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Collections of sets

Regularity:
@ Constraint qualifications
@ Qualification conditions in subdifferential calculus

@ Qualification conditions in convergence analysis
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Regularity:
@ Constraint qualifications
@ Qualification conditions in subdifferential calculus

@ Qualification conditions in convergence analysis
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Collections of sets

Regularity:
@ Constraint qualifications
@ Qualification conditions in subdifferential calculus

@ Qualification conditions in convergence analysis

Absence of regularity <= Stationarity

Optimality = Extremality = (Approximate) Stationarity
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Outline

© Regularity

© Examples

© Metric characterizations
@ Dual characterizations

© Set-valued mappings
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Semiregularity

X — Banach space
Q:{Ql,,Qm}CX(m>1) )_(Gﬂgnzlﬂ,'
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Semiregularity

X — Banach space
Q:{Ql,,Qm}CX(m>1) )_(Gﬂgllﬂ,'

Definition

Q is semiregular at x if 3a,d > 0 such that

m

()@ —x)[B(x) #0  Vpe(0,0)

i=1

W € X (i=1,...,m) with max |x| <ap
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Semiregularity

X — Banach space
Q:{Ql,,Qm}CX(m>1) )_(Gﬂgllﬂ,'

Q is semiregular at x if 3a,d > 0 such that

m

()@ —x)[B(x) #0  Vpe(0,0)

i=1

W € X (i=1,...,m) with max |x| <ap

(regularity — Kruger, 2006; property (R)s — Kruger, 2009)
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Subregularity

X — Banach space
Q:{Ql,,Qm}CX(m>1) )_(Gﬂgnzlﬂ,'

Definition
Q is subregular at x if 3o, 6 > 0 such that

()(Qi+ (ap)B) (| Bs(x) S [+ pB  Vpe(0,0)
i=1

i=1
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Uniform regularity

X — Banach space
Q:{Ql,,Qm}CX(m>1) )_(Gﬂgllﬂ,'

Definition

Q is uniformly regular at x if 3o, > 0 such that

m

(@ —wi—x)[\(pB) #0  V¥p € (0,5)

i=1

Vw; € Q;N Bs(x) and x; € X (i =1,..., m) with max |Ixi|| < ap

v
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Uniform regularity

X — Banach space
Q:{Ql,,Qm}CX(m>1) )_(Gﬂlr-llﬂ,'

Definition
Q is uniformly regular at x if 3o, > 0 such that

m

(@ —wi—x)[\(pB) #0  V¥p € (0,5)

i=1

Vw; € Q;N Bs(x) and x; € X (i =1,..., m) with max |Ixi|| < ap

v

(regularity — Kruger, 2005; strong regularity — Kruger, 2006;
property (UR)s — Kruger, 2009)
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Uniform regularity

X — Banach space
Q:{Ql,,Qm}CX(m>1) )_(Gﬂlr-llﬂ,'

Definition
Q is uniformly regular at x if 3o, > 0 such that

m

(@ —wi—x)[\(pB) #0  V¥p € (0,5)

i=1

Vw; € Q;N Bs(x) and x; € X (i =1,..., m) with max |Ixi|| < ap

v

(regularity — Kruger, 2005; strong regularity — Kruger, 2006;
property (UR)s — Kruger, 2009)

Semiregularity <= Uniform regularity => Subregularity
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Examples: extremality (Kruger, Mordukhovich, 1980)
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Examples: extremality (Kruger, Mordukhovich, 1980)

No semiregularity
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Examples: extremality (Kruger, Mordukhovich, 1980)

No semiregularity
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Examples: stationarity

No semiregularity
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Examples: stationarity

No semiregularity No uniform regularity
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Examples: stationarity

No semiregularity No uniform regularity

Subregularity
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Examples: subregularity vs semiregularity

Q,

Semiregularity No subregularity
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Examples:

sub- /semi-regularity vs uniform regularity

Semiregularity Subregularity

No uniform regularity
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Examples: uniform regularity
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Metric characterizations

@ Qs semiregular at x <= 3,9 > 0 such that

1<i<m

vd (%[ —x) | < max |Ix| Vx €B(i=1,....m)
i=1
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Metric characterizations

@ Qs semiregular at x <= 3,9 > 0 such that

~vd ()_(, ﬂ(Q,- - x,-)) < max Ixi[]| Vx; € B (i=1,...,m)

i=1

@ Qs subregular at x <= 37, > 0 such that

vd (x,ﬂQ,-) < max d(x,Q;) Vx e Bs(x)
i=1

T 1<i<m
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Metric characterizations

@ Qs semiregular at x <= 3,9 > 0 such that

~vd ()_(, ﬂ(Q,- - x,-)) < max Ixi[]| Vx; € B (i=1,...,m)

i=1

@ Qs subregular at x <= 37, > 0 such that
vd (x, ﬂQ,-) < max. d(x,Q;) Vx e Bs(x)
i=1 ==

o (Bounded, local) linear regularity (Bauschke, Borwein, 1993)
e Linear estimate, linear coherence (Penot, 1998, 2013)

o Metric inequality (Ngai, Théra, 2001)

o (Dolecki, 1982; loffe, 1989; Jourani, 1995; ...)
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Metric characterizations

@ Q is uniformly regular at x <= 37,9 > 0 such that

1<i<m

~d <x,m(§2,- —x,-)) < max d(x + x;, Q)

for any x € Bs(x), x; € 0B (i =1,...,m)
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Dual characterizations: extremality
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Dual characterizations: extremality

Extremal principle — separabilty
(Kruger, Mordukhovich, 1980; Mordukhovich, Shao, 1996)
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Dual characterizations: Fréchet normals

xeQ
Fréchet normal cone to Q at x:

No(x) = {x* ex*| limsup EHUTX) 0}

u—rx, ueQ\{x} H u— XH
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Dual characterizations: uniform regularity

X — Asplund space, €, ...,8,, — closed

Theorem

Q is uniformly regular at x <= 3Ja,d > 0 such that

Vw; € Q; N Bs(x), x* € No,(w;) (i =1,..., m) satisfying

Yt Xl =1
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Dual characterizations: uniform regularity

X — Asplund space, €, ...,8,, — closed

Q is uniformly regular at x <= 3Ja,d > 0 such that

Vw; € Q; N Bs(x), x* € No,(w;) (i =1,..., m) satisfying

Yt Xl =1

(property (URD)s — Kruger, 2009)
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Dual characterizations: subregularity

X — Asplund space, €, ...,8,, — closed

Q is subregular at x if da, 6, & > 0 such that

m

*
D%

i=1

>«

Vx € B(;()_(), w; € QN B(;(X), X,-* € NQI.(CU,') + 0B* (I =1,..., m)
satisfying

@ w; # x for some j € {1,...,m}

o Y iLillxl=1

o x' =0 if||x —wj|| < maxicj<m ||X — wj|

o (x,x —wi) = [IX|(Ilx —will —¢) (i =1,...,m)

4
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Collections of sets vs set-valued mappings

X — Banach space
Q:{Ql,,Qm}CX(m>1) )_(Gﬂgnzlﬂ,'

F:X=2X™ F(x):=(Q —x)x...x(Qn—x) (loffe, 2000)
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Collections of sets vs set-valued mappings

X — Banach space
Q:{Ql,,Qm}CX(m>1) )_(Gﬂgnzlﬂ,'

F:X=2X™ F(x):=(Q —x)x...x(Qn—x) (loffe, 2000)

Proposition

Q is semiregular at x <= F is metrically semiregular at (x,0),
i.e., 3v,6 > 0 such that

vd (%, F(y)) <llyll Vy € B
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Collections of sets vs set-valued mappings

X — Banach space
Q:{Ql,,Qm}CX(m>1) )_(Gﬂgnzlﬂ,'

F:X=2X™ F(x):=(Q —x)x...x(Qn—x) (loffe, 2000)

Proposition

Q is subregular at x <= F is metrically subregular at (x,0),
i.e., 3v,6 > 0 such that

vd (x, F7(0)) < d(0, F(x)) Vx € Bs(x)
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Collections of sets vs set-valued mappings

X — Banach space
Q:{Ql,,Qm}CX(m>1) )_(Gﬂgnzlﬂ,'

F:X=2X™ F(x):=(Q —x)x...x(Qn—x) (loffe, 2000)

Proposition

Q is uniformly regular at x <= F is metrically regular at (x,0),
i.e., 3v,6 > 0 such that

vd (x, F'(y)) < d(y,F(x)) Vx € Bs(x), y € 0B™
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Collections of sets vs set-valued mappings

X, Y — Banach spaces
F:X=2Y,(xy)€gphF

Q]_:gphF, QQZXX{_)_/}EXX Y,QZ:{Q]_,QQ}
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Collections of sets vs set-valued mappings

X, Y — Banach spaces

F:X=Y,(%y)€cgphF

Q]_:gphF, QQZXX{)_/}EXX Y,QZ:{Q]_,Q2}

Q F is metrically semiregular at (X,¥)

at (x,7)

@ F is metrically subregular at (x,y)

(x.%)

© F is metrically regular at (X,y)

at (x,7)

< Q is semiregular
<= Q is subregular at

<= Q is uniformly regular

Alexander Kruger (FedUni Australia)
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Concluding remarks

@ Quantitative characterizations
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Concluding remarks

@ Quantitative characterizations

o Holder-like properties
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Concluding remarks

@ Quantitative characterizations
o Holder-like properties

@ Infinite collections
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