 6 > 0, T > 0 such that
loi (1) = o]T — 55
forall j e{l,...,l},i €d(sj), and all T € [s; — T,5; + T].

(B1) + (B2) = Problem (PQ) has a unique solution of bang-bang type.
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Discretization and Dualization of LQPs

Part

Stability of Solutions

w.r.t. Perturbations and L?*-Regularization

Christopher Schneider | University of Jena — Institute of Mathematics 12



Stability of Solutions

We introduce standard perturbations p = (¢, &,¢, 1), where

p eR", £e L™, tr;R"), ¢ € L®(to.tr;R™), n € L®(to. 17 R"),

and a regularization parameter o > 0 and consider the L?-regularized
parametric LQP

Problem (PQ)%
min £, () + 5 Jull}
s.t. x(t) = A@)x () + B()u(r) + b(t) + n(t) a.e on [to,1r],

x(0) = xq,
u@) e U:={uelR™ | by <u <by} a.e. on [to, tr].
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Stability of Solutions

Here, f) is a linear-quadratic cost functional defined by
1 T T
Jo(xu) = Sx(ty) Qx(ty) + g + 91" x(ty)

+ / f%x(l)TW(t)x(t) + [w(@) + £O] x(1)dr

to

4 f " @OTSOu) + () + O u() dr
1

0

The parameters p = 0, « = 0 are the reference parameters, and
Problem (PQ) is the reference problem. We are interested in the behavior

of solutions (x5, uy) of Problem (PQ)Z in dependence of the parameters p
and «.
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Stability of Solutions

Optimality Conditions

(x5, uy) is a solution for Problem (PQ)j iff there exists a function Ay

such that the adjoint equation

—)l;’,‘(t) = A(t)TA;’,‘(t) + W(t)x,; () + S@u, ) +w) + (1) ae,
Apltr) = Ox;(tr) +q+ ¢,

holds, and the minimum principle
.
() + BOTAL) + SOTXED + () +5(0)] (u =) 20

is satisfied for all u € U and a.e. ¢ € [fg, t7].
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Stability of Solutions

Theorem (Calmness of Solutions)

Let Assumptions (AC), (B1) and (B2) be satisfied. Then there
exist constants ¢, ¢x and c¢) independent of p and o such that
for the optimal solutions of Problems (PQ)Z‘ the estimates

Jup =y < cullpl+a).  fap—x*];; <exdlipl+o)

and
JAg =A%, < endipll + o)

hold for all p and «.
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Stability of Solutions

L?-Regularization

We consider Problem (PQ)g with the cost functional

o 2
folrou) + 3 llull3
This problem has a unique Lipschitz continuous optimal control:

u®(t) = Pryp, ] ( 1 [BOTAG0) + SO Tx§ (1) + r(z)]) .

o

Theorem
For @ — 0 we obtain u§ — u* and x§ — x*.
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Stability of Solutions

Optimal solution for a = 0:

X3
1-
o 1
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1
1 11
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Stability of Solutions

Optimal solution for a = 1:

x3
1.
o '
”1 . 01
N i
0 : ~1
1
1
_2-
—1 !
0 T 5 1 2 3 4 5 6
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Stability of Solutions

Optimal solution for & = 0.5:

x3
1.
o '
”1 . 01
N i
0 : ~1
1
1
_2-
—1 !
0 T 5 1 2 3 4 5 6
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Stability of Solutions

Optimal solution for « = 0.1:

x5
1-
u% '
1 I 0
0 1
1
_2-
-1 :
0 T 5 1 2 3 4 5 6
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Stability of Solutions

For two functions uy,us € L*>(fo, 1r; R™) we define

d*(ui,uz) == meas {t € [to, t¢] | u1(t) # us(t)} .

Theorem

Let Assumptions (AC), (B1) and (B2) be satisfied. Then there
exists a constant « independent of (p, ) such that for any solution
(x5, uy) of Problems (PQ)Z the estimate

d*(ug, u*) <« (I pll + )

holds, if || p|| + « is sufficiently small.
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Discretization and Dualization of LQPs

Part

Discretization

Explicit and Implicit Euler Method

Christopher Schneider | University of Jena — Institute of Mathematics 20



Discretization

The discretization of an optimal control problem depends on the choice of
the discretization scheme for the system equation. This section is devoted

to the Euler discretization of Problem (PQ)g.

This results in the following finite dimensional optimization problem:

Problem (PQ)%

min  f* (xXp, up)

Xh,0 = X0

s.t. Xpjy1 = Xp,j + h [A(lj)xh,j + B(tj)uh’j + b(l‘j)] , J € 3(1)\,_1

up; € U, jeg(l)\’—l
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Discretization

1
S (p,up) = EXZ,N OQxnN + 4" XpN

N-1
1
+hy [Ex{j W(tj)xn,j + w(t) xp,; + x;,js(’f)“h’f}

j=0
N-1 o

+h Z [r(lj)Tuh,j + Euz,j”h,j]
Jj=0

A solution (xp,u$) of Problem (PQ)j; exists. Since it may happen that
one of the zeros of the discrete switching function is a discretization point,
the optimal control has not to be unique in the case « = 0. For
a > 0, the optimal control is uniquely determined.
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Discretization

We are able to show that (x;,uj) also solves some Problem (PQ);‘Z for
a parameter py’ = (¢}, &, {7, ny,) with

[ P&l = ch.
where the constant ¢ is independent of N € N and a > 0.

Therefore, we apply the calmness result to prove convergence of the
discretization.

In the same way, convergence of the implicit Euler discretization can
be proved.
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Discretization

Theorem (Convergence)

Let Assumptions (AC), (B1) and (B2) be satisfied. For any N € N,
the corresponding mesh size h = (¢ —9)/N and any a > 0, and
for any solution (xj/,u}) with associated multiplier A7 the error
estimate

gy — |y + g =]y, + 1A% =27, S c i+ o)
holds with some constant ¢ independent of N.

With some constant y we choose & = yh and obtain

oy = w3 + iy =]

R Ll PR S
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Theorem

Let Assumptions (AC), (B1) and (B2) be satisfied. There exists a
constant « independent of N € N, the corresponding mesh size &
and a > 0 such that

d*u,u*) <k (h+a)

holds for all N € N and o > 0.
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Discretization

Numerical Results for the Rocket Car Example

Explicit Euler vs. Implicit Euler, N = 25:
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Discretization

Numerical Results for the Rocket Car Example

Explicit Euler vs. Implicit Euler, N = 50:

X3
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u N
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Discretization

Numerical Results for the Rocket Car Example

Explicit Euler vs. Implicit Euler, N = 100:

X3
1-
u; o
1 —
01 . 1
-1 2 R
0 5 1 2 3 4 5 6 x5
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Numerical experiments confirm the theoretical findings. Here, ugy, is
the solution of the (explicit) Euler discretized problem and uiyp is the
solution of the implicit Euler discretized problem.

N 100 200 400 800 1600 3200

lugxp —u*|l1 0.1167 0.0602 0.0293 0.0151 0.0074 0.0036
w 2.3343 2.4085 2.3408 2.4227 2.3798 2.2873

lump —u*[1 0.0805 0.0421 0.0202 0.0106 0.0052 0.0026
Ptwp =Tl 16105 1.6826  1.6160 1.7007 1.6547 1.6906

Christopher Schneider | University of Jena — Institute of Mathematics 27



A Stiff Optimal Control Problem

min /12x1(t)+6x2(t)—u1(t)—0.5u2(t)dt
0

s.t. X1(t) =0.5(c1 +¢2)x1(2) +0.5(c1 —c2) x2(2) +u1(2) a.e.,
X2(t) = 0.5(c1 —c2) x1(t) + 0.5 (c1 + c2) x2(t) + ua(t) a.e.,
x1(0) =0, x2(0)=0,
ur(t) € [-1,1], ua2(t) €[-2,2] a.e.

We choose ¢; = —1 and ¢, = —1000, so the problem becomes stiff.
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Discretization
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Discretization and Dualization of LQPs

Part

The Dual Problem

Continuous-Time Problem and Discretization
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The Dual Problem

Burachik/Kaya/Majeed (SICON, 2014)

Computation of the dual problem for linear-quadratic control problems
with continuous solutions. Strong duality holds.

Numerical experiments illustrate that by solving the dual problem compu-
tational savings can be achieved.
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The Dual Problem

S (0 +4)T 07 (plty) + ) + p(O)Ta

t
+ /, f% (" () = w(®) WO (x*(1) = w(©) + ¥ (p(1), 1) dr

min

s.t. p(t) = —A@) p(t) + x*(t) a.e. on [t0. 7],

where for the & = 0 (bang-bang case) ¥%(p,t) is defined by

VO(p.1) = by, (B(Z)Tp)i —byiri(t) ifri(t)— (B(I)Tp)i >0,
i\P» bu,i (B(l‘)Tp)i —by,iri(t), ifri(t)— (B(I)Tp)i <0
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The Dual Problem

The Regularized Case

Remember (« = 0)

vO(p,t) = bei (B)Tp), —beri(t). ifri(t)—(B() p), =0,
i Vs bu,i (B(I)Tp)i —by,iri(t), ifri(t)— (B(I)Tp)i <0

For the & > 0 (regularized case) ¥*(p,t) is defined by

2
3q (BT p); — 2ri() (B()Tp); + 5g7i(0)*,
Yi'(p.1) = { bei (B(t) p); —byiri(t) — §b7;
bui (B()Tp), — buiri(t) — b2 ;.
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The Dual Problem

Theorem (Strong Duality)
Let (x,u) be an optimal solution of the primal problem with adjoint
variable . We set

p(t) =—A(t) ae onfo.tr]. plty) =—-0x(r)—q.

and
x*(t) = W(t)x(r) +w(r) a.e. on [fo,tr].

Then the optimal values of the primal and dual problem are equal
and (p, x*) is a solution of the dual problem.
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The Dual Problem

Discretization of the Dual Problem

(PQ) &—— Strong Duality > (DP)
i —u]ly = ch ?
(PQ)h &—— Strong Duality ? (DP)h
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The Dual Problem

Revisiting the Rocket Car

1 o
min > (xl(tf)2 + Xz(tf)z) + 5”””%

s.t. X1(t) = x2(¢), x2(t) = u(t) a.e. on|0,1r],
x1(0) =6, x2(0)=1,
u(t) € [-1,1] a.e. on [0,r].
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The Dual Problem

Problem Regularization CPU time [s] Ratio

Primal a=0 0.264 100%
Primal a=h 0.283 107%
Dual a=0 0.192 73%
Dual a=h 0.150 57%

N = 5000, average over 1000 runs. Solver: IPOPT.
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The Dual Problem

Diabetes Mellitus

; /11 02 de + & Jull2
min —X — U
0 21 o M2

s.t. X1(t) = —=0.1x1(¢) — x2(2) a.e. on [0, 1],
X2(t) = 0.2x1(t) + 0.1x2(¢) + u(t) a.e. on [0, 1],
x1(0) =1, x2(0)=0,

u(t) € [0,4] a.e. on [0, 1]

Christopher Schneider | University of Jena — Institute of Mathematics 38



The Dual Problem

Problem Regularization CPU time [s] Ratio

Primal a=0 0.576 100%
Primal a=h 0.359 61%
Dual a=0 0.211 37%
Dual a=h 0.182 32%

N = 5000, average over 1000 runs. Solver: IPOPT.
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