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Automorphisms of graphs

I" a locally finite, simple, connected graph.
Vertex set VI, edge set ET, arc set Al'

Aut(T") is the group of all automorphisms of T.



Symmetry conditions

Given G < Aut(l) then G is

vertex-transitive:

edge-transitive:
arc-transitive:

transitive on VI
transitive on ET
transitive on Al
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Symmetry conditions

Given G < Aut(l) then G is

vertex-transitive:  transitive on VI
edge-transitive:  transitive on ET
arc-transitive: transitive on Al

Arc-transitive implies edge-transitive and vertex-transitive.

Edge-transitive but not vertex-transitive implies that [ is bipartite
and G has two orbits on vertices.



How many automorphisms?

G < Aut(l") arc-transitive or edge-transitive.
v € VT, vertex stabiliser G,.

Problem: Bound |G,| when G, finite?
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v € VT, vertex stabiliser G,.

Problem: Bound |G,| when G, finite?

e If I is finite and G is vertex-transitive, then by the
Orbit-Stabiliser Theorem |G| = |VT||G,|, so also bound |G].

e If I is infinite then |G,| is bounded if and only if Aut(I') has
finitely many conjugacy classes of discrete arc/edge-transitive
subgroups.



How many automorphisms?

G < Aut(l") arc-transitive or edge-transitive.
v € VT, vertex stabiliser G,.

Problem: Bound |G,| when G, finite?

e If I is finite and G is vertex-transitive, then by the
Orbit-Stabiliser Theorem |G| = |VT||G,|, so also bound |G].

e If I is infinite then |G,| is bounded if and only if Aut(I') has
finitely many conjugacy classes of discrete arc/edge-transitive
subgroups.

Note that if I has valency d and G is arc-transitive then also have
|G| = d|Guwl.



A Theorem of Tutte
(1947,1959)

Theorem Let I' be a connected cubic graph with an arc-transitive
group G of automorphisms such that G, is finite. Then
|Gy| = 3.2° for some s < 4.



Structure of stabilisers

Djokovi¢ and Miller (1980): Determined the possible structures of
finite vertex and edge-stabilisers for cubic arc-transitive graphs:

e Only 7 possibilities for the pair (G, Ge) with e = {u, v}.
e In particular, G is a quotient of one of 7 finitely presented
groups.



Possibilities for (G,, G,)

S Gv Ge

1 G G

2 53 C2 X C2 or C4
3 53 X C2 Dg

4 S4 D16 or QD16

5 54 X C2 (Dg X C2) X C2




Applications

Conder and Dobcsanyi (2002): Determined all cubic arc-transitive
graphs on at most 768 vertices:

o |Aut()| < 768.48 = 36864

e So need to find all normal subgroups of index at most 36864.



Applications

Conder and Dobcsanyi (2002): Determined all cubic arc-transitive
graphs on at most 768 vertices:

o |Aut()| < 768.48 = 36864

e So need to find all normal subgroups of index at most 36864.

e Conder has subsequently enumerated all such graphs on at
most 10,000 vertices.



Edge-transitive

Goldschmidt (1980): Determined the possible structures of finite
pairs (G, G,) for adjacent vertices u, v in cubic edge-transitive
graphs:

e only fifteen possibilities
e |G,| <384



Local actions

(v) is the set of neighbours of v.

r'v)

<

Gy ™) is the permutation group induced on '(v) by G,, called the
local action of G, .

(v)

If G is vertex-transitive then all the G\r are isomorphic.



Local actions

I connected, G < Aut(lN) vertex-transitive

e Given a permutation group L, we say that the pair (', G) is

locally L if G\f(v) 2 [ for all vertices v.

e Given some permutation group property P, we say that (I, G)
is locally P if G‘r(v) has property P for all vertices v.



Weiss Conjecture

Let G < Sym(Q).

Call G primitive if the only partitions of 2 that it preserves are the
trivial ones {Q} and {{w} | w € Q}.



Weiss Conjecture

Let G < Sym(Q).

Call G primitive if the only partitions of 2 that it preserves are the
trivial ones {Q} and {{w} | w € Q}.

Weiss Conjecture (1978): There is some function f(d) such that
for every locally primitive pair (I', G) of valency d and G, finite we
have |G, | < f(d).

o Tutte's result is that f(3) = 48.
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such that for all locally L pairs (I', G) with G, finite, we have that
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Graph-restrictive

Verret: We say that L is graph-restrictive if there is a constant C
such that for all locally L pairs (I', G) with G, finite, we have that

G| < C.

e Tutte's result is that C3 and S3 are graph-restrictive.
e The Weiss Conjecture asserts that every primitive group is

graph-restrictive.



A nonexample
Wreath graphs

Aut( ) Sowr Do,
Aut(N)L) =
|Aut(M),| = 2"*1.2
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distance at most / from v.
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{v,w} is an edge.
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An equivalent definition

G\[,'] is the kernel of the action of G, on the set of all vertices at
distance at most / from v.

Gl is the kernel of the action of Gy, on M(v) Ul(w), where
{v,w} is an edge.

Le[rrma If I is connected and G[] G['H] for some i, then
G =

Lemma L is graph-restrictive if and only if there is some constant k
such that for all locally L pairs (I', G) with G, finite, we have

G =1.

Tutte: For cubic arc-transitive graphs with G, finite we have
Pl=1
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Some graph-restrictive groups

Any regular group. (regular=free-+transitive)

Gardiner (1973): Any transitive subgroup of S other than Ds.
Sami (2006): Dy, for n odd.

Poto¢nik, Spiga, Verret (2012): GL(2, p) acting on the set of
nonzero vectors of GF(p)2.
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Progress on the Weiss Conjecture

Trofimov, Weiss (1995): Any 2-transitive group is graph-restrictive
(6]

(G =1)

Weiss (1979), Spiga (2016): If L is a primitive permutation group

of affine type, then L is graph-restrictive. (G‘E4] =1)

Spiga (2011): If L is a primitive permutation group with a regular

nonabelian minimal normal subgroup then L is graph-restrictive.
1]
(Gl =1)

Trofimov, Weiss (1995): PSL,(q) acting on m-spaces is
graph-restrictive.
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What is the correct setting?

Let G < Sym(Q).

e Call G quasiprimitive if every nontrivial normal subgroup is
transitive.

e Call G semiprimitive if every nontrivial normal subgroup is
transitive or semiregular.
(A permutation group H is semiregular on Q if H, =1 for all
a € Q, that is, free.)



Semiprimitive groups

Initially studied by Bereczky and Maréti (2008) (motivated by an
application from universal algebra and collapsing monoids).

Examples include:

primitive and quasiprimitive groups;

regular groups;

Frobenius groups (that is, all nontrivial elements fix at most
one point);

GL(n, p) acting on the set of nonzero vectors of Zj.

Any locally quasiprimitive, vertex-transitive group of
automorphisms of a non-bipartite graph. (Praeger 1985)



What is the correct setting?

Praeger Conjecture (2000): Every quasiprimitive group is
graph-restrictive.



What is the correct setting?

Praeger Conjecture (2000): Every quasiprimitive group is
graph-restrictive.

Poto¢nik, Spiga, Verret (2012): If a transitive group is graph
restrictive then it is semiprimitive.



What is the correct setting?

Praeger Conjecture (2000): Every quasiprimitive group is
graph-restrictive.

Poto¢nik, Spiga, Verret (2012): If a transitive group is graph
restrictive then it is semiprimitive.

Dg is not semiprimitive as it contains a normal intransitive
subgroup isomorphic to C22 that is not semiregular.



What is the correct setting?

Praeger Conjecture (2000): Every quasiprimitive group is
graph-restrictive.

Poto¢nik, Spiga, Verret (2012): If a transitive group is graph
restrictive then it is semiprimitive.

Dg is not semiprimitive as it contains a normal intransitive
subgroup isomorphic to C22 that is not semiregular.

PSV conjecture: A transitive group is graph-restrictive if and only
if it is semiprimitive.



The edge-transitive case

I" edge-transitive but not vertex transitive. Edge {v, w}

Say (T, G) is locally [L1, Lo] if Gv") 2 L1 or L, for all vertices v.
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I" edge-transitive but not vertex transitive. Edge {v, w}
Say (T, G) is locally [L1, Lo] if Gv") 2 L1 or L, for all vertices v.

Goldschmidt-Sims Conjecture: If Ly and Ly are primitive then there
is a constant C such that if (I', G) is locally [L1, Ly] with finite
vertex stabilisers then |G\, | < C.



The edge-transitive case

I" edge-transitive but not vertex transitive. Edge {v, w}
Say (T, G) is locally [L1, Lo] if Gv") 2 L1 or L, for all vertices v.

Goldschmidt-Sims Conjecture: If Ly and Ly are primitive then there
is a constant C such that if (I', G) is locally [L1, Ly] with finite
vertex stabilisers then |G\, | < C.

Morgan, Spiga, Verret (2015): If either L or Lj is not
semiprimitive then there is no bound on |G,,,| for a locally [L;, L]
pair (I', G) with finite stabilisers.



Variation on Thompson-Wielandt

Given an edge {v,w}, G is the kernel of the action of Gy, on
Mv)ur(w).

Thompson-Wielandt Theorem: If (', G) is a locally primitive pair
with G, finite and {v, w} is an edge, then Gm is a p-group for
some prime p.



Variation on Thompson-Wielandt

Given an edge {v,w}, G is the kernel of the action of Gy, on
Mv)ur(w).

Thompson-Wielandt Theorem: If (', G) is a locally primitive pair
with G, finite and {v, w} is an edge, then Gm is a p-group for
some prime p.

e van Bon (2003): Still holds if (I', G) is locally quasiprimitive.
e Spiga (2012): Still holds if (I', G) is locally semiprimitive.



Plinths

G < Sym(Q), transitive.

Define a plinth of G to be a minimal transitive normal subgroup
of G.

e Every finite transitive group has a plinth.

e If a group has a transitive minimal normal subgroup it is a
plinth.

e Any regular normal subgroup is a plinth.



Properties of plinths of primitive groups

G primitive with minimal normal subgroup (plinth) N:

e N is characteristically simple and so in finite case N = Tk for
some finite simple group T.

Cs(N) is semiregular.

G has at most two plinths

If M is a second plinth then N = M and both N and M are
regular.



Properties of plinths of primitive groups

G primitive with minimal normal subgroup (plinth) N:

e N is characteristically simple and so in finite case N = Tk for
some finite simple group T.

e Cg(N) is semiregular.
e G has at most two plinths

e If M is a second plinth then N = M and both N and M are
regular.

O’'Nan—Scott Theorem for primitive groups, quasiprimitive groups.



Structure of plinths of semiprimitive groups

A semiprimitive group can have arbitrarily many plinths, they may
not be isomorphic, and need not be characteristically simple.
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Theorem (G-Morgan) Let K be a plinth of a semiprimitive group.

e If K is a nonregular plinth then K is perfect and unique.

e If L is a another plinth then every plinth is contained in KL
and every nonregular normal subgroup contains KL.



Structure of plinths of semiprimitive groups

A semiprimitive group can have arbitrarily many plinths, they may
not be isomorphic, and need not be characteristically simple.

Theorem (G-Morgan) Let K be a plinth of a semiprimitive group.

e If K is a nonregular plinth then K is perfect and unique.

e If L is a another plinth then every plinth is contained in KL
and every nonregular normal subgroup contains KL.

Bereczky, Maréti (2008): A finite soluble semiprimitive group has a
unique plinth, it is regular, and contains every intransitive normal
subgroup.



“Topological” plinths

I" an infinite, locally finite, nonbipartite graph.

Let G be a non-discrete, vertex-transitive, locally quasiprimitive
closed subgroup of Aut(I"). Note that G is semiprimitive.

Define G(°) =N, ¢L, for L open and of finite index.

Burger-Mozes (2000): Let N be a closed normal subgroup of G.
Then either:

e N is nondiscrete and contains the transitive group G("o), or

e N is discrete and acts freely with infinitely many orbits.

Moreover, G(*) is topologically perfect.



Multiple plinths

Theorem (G-Morgan) Let G be semiprimitive with distinct plinths
K and L. Then
e G = G/(KNL) acts primitively on the set of (K N L)-orbits

e there exists a characteristically simple group X such that
L/(KNL)=K/(KNL)=X.
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Multiple plinths

Theorem (G-Morgan) Let G be semiprimitive with distinct plinths
K and L. Then
e G = G/(KNL) acts primitively on the set of (K N L)-orbits

e there exists a characteristically simple group X such that
L/(KNL)=K/(KNL)=X.

Corollary Finite plinths have the same set of composition factors.

Theorem (G-Morgan) If G is a finite semiprimitive group with

multiple plinths then G is graph-restrictive. (GL[,:\l,] =1)



Nilpotent plinths

Let L be a finite semiprimitive group with a nilpotent plinth K.
Theorem (G-Morgan (2015)) Let (', G) be a locally L pair with G,
finite and valency coprime to 6. Then L is graph-restrictive.

(God = 1)

e Also give detailed information about what a counterexample
with valency not coprime to 6 must look like.

e Analogous to Weiss's results for primitive affine groups



