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Convex Duality (infinite dimensions), existence of dual solutions

Normal Integrands: optimal control, stochastic programming, finance, mathematical statistics

Monotone Operators, maximal and cyclic properties, VI’s

Augmented Lagrangians and Proximal Points: algorithmic analysis

Subdifferential Calculus: convex, Clarke’s, generalized subgradients

Implicit functions theorems

Risk measures, CVAR (conditional value at risk)

Optimal control theory and HJB-properties, mathematical economics, structure reliability

“Stochastic Variational Problems” 

for a testimonial confer this meeting



ROCKAFELLAR BY THE NUMBERS

Convex Analysis, Princeton Univ. Presse, 1970

Conjugate duality and optimization, SIAM Conference B., 1974

The theory of subgradients and its applications to problems of optimization. 
Convex and nonconvex functions. Heldermann, 1981

Network Flows and Monotropic Optimization. Wiley, 1984

Variational Analysis (with R. Wets). Springer, 1998 (3rd 2009).

Implicit Functions and Solution Mappings (with A. Dontchev). Springer, 2009-14

Books
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230+ articles ( and 6 books)

Google citations: at least 47,324  (V.A. ± 5,000 counted twice)

 Microsoft Academic Ranking of 401,704 mathematicians (# 4,017 = top 1%)

R.T. Rockafellar  # 10!    —   at this meeting: only 3 in the top 100

… a grain of salt: John von Neumann # 350

# students (21+ …),  # outstanding in RTR-circle,  # editorships (7) … cf.  CV

Honors:  Dantzig Prize, von Neuman Prize, Lanchester Prize, Honoris Causa (4)
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TERRY’S OTHER LIFE

mountain backpacking, sea-kayaking and landscape gardening

music, ballet, reading, languages … but not Seattle sailing

traveling extensively (at the 5 or 6 continents-level per year)

close interaction with family and friends 

… and living in one of the most beautiful areas in the world
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PRODUCTIVE HIKING AND MORE

S. Adly
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1965 Princeton:  A. Williams 2 day-workshop on Stochastic Programming

1966 Seattle: Victor Klee (earlier Mr. Convexity)

U.W. = convexity Nirvana: R. Phelps, I. Namioka, B. Grünbaum

and steady visitors/lecturers: Ky Fan, E. Asplund, … + optimizers

1966-1970 Backpacking, Family Hiking 

[1967 two duality theorems (Pacific J. Mathematics & JMAA)]

9/64 → Seattle



 TERRY & ROGER: STOCHASTIC 
           PROGRAMMING DUALITY

’69-70  Stochastic programs with fixed recourse: 

the equivalent deterministic problem. 

’71 Roger → Chicago,  Lexington

Nov. 71 Cologne to Univ. Bonn. (P. Vogel)

’74 results at “Control & Optimization” 
Paris meeting (A. Bensoussan & J.-L. Lions) 
mostly 2-stage recourse problem 

      

SIAM Review.



STOCHASTIC OPTIMIZATION ERA
1971 - 2015
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a more comprehensive formulation:
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• an infinite dimensional optimization problem

• choice of ‘manageable’ spaces for y and dual variables, perturbations

• constraint qualification!

• induced constraints: Ax = b, x � 0 does not imply 9 feasible recourse 8⇠

• to be approximated to rely on finite-dimensional optimization
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Interchange of Minimization and Expectation 
Interchange of Minimization and Subdifferentiation 
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NONANTICIPATIVITY AS A CONSTRAINT

minE f (ξ;xξ
1 , xξ

2 ){ }
       xξ

1 ∈ C1 ⊂ !n1 ,

     xξ
2 ∈ C 2 (ξ;xξ

1 ),∀ξ  a.s.

     xζ
1 = E{xξ

1} ∀ζ ∈Ξ a.s.

wζ ⊥  cste  fcns
 ⇒ E{wξ} = 0

minE f (ξ;xξ
1 , zξ

1 )− wξ , xξ
1{ }

            xξ
1 ∈ C1, xξ

2 ∈ C 2 (ξ; xξ
1 )

∀ξ ∈Ξ :

       min f (ξ;x1, x2 )− wξ , x2

         x1 ∈ C1, x2 ∈ C 2 (ξ; x1)
               

’75 - Lexington Conference on Stochastic Optimization
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0. wξ
0  such that E wξ

0{ } = 0, ν = 0.  Pick ρ > 0

1.  for all ξ :
              (xξ

1,ν , xξ
2,ν )∈argmin f (ξ; x1, x2 ) − 〈wξ

ν , x1〉

                    x1 ∈C1 ⊂ !n1 , x2 ∈C 2 (ξ, x1)⊂ !n2

2. x1,ν = E xξ
1,ν{ }.  Stop if xξ

1,ν − x1,ν = 0 (approx.)

              otherwise wξ
ν+1 = wξ

ν + ρ xξ
1,ν − x1,ν)* +,,  return to 1. with ν = ν +1

Convergence:  add a proximal term

    f (ξ; x1, x2 ) − 〈wξ
ν , x1〉 −

ρ
2
x1 − x1,ν 2

linear rate in (x1,ν ,wν ) ...  eminently parallelizable

wξ
’86 Beijing,  Academia Sinica



STOCHASTIC EQUILIBRIUM AND 
      VARIATIONAL INEQUALITIES

’05-’15(+?) Santiago,  Whidbey Island, St Petersburg,  Adelaide
(mostly with Alejandro Jofré)



our “Working” places



Seattle 2003



Minneapolis 2010



St Petersburg 2011



Rio de Janeiro 1981



… could have been “working” places



 VARIATIONAL ANALYSIS ERA
1979-1998 2001-2015, also via third parties
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Summer 1979  — Planning                     
“our” Stochastic Programming Book

What should be include in the Appendix?

MPS ’79 , Montreal,  IIASA’s invitation

Laxenburg Fall 1980  —  Chapter 1



“variational”

approximation

…

monotone operators

variational geometry

. . .

convexity, duality

measurable & integration issues

thirst for an overarching theory

subdi↵erentiability @f

hyperspace topology
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integral functionals

gradients, Hessians, . . .

derivative functions

continuity analysis

approx. uniform
approx. pointwise

pointwise limits

VARIATIONAL
ANALYSIS

normal integrands

subgradients, @2f , . . .

subderivative functions

semi-continuous mappings

graphical approx.
epigraphical approx.

set limits (one-sided)



COSMIC SPACE
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(0,0)

(x,-1)

C

IR

nIR

(0,-1)

Compactification of !n

total convergence: set convergence of points and “dir” points



EPI-CONVERGENCE

f⌫
epi-convergence to f
implies convergence of minimizers (roughly)

± the only convergence notion

with this property

e--lim inf f⌫ e--lim sup f⌫ e--lim f⌫
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epi-derivative (’88 Rock.)
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 A “UNIQUE” SUBGRADIENT 

f :

n ! and f(x̄) 2
v is a regular subgradient, v 2 ˆ

@f(x̄), if

f(x) � f(x̄) + hv, x� x̄i+ o

�
|x� x̄|

�

v is a subgradient, v 2 @f(x̄), if

9 x

⌫ !
f

x̄, v

⌫ 2 ˆ

@f(x

⌫
) with v

⌫ ! v

v is a horizon subgradient, v 2 @

1
f(x̄), if

9 x

⌫ !
f

x̄, v

⌫ 2 ˆ

@f(x

⌫
) with v

⌫ ! dir v or v = 0

’73 Clarke: convexification, …, Rubinov, …

Minsk! ’76-88
Mordukhovich

& Kruger



 … WOULD NOW INCLUDE

epi/hypo-convergence (saddle points), lopsided convergence

much more about 2nd order differentiability

variational inequalities, equilibrium problems, MPEC

Fitzpatrick functions, …



Stochastic Variational Analysis ?
Dec. ’14,  Santiago 






