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1 How to Deal with a Single Stochastic
Constraint

Consider a single constraint under uncertainty

v(z,zZ) <w, (zr,w)eR" xR

Robust Optimization

supv(z,z) < w
zeC

Stochastic Optimization
Ep,v(x,2) < w, Py is the joint distribution of Z

Special case of (2) - Chance constraint

]P)(CL(E)TZ > b(g)) >1l—€ <= K (la(i)Ta:Sb(i)) <e€




Sto. Opt . with Ambiguity in Distribution

sup Epv(z,Z) < w, P is the ambiguity set of distributions.

PeP

(1) and (2) C (3).
Notations.

Po(R™) - The set of distributions on R™

Z], |u| - cardinality of Z and u, resp.

P € Py(RIZ x RI%) is a joint probability distribution of (Z, ).
[T, P € Po(RIZ) - the marginal distribution of Z under P

Assumption. v(z, Z) is convex in z and measurable in Z Vx

(3)




Let KC be a proper cone, we use x =i 0 to represent x € K.

1. =R} < z1,....,2, > 0.

2. K=L""! «—= x> (224 ---+22)V2

3. K=8} <= X is a positive semidefinite matrix.
More Notations.
K :={y:{y,z) >0Vr e K}
B=xAorArx B <— A—BeKk.




We assume that the ambiguity set P in (3) is representable in the
“standard form”

P = {]P’EPO(IR{P x RY)

Ep [Ag + B’ZL] =D,
P[(z,a) €G] e [}_92.,}_921 vieT (°
(4)
where P represents a joint probability distribution of the random vector
Z € RY appearing in the constraint function v in (3) and some
auxiliary random vector @ € R¥. We assume that A € RE*F,

B e REX®@ p e RE and Z = {1,...,1}, while the confidence sets C;
are defined as

C; = {(z,u) c RY x RQ . Ciz + D;u <K, Ci} (5)

with C; € REXP D, e REXR, ¢; € RY and K; being proper cones.




More requirements on P

We require that the ambiguity set P satisfies the following two
regularity conditions (support-interior assumption).

(C1) The confidence set C; is bounded and has probability one, that is,

}_9[:}_9[:1'

(C2) There is a distribution P € P such that P[(Z,u) € C;] € (]_92_,}—92.)
whenever p. <p;, 1t € 1.




We require that the constraint function v in (3) satisfies the following
condition (piecewise bi-linear assumption).

(C3) The constraint function v(x, z) can be written as

v(x,z) = max v (x, 2)

where £ = {1,..., L} and the auxiliary functions
v RY x RP — R are of the form

vi(x,2) = s1(2) 'z + t(2)

with 5;(2) = Sjz + 51, S; € RYXF and 5; € RY, #(2) = tsz+tl,
t; € R¥ and t; € R.




The tractability of optimization problems with constraints of the
type (3) critically depends on the following nesting condition for
the confidence sets in the definition of P:

(N) For all i,i" € Z, i # i’, we have either C; € C;, C;y € C; or

CiNCy =0.

we denote by A(i) ={i}u{i' €Z : C; € Cy} and
D(i) ={i' € T : C; € C;} the index sets of all supersets
(antecedents) and all strict subsets (descendants) of C;, respectively.




Theorem 1.1 (Wiesemann, Kuhn, Sim, 2014) Assume that the
conditions (C1)-(C3) and (N) hold. Then, the constraint (3) is
satisfied for the ambiguity set (4) if and only if there is 3 € RY,

K, \ERL and ¢ € K, i €T and | € L, that satisfy the constraint
system

bTB+ Y [Biki — pA| < w,

icT
c!du+s x+t < Z [ir — /]
i’ €. A(3)
Clou+ATB=8z+1 >
D/ ¢u+B'=0

Viel, VleL.

(8)




Theorem 1.2 (Lifting Theorem of WKS) Let f € RM and
g:RY — RM be a function with a conic representable K-epigraph,
and consider the ambiguity set

Ep [9(2)] <k [ ;
Pz el € [}_92_,}_9%1 VicT [’ (9)

P = {]P’ e Po(RY) -

as well as the lifted ambiguity set
EIP’ [’ZL] — f7

P =<{PcPy(RY xRM) : Plg(2) <k u] =1, &
]P’[ZECi]E[}_?Z_,T?Z} Viel

y

\ /

(10)
which involves the auxiliary random vector & € RM . We then have
that (i) P’ = 11;P and (ii) P can be reformulated as an instance of

the standardized ambiguity set (4).




Example 1.1 (Mean) Assume that G Eqo [Z] <xc f for a proper
cone K and G € RM*F | f ¢ RM and consider the following instance

of the ambiguity set (4), which involves the auxiliary random vector
i e RM.

P={PePy(RF xRM) : Bpla] = f, P[GZ=xcd=1} (11)

We then have Q° € II;P = {Q € Py(R”) : GEq [Z] <k [}




Example 1.2 (Variance) Assume that p = Eqgo [Z] and
Ego [(2 —wW)(E—p)' | KX foragiven © € S¥. Consider the

following instance of (4), which involves the auxiliary random matrix
U e RPXP.

P ={P e (RY x RFXF) : Ep[2] = u, EP[[]}:E,

1 (5—M)T] )
P . ~ =0] =1
([(z—u) U }
We then have Q° € II;P =

{QeP®R?) : Eqls] = p Bo |(2- 1)

11



Example 1.3 (The plus-function, high-order moment, ...

Ep [|al2]] < 1, Bp (] 2)" < 8, Fp [((a]2)4]" <o, ...

(1) aiz <uvi,—aiz <
Vo — 1

(2) )2+ ()2 <

(3) py > 0,41 > a3 2,

V2—|—1
2

i+ (B <

2 - 2 7
M1 — V3)2]1/2 P + [

2
s =+ ( 5 < 5



Application in two-stage stochastic linear programming

min {c’ac + max Ep[Q(z, 5)]}. (13)

reX PeP

Q(z,Z) =min  d'y(2)

y(2)
s.t. A&z + Dy(2) = b(2),
y(i) > 0,

= supEp[Q(z,2)] <t—-cdz=w
PeP




A production planning problem. A company manager is
considering the amount of steel to purchase (at $58/Ib) for producing
wrenches and pliers in next month. The manufacturing process
involves molding the tools on a molding machine and then assembling
the tools on an assembly machine. Here is the technical data.
Wrench Plier Total
Steel (Ibs.) 1.5 1 T
Molding Machine (hours) 1 1 21

Assembly Machine (hours) 3 5 2o

Contribution to Earnings ($/1000 units)

If z; and z9 are fixed, then the problem is

min 57x — 130w — 100p

s.t. w + p < z1(Mold constraint)
3w + .5p < zo(Assembly constraint)
1.5w 4 p < x(Steel constraint)
x,w,p >0




The Two-stage Stochastic Programming Formulation

Decision Variables: x: the steel to purchase now; w;, p;: production
plan under scenario © =1, 2, 3, 4.

Scenario | Assembly Hours Molding Hours  Probability
1 8000 25000 25
2 8000 21000 25
3 10000 25000 25
4 10000 21000 25

We minimize the expected cost subject to “scenario constraints” .

min 58z — >, .25(130w; + 100p;)
s.t. w1 + p1 < 25000 (Mold constraint for scenario 1)

Bwi + .5p1 < 8000 (Assembly constraint for scenario 1)
—x + 1.5w1 +p1 <0 (Steel constraint for scenario 1)

wa + p2 < 21000 (Mold constraint for scenario 2)
Bwz + .5p2 < 8000 (Assembly constraint for scenario 2)




—x + 1.5w2 +p2 <0 (Steel constraint for scenario 2)

ws + p3 < 25000 (Mold constraint for scenario 3)
Bws + .5ps < 10000 (Assembly constraint for scenario 3)
—x + 1.5w3 +p3 <0 (Steel constraint for scenario 3)

wi + p1 < 21000 (Mold constraint for scenario 4)
Bwa + .5psa < 10000 (Assembly constraint for scenario 4)
—x + 1.5ws +ps <0 (Steel constraint for scenario 4)

r,wi,p; >0, 1=1,..., 4.

The solutions are as follows. x = 27, 250,
minimal expected cost = -802,833, and the production plans under
various scenarios are as follows.

Scenario W Di
1

2
3
4




The SOAD formulation. We have X = {zx: x>0} and PP

EP(EJ):ij jzl?"'7m7
]P:Ep(é?)gnj, j=1,...,m,
P{z € Q} =1.

By Theorem 1.1 we solve the equivalent conic optimization problem:

min 58z + vg 4 23000v7 + 9000wy + 533 x 107V + 82 x 109 Vq

z,vg,v,V,u,Y,s,t,\,v

3

S wy — 130y — 100y 4 2500011 4 10000X5 4+ Az — 210001
1=1

—8000vy + vy — vg < O,

vi 4 130y] + 100y3 + X — vg
Vi—wug

Vo — ug

V3 — ug

<v2 +130y2 4 10093 + Ay — vg >

<v3 + 130y$ + 10093 + A3 — v3

0 0 0 0 0 0
Y1 + Yo + Yg 0, .3y1 + .5y2 + Yq

1 1 1 1 1 1
Y1 + Yo + Yg 1, .3y1 + .5y2 + Yg —

2 2 2 2 2 2
Y1 + Yo + Yg 0, .3y1 + .5y2 + Ya

3 3 3 3 3 3
Y1 + Yo + Yg 0, .3y1 + .5y2 + Ya




1 1 1 1 1 1 1 1
Y1 + Yo + Yg 1, 0-3y1 +0-5y2 + Yg 1-5y1 + Yo

2 2 2 2 2 2 2 2
Yyl + Y3 + y3 0, 0.3y] +0.5y5 + yj4 1, 1.5y7] + vy35

3 3 3 3 3 3 3 3
¥yl +yo +y3 =0, 0.3y] +0.5y5 +yy =0, 1.5y] + y5

1 1.1 1 1,1
—21000s] — 800055 4 s5 + 25000t] + 10000t + t5 —

—21000s7 — 800053 4 s3 + 25000t3 + 10000t3 + t3

3

—21000s5 — 800055 4 s35 + 250005 + 10000t3 + t3

—21000s] — 800055 + s3 4 25000t] + 10000t5 + t3

V)
&+

V)
&+

[V

R RFW RN R
&+

R RW RN R

0
&+

sk itk >0, k=123, 4.

8
V
L
=

The numerical results show that x = 31, 500, max-worst cost =
-940,770.




(Gao, S, Wu) Based various levels of knowledge about moments,
different steel purchasing levels are calculated respectively and the
comparison is shown in the table below.

Number of moments known | Steel purchased
1 30500
30500
30500
30500
27861
17876
17876

It is interestingly noted adding one extra moment information may
have no value in the sense of making SOAD decision . When cost of
evaluating uncertainty moments is high, dealing with low level of
knowledge can be sufficient to worst-case decision making.




2 The chance constraint: A non-convex
case

Pla(3)Tz > b(2)) > 1 —¢ (14)

For mathematicians,

E(lyzyrasnz) = 1—¢ (15)

It is easy to see that 1,(z)7,>p(z) is not bilinear in (z, Z) so the convex
SOAD framework does not apply.




For financial experts,
Pla(2)'z > b(Z)] > 1 —€ < VaRi_, (b(2) —a(2)" ) <0.

Define (Rockafellar and Uryasev)

G

CVaRi_((X) = min {ﬁ + %E[(X - ﬁ)+]} : (16)

where X is a single random variable. If X = v(x, 2) is bilinear in (z, 2)
(or convex in z), then CVaR(v(z, 2)) is convex in x.

It can be shown that
V&Rl_e(X) < CVaRl_E(X).

Thus, CVaR is a convex upper bound of VaR. In fact, it is best c.u.
of it (Nemirovski and Shapiro).




By bounding E((yo + y'Z).1) one can reduce the case to LP, SOCP, or
SDP. Our computational test shows that even the LP bounding
method is satisfactory for a resource allocation problem.

See details in Operations Research 58 (2010) 470-485.




Thank You!




