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1 How to Deal with a Single Stochastic

Constraint

Consider a single constraint under uncertainty

v(x, z̃) ≤ w, (x,w) ∈ Rn × R

Robust Optimization

sup
z∈C

v(x, z) ≤ w (1)

Stochastic Optimization

EP0
v(x, z̃) ≤ w, P0 is the joint distribution of z̃ (2)

Special case of (2) - Chance constraint

P(a(z̃)T x ≥ b(z̃)) ≥ 1 − ε ⇐⇒ E
(

1a(z̃)T x≤b(z̃)

)

≤ ε
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Sto. Opt . with Ambiguity in Distribution

sup
P∈P

EPv(x, z̃) ≤ w, P is the ambiguity set of distributions. (3)

(1) and (2) ⊂ (3).

Notations.

P0(R
m) - The set of distributions on Rm

|z̃|, |ũ| - cardinality of z̃ and ũ, resp.

P ∈ P0(R
|z̃| × R|ũ|) is a joint probability distribution of (z̃, ũ).

∏

z̃ P ∈ P0(R
|z̃|) - the marginal distribution of z̃ under P

Assumption. v(x, z̃) is convex in x and measurable in z̃ ∀x
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Let K be a proper cone, we use x �K 0 to represent x ∈ K.

1. K = Rn
+ ⇐⇒ x1, ..., xn ≥ 0.

2. K = Ln+1 ⇐⇒ x0 ≥ (x2
1 + · · · + x2

n)1/2.

3. K = Sn
+ ⇐⇒ X is a positive semidefinite matrix.

More Notations.

K∗ := {y : 〈y, x〉 ≥ 0 ∀x ∈ K}.

B �K A or A �K B ⇐⇒ A − B ∈ K.
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We assume that the ambiguity set P in (3) is representable in the
“standard form”

P =

{

P ∈ P0(R
P × RQ) :

EP [Az̃ + Bũ] = b,

P [(z̃, ũ) ∈ Ci] ∈
[

p
i
, pi

]

∀i ∈ I

}

,

(4)
where P represents a joint probability distribution of the random vector
z̃ ∈ RP appearing in the constraint function v in (3) and some
auxiliary random vector ũ ∈ RQ. We assume that A ∈ RK×P ,
B ∈ RK×Q, b ∈ RK and I = {1, . . . , I}, while the confidence sets Ci

are defined as

Ci =
{

(z, u) ∈ RP × RQ : Ciz + Diu 4Ki
ci

}

(5)

with Ci ∈ RLi×P , Di ∈ RLi×Q, ci ∈ RLi and Ki being proper cones.
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More requirements on P

We require that the ambiguity set P satisfies the following two
regularity conditions (support-interior assumption).

(C1) The confidence set CI is bounded and has probability one, that is,
p

I
= pI = 1.

(C2) There is a distribution P ∈ P such that P [(z̃, ũ) ∈ Ci] ∈
(

p
i
, pi

)

whenever p
i
< pi, i ∈ I.
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We require that the constraint function v in (3) satisfies the following
condition (piecewise bi-linear assumption).

(C3) The constraint function v(x, z) can be written as

v(x, z) = max
l∈L

vl(x, z) (6)

where L = {1, . . . , L} and the auxiliary functions
vl : RN × RP → R are of the form

vl(x, z) = sl(z)>x + tl(z) (7)

with sl(z) = Slz + sl, Sl ∈ RN×P and sl ∈ RN , tl(z) = t>l z + tl,
tl ∈ RP and tl ∈ R.
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The tractability of optimization problems with constraints of the
type (3) critically depends on the following nesting condition for
the confidence sets in the definition of P:

(N) For all i, i′ ∈ I, i 6= i′, we have either Ci b Ci′ , Ci′ b Ci or
Ci ∩ Ci′ = ∅.

we denote by A(i) = {i} ∪ {i′ ∈ I : Ci b Ci′} and
D(i) = {i′ ∈ I : Ci′ b Ci} the index sets of all supersets
(antecedents) and all strict subsets (descendants) of Ci, respectively.
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Theorem 1.1 (Wiesemann, Kuhn, Sim, 2014) Assume that the
conditions (C1)-(C3) and (N) hold. Then, the constraint (3) is
satisfied for the ambiguity set (4) if and only if there is β ∈ RK ,
κ, λ ∈ RI

+ and φil ∈ K?
i , i ∈ I and l ∈ L, that satisfy the constraint

system

b>β +
∑

i∈I

[

piκi − p
i
λi

]

≤ w,

c>
i

φil + s>
l

x + tl ≤
∑

i′∈A(i)

[κi′ − λi′]

C>
i φil + A>β = S>

l x + tl

D>
i φil + B>β = 0



















∀i ∈ I, ∀l ∈ L.

(8)
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Theorem 1.2 (Lifting Theorem of WKS) Let f ∈ RM and
g : RP → RM be a function with a conic representable K-epigraph,
and consider the ambiguity set

P ′ =

{

P ∈ P0(R
P ) :

EP [g(z̃)] 4K f,

P [z̃ ∈ Ci] ∈
[

p
i
, pi

]

∀i ∈ I

}

, (9)

as well as the lifted ambiguity set

P =















P ∈ P0(R
P × RM ) :

EP [ũ] = f,

P [g(z̃) 4K ũ] = 1,

P [z̃ ∈ Ci] ∈
[

p
i
, pi

]

∀i ∈ I















,

(10)
which involves the auxiliary random vector ũ ∈ RM . We then have
that (i) P ′ = Πz̃P and (ii) P can be reformulated as an instance of
the standardized ambiguity set (4).

9



Example 1.1 (Mean) Assume that G EQ0 [z̃] 4K f for a proper
cone K and G ∈ RM×P , f ∈ RM , and consider the following instance
of the ambiguity set (4), which involves the auxiliary random vector
ũ ∈ RM .

P =
{

P ∈ P0(R
P × RM ) : EP [ũ] = f, P [Gz̃ 4K ũ] = 1

}

(11)

We then have Q0 ∈ Πz̃P =
{

Q ∈ P0(R
P ) : G EQ [z̃] 4K f

}

.
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Example 1.2 (Variance) Assume that µ = EQ0 [z̃] and

EQ0

[

(z̃ − µ) (z̃ − µ)>
]

4 Σ for a given Σ ∈ SP
+. Consider the

following instance of (4), which involves the auxiliary random matrix

Ũ ∈ RP×P .

P = {P ∈ (RP × RP ×P ) : EP [z̃] = µ, EP

[

Ũ
]

= Σ,

P

([

1 (z̃ − µ)>

(z̃ − µ) Ũ

]

< 0

)

= 1} (12)

We then have Q0 ∈ Πz̃P =
{

Q ∈ P0(R
P ) : EQ [z̃] = µ, EQ

[

(z̃ − µ) (z̃ − µ)>
]

4 Σ
}

.
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Example 1.3 (The plus-function, high-order moment, ...)

EP

[

|aT
1 z|

]

≤ µ, EP

(

aT
2 z

)2
≤ δ, EP

[

((aT
3 z)+

]3
≤ σ, ...

(1) aT
1 z ≤ ν1,−aT

1 z ≤ ν1

(2)

√

(aT
2 z)2 + (

ν2 − 1

2
)2 ≤

ν2 + 1

2

(3) µ1 ≥ 0, µ1 ≥ aT
3 z,

[µ2
1 + (

µ1 − 1

2
)2]1/2 ≤

µ2 − 1

2
,

[µ2
2 + (

µ1 − ν3

2
)2]1/2 ≤

ν3 + µ1

2
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Application in two-stage stochastic linear programming

min
x∈X

{

c′x + max
P∈P

EP[Q(x, z̃)]

}

. (13)

Q(x, z̃) = min
y(z̃)

d′y(z̃)

s. t. A(z̃)x + Dy(z̃) = b(z̃),

y(z̃) ≥ 0,

⇒ sup
P∈P

EP[Q(x, z̃)] ≤ t − c′x = w
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A production planning problem. A company manager is
considering the amount of steel to purchase (at $58/lb) for producing
wrenches and pliers in next month. The manufacturing process
involves molding the tools on a molding machine and then assembling
the tools on an assembly machine. Here is the technical data.

Wrench Plier Total

Steel (lbs.) 1.5 1 x

Molding Machine (hours) 1 1 z1

Assembly Machine (hours) .3 .5 z2

Contribution to Earnings ($/1000 units) 130 100

If z1 and z2 are fixed, then the problem is

min 57x − 130w − 100p

s.t. w + p ≤ z1(Mold constraint)

.3w + .5p ≤ z2(Assembly constraint)

1.5w + p ≤ x(Steel constraint)

x,w, p ≥ 0
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The Two-stage Stochastic Programming Formulation

Decision Variables: x: the steel to purchase now; wi, pi: production
plan under scenario i = 1, 2, 3, 4.

Scenario Assembly Hours Molding Hours Probability

1 8000 25000 .25

2 8000 21000 .25

3 10000 25000 .25

4 10000 21000 .25

We minimize the expected cost subject to “scenario constraints”.

min 58x −
P

4

i=1
.25(130wi + 100pi)

s.t. w1 + p1 ≤ 25000 (Mold constraint for scenario 1)

.3w1 + .5p1 ≤ 8000 (Assembly constraint for scenario 1)

−x + 1.5w1 + p1 ≤ 0 (Steel constraint for scenario 1)

w2 + p2 ≤ 21000 (Mold constraint for scenario 2)

.3w2 + .5p2 ≤ 8000 (Assembly constraint for scenario 2)
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−x + 1.5w2 + p2 ≤ 0 (Steel constraint for scenario 2)

w3 + p3 ≤ 25000 (Mold constraint for scenario 3)

.3w3 + .5p3 ≤ 10000 (Assembly constraint for scenario 3)

−x + 1.5w3 + p3 ≤ 0 (Steel constraint for scenario 3)

w1 + p1 ≤ 21000 (Mold constraint for scenario 4)

.3w4 + .5p4 ≤ 10000 (Assembly constraint for scenario 4)

−x + 1.5w4 + p4 ≤ 0 (Steel constraint for scenario 4)

x, wi, pi ≥ 0, i = 1, ..., 4.

The solutions are as follows. x = 27, 250,
minimal expected cost = -802,833, and the production plans under
various scenarios are as follows.

Scenario wi pi

1 12,500 8,500

2 12,500 8,500

3 8,056 15,167

4 12,500 8,500
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The SOAD formulation. We have X = {x : x ≥ 0} and P ∈ P

P :=

{

P :
EP(z̃j) = µj , j = 1, . . . ,m,

EP(z̃2
j ) ≤ ηj , j = 1, . . . ,m,

P{z̃ ∈ Ω} = 1.

}

By Theorem 1.1 we solve the equivalent conic optimization problem:

min
x,v0,v,V,u,Y,s,t,λ,ν

58x + v0 + 23000v1 + 9000v2 + 533 × 10
9

V1 + 82 × 10
9

V2

s. t.

3
X

i=1

ui − 130y
0
1 − 100y

0
2 + 25000λ1 + 10000λ2 + λ3 − 21000ν1

−8000ν2 + ν3 − v0 ≤ 0,
‚

‚

‚

‚

‚

 

v1 + 130y1
1 + 100y1

2 + λ1 − ν1
V1 − u1

!‚

‚

‚

‚

‚

≤ V1 + u1,

‚

‚

‚

‚

‚

 

v2 + 130y2
1

+ 100y2
2

+ λ2 − ν2
V2 − u2

!‚

‚

‚

‚

‚

≤ V2 + u2,

‚

‚

‚

‚

‚

 

v3 + 130y3
1 + 100y3

2 + λ3 − ν3
V3 − u3

!‚

‚

‚

‚

‚

≤ V3 + u3,

y
0
1 + y

0
2 + y

0
3 = 0, .3y

0
1 + .5y

0
2 + y

0
4 = 0, −x + 1.5y

0
1 + y

0
2 = 0,

y
1
1 + y

1
2 + y

1
3 = 1, .3y

1
1 + .5y

1
2 + y

1
4 = 0, 1.5y

1
1 + y

1
2 = 0,

y
2
1 + y

2
2 + y

2
3 = 0, .3y

2
1 + .5y

2
2 + y

2
4 = 1, 1.5y

2
1 + y

2
2 = 0,

y
3
1 + y

3
2 + y

3
3 = 0, .3y

3
1 + .5y

3
2 + y

3
4 = 0, 1.5y

3
1 + y

3
21 = 1
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y
1
1 + y

1
2 + y

1
3 = 1, 0.3y

1
1 + 0.5y

1
2 + y

1
4 = 0, 1.5y

1
1 + y

1
2 = 0,

y
2
1 + y

2
2 + y

2
3 = 0, 0.3y

2
1 + 0.5y

2
2 + y

2
4 = 1, 1.5y

2
1 + y

2
2 = 0,

y
3
1 + y

3
2 + y

3
3 = 0, 0.3y

3
1 + 0.5y

3
2 + y

3
4 = 0, 1.5y

3
1 + y

3
2 = 1,

−21000s
1
1 − 8000s

1
2 + s

1
3 + 25000t

1
1 + 10000t

1
2 + t

1
3 − y

0
1 ≤ 0,

−21000s
2
1 − 8000s

2
2 + s

2
3 + 25000t

2
1 + 10000t

2
2 + t

2
3 − y

0
2 ≤ 0,

−21000s
3
1 − 8000s

3
2 + s

3
3 + 25000t

3
1 + 10000t

3
2 + t

3
3 − y

0
3 ≤ 0,

−21000s
4
1 − 8000s

4
2 + s

4
3 + 25000t

4
1 + 10000t

4
2 + t

4
3 − y

0
4 ≤ 0,

s
1
1 − t

1
1 − y

1
1 ≤ 0, s

1
2 − t

1
2 − y

2
1 ≤ 0, s

1
3 − t

1
3 − y

3
1 ≤ 0,

s
2
1 − t

2
1 − y

1
2 ≤ 0, s

2
2 − t

2
2 − y

2
2 ≤ 0, s

2
3 − t

2
3 − y

3
2 ≤ 0,

s
3
1 − t

3
1 − y

1
3 ≤ 0, s

3
2 − t

3
2 − y

2
3 ≤ 0, s

3
3 − t

3
3 − y

3
3 ≤ 0,

s
4
1 − t

4
1 − y

1
4 ≤ 0, s

4
2 − t

4
2 − y

2
4 ≤ 0, s

4
3 − t

4
3 − y

3
4 ≤ 0,

x ≥ 0, V, u, λ, ν ≥ 0, s
k

, t
k

≥ 0, k = 1, 2, 3, 4.

The numerical results show that x = 31, 500, max-worst cost =
-940,770.
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(Gao, S, Wu) Based various levels of knowledge about moments,
different steel purchasing levels are calculated respectively and the
comparison is shown in the table below.

Number of moments known Steel purchased

1 30500

2 30500

3 30500

4 30500

5 27861

6 17876

7 17876

It is interestingly noted adding one extra moment information may
have no value in the sense of making SOAD decision . When cost of
evaluating uncertainty moments is high, dealing with low level of
knowledge can be sufficient to worst-case decision making.
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2 The chance constraint: A non-convex

case

P(a(z̃)T x ≥ b(z̃)) ≥ 1 − ε (14)

For mathematicians,

E
(

1a(z̃)T x≥b(z̃)

)

≥ 1 − ε (15)

It is easy to see that 1a(z̃)T x≥b(z̃) is not bilinear in (x, z̃) so the convex
SOAD framework does not apply.
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For financial experts,

P[a(z̃)T x ≥ b(z̃)] ≥ 1 − ε ⇐⇒ VaR1−ε

(

b(z̃) − a(z̃)T x
)

≤ 0.

Define (Rockafellar and Uryasev)

CVaR1−ε(X) = min
β

{

β +
1

ε
E[(X − β)+]

}

, (16)

where X is a single random variable. If X = v(x, z̃) is bilinear in (x, z̃)
(or convex in x), then CVaR(v(x, z̃)) is convex in x.

It can be shown that

VaR1−ε(X) ≤ CVaR1−ε(X).

Thus, CVaR is a convex upper bound of VaR. In fact, it is best c.u.
of it (Nemirovski and Shapiro).
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By bounding E((y0 + y′z̃)+) one can reduce the case to LP, SOCP, or
SDP. Our computational test shows that even the LP bounding
method is satisfactory for a resource allocation problem.

See details in Operations Research 58 (2010) 470-485.
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Thank You!
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