
THE FUNDAMENTAL QUADRANGLE

relating quantifications of various aspects of a random variable

risk R ←→ D deviation

optimization ↑ S ↑ estimation

regret V ←→ E error

Lecture 1: optimization, the role of R
Lecture 2: estimation, the roles of E , D, S
Lecture 3: tying both together along with V and duality
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Uncertainty in Optimization

Decisions (optimal?) must be taken before the facts are all in:

A bridge must be built to withstand floods, wind storms or
earthquakes

A portfolio must be purchased with incomplete knowledge of
how it will perform

A product’s design constraints must be viewed in terms of
“safety margins”

What are the consequences for optimization?
How may this affect the way problems are formulated?



The Fundamental Difficulty Caused by Uncertainty

A standard form of optimization problem without uncertainty:

minimize c0(x) over all x ∈ S satisfying ci (x) ≤ 0, i = 1, . . . ,m
for a set S ⊂ IRn and functions ci : S 7→ IR

Incorporation of future states ω ∈ Ω in the model:
the decision x must be taken before ω is known

Choosing x ∈ S no longer fixes numerical values ci (x), but only
fixes functions on Ω: c i (x) : ω 7→ ci (x , ω), i = 0, 1, . . . ,m



Example: Linear Programming Context

minimize c0(x) over all x ∈ S satisfying ci (x) ≤ 0, i = 1, . . . ,m

Linear programming problem:
ci (x) = ai1x1 + · · · ainxn − bi

minimize a01x1 + · · · a0nxn − b0 over x = (x1, . . . , xn) ∈ S
subject to ai1x1 + · · · ainxn − bi ≤ 0 for i = 1, . . . ,m,
where S =

{
x
∣∣ x1 ≥ 0, . . . , xn ≥ 0 & other conditions?

}
Effect of uncertainty:

ci (x , ω) = ai1(ω)x1 + · · · ain(ω)xn − bi (ω)

There is no single clear answer to the question of how then to
reconstitute the optimization objective and the constraints!



Stochastic Framework — Random Variables

Future state space Ω modeled with a probability structure:
(Ω,F ,P), P = some probability measure

Functions X : Ω→ IR are interpreted as random variables:
cumulative distribution function FX : (−∞,∞)→ [0, 1]

FX (z) = prob
{
ω
∣∣X (ω) ≤ z

}
expected value EX = mean value = µ(X )

variance σ2(X ) = E [ (X − µ(X ))2], standard deviation σ(X )

technical restriction imposed here: X ∈ L2 meaning E [X 2] <∞

The functions c i (x) : ω → ci (x , ω) are placed now in this picture:

choosing x ∈ S yields random variables c 0(x), c 1(x), . . . , c m(x)



Some Traditional Approaches

Recapturing optimization in the face of c i (x) : ω → ci (x , ω)

Approach 1: guessing the future

• identify ω̄ ∈ Ω as the “best estimate” of the future
• minimize over x ∈ S :

c0(x , ω̄) subject to ci (x , ω̄) ≤ 0, i = 1, . . . ,m
• pro/con: simple and attractive, but dangerous—no hedging

Approach 2: worst-case analysis, “robust” optimization

• focus on the worst that might come out of each c i (x):
• minimize over x ∈ S :

sup
ω∈Ω

c0(x , ω) subject to sup
ω∈Ω

ci (x , ω) ≤ 0, i = 1, . . . ,m

• pro/con: avoids probabilities, but expensive—maybe infeasible



Approach 3: relying on means/expected values

• focus on average behavior of the random variables c i (x)
• minimize over x ∈ S :

µ(c 0(x)) = Eωc0(x , ω) subject to
µ(c i (x)) = Eωci (x , ω) ≤ 0, i = 1, . . . ,m

• pro/con: common for objective, but foolish for constraints?

Approach 4: safety margins in units of standard deviation

• improve on expectations by bringing standard deviations into
consideration
• minimize over x ∈ S : for some choice of coefficients λi > 0

µ(c 0(x)) + λ0 σ(c 0(x)) subject to
µ(c i (x)) + λi σ(c i (x)) ≤ 0, i = 1, . . . ,m

• pro/con: looks attractive, but a serious flaw will emerge



Approach 5: specifying probabilities of compliance

• choose probability levels αi ∈ (0, 1) for i = 0, 1, . . . ,m
• find lowest z such that, for some x ∈ S , one has

prob
{
c 0(x) ≤ z

}
≥ α0,

prob
{
c i (x) ≤ 0

}
≥ αi for i = 1, . . . ,m

• pro/con: popular and appealing, but flawed and controversial
• no account is taken of the seriousness of violations
• technical issues about the behavior of these expressions

Example: with α0 = 0.5, the median of c 0(x) would be minimized

Traditional usage: problems of reliable design in engineering



Quantification of Risk

How can the “risk” be measured in a random variable X?
orientation: X (ω) stands for a “cost” or loss
negative costs correspond to gains/rewards

The idea to be pursued here:
capture the “risk” in X by a numerical surrogate R(X )

This leads to considering
functionals R : X → R(X ) on the space of random variables

R = “risk quantifier” = “risk measure”

A Systematic Approach to Uncertainty in Optimization

When numerical values ci (x) become random variables c i (x):

• choose risk quantifiers Ri for i = 0, 1, . . . ,m

• define the functions c̄i on IRn by c̄i (x) = Ri (c i (x)), and then

• minimize c̄0(x) over x ∈ S subject to c̄i (x) ≤ 0, i = 1, . . . ,m.



Basic Guidelines

What axioms for numerical surrogates R(X ) ∈ (−∞,∞]?

Definition of coherency

R is a coherent measure of risk in the basic sense if
(R1) R(C ) = C for all constants C
(R2) R((1− λ)X + λX ′) ≤ (1− λ)R(X ) + λR(X ′)

for λ ∈ (0, 1) (convexity)
(R3) R(X ) ≤ R(X ′) when X ≤ X ′ (monotonicity)
(R4) R(X ) ≤ c when Xk → X with R(Xk) ≤ c (closedness)
(R5) R(λX ) = λR(X ) for λ > 0 (positive homogeneity)

R coherent in the extended sense: axiom (R5) dropped

(from ideas of Artzner, Delbaen, Eber, Heath 1997/1999)

(R1)+(R2)⇒ R(X +C ) = R(X ) +C for all X and constants C
(R2)+(R5) ⇒ R(X + X ′) ≤ R(X ) +R(X ′) (subadditivity)



Associated Criteria for Risk Acceptability

For a “cost” random variable X , to what extent should outcomes
X (ω) > 0, in constrast to outcomes X (ω) ≤ 0, be tolerated?

preferences must be articulated!

Preference-based definition of acceptance

Given a choice of a risk measure R:
the risk in X is deemed acceptable when R(X ) ≤ 0

from (R1): R(X ) ≤ c ⇐⇒ R(X − c) ≤ 0
from (R3): R(X ) ≤ supX for all X ,

so X is always acceptable when supX ≤ 0



The Role of Coherency in Optimization

Reconstituted optimization problem:
minimize c̄0(x) over x ∈ S with c̄i (x) ≤ 0 for i = 1, . . . ,m

where c̄i (x) = Ri (c i (x)) for c i (x) : ω → ci (x , ω)

Assumption for now: each Ri is coherent in the basic sense

Key properties associated with coherency

(a) (preservation of convexity)
ci (x , ω) convex in x =⇒ c̄i (x) convex in x

(b) (preservation of certainty)
ci (x , ω) independent of ω =⇒ c̄i (x) has that same value

(c) (insensitivity to scaling)
optimization is unaffected by rescaling of the units of the ci ’s

(a) and (b) still hold for coherent measures in the extended sense



Coherency or Its Lack in Traditional Approaches

The case of Approach 1: guessing the future

Ri (X ) = X (ω̄) for a choice of ω̄ ∈ Ω with prob > 0
Ri is coherent—but open to criticism

c i (x) is deemed to be risk-acceptable if merely ci (x , ω̄) ≤ 0

The case of Approach 2: worst case analysis

Ri (X ) = supX
Ri is coherent—but very conservative

c i (x) is risk-acceptable only if ci (x , ω) ≤ 0 with prob = 1

The case of Approach 3: relying on expectations

Ri (X ) = µ(X ) = EX
Ri is coherent—but perhaps too “feeble”

c i (x) is risk-acceptable as long as ci (x , ω) ≤ 0 on average



The case of Approach 4: standard deviation units as safety margins

Ri (X ) = µ(X ) + λiσ(X ) for some λi > 0
Ri is not coherent: the monotonicity axiom (R3) fails!

=⇒ c i (x) could be deemed more costly than c i (x
′)

even though ci (x , ω) < ci (x
′, ω) with probability 1

c i (x) is risk-acceptable as long as the mean µ(c i (x)) lies
below 0 by at least λi times the amount σ(c i (x))

The case of Approach 5: specifying probabilities of compliance

Ri (X ) = qαi
(X ) for some αi ∈ (0, 1), where

qαi
(X ) = αi -quantile in the distribution of X

(to be explained)
Ri is not coherent: the convexity axiom (R2) fails!

=⇒ for portfolios, this could run counter to “diversification”
c i (x) is risk-acceptable as long as ci (x , ω) ≤ 0 with prob ≥ αi



Quantiles and Conditional Value-at-Risk

α-quantile for X : qα(X ) = min
{
z
∣∣FX (z) ≥ α

}
value-at-risk: VaRα(X ) same as qα(X )
conditional value-at-risk: CVaRα(X ) = α-tail expectation of X

= 1
1−α

∫ 1
α VaRβ(X )dβ ≥ VaRα(X )

THEOREM R(X ) = CVaRα(X ) is a coherent measure of risk!

CVaRα(X )↗ supX as α↗ 1, CVaRα(X )↘ EX as α↘ 0



CVaR Versus VaR in Modeling

prob
{
X ≤ 0

}
≤ α ⇐⇒ qα(X ) ≤ 0 ⇐⇒ VaRα(X ) ≤ 0

Approach 5 recast: specifying probabilities of compliance

• focus on value-at-risk for the random variables c i (x)
• minimize VaRα0(c 0(x)) over x ∈ S subject to

VaRαi (c i (x)) ≤ 0, i = 1, . . . ,m
• pro/con: seemingly natural, but “incoherent” in general

Approach 6: safeguarding with conditional value-at-risk

• conditional value-at-risk instead of value-at-risk for each c i (x)
• minimize CVaRα0(c 0(x)) over x ∈ S subject to

CVaRαi (c i (x)) ≤ 0, i = 1, . . . ,m
• pro/con: coherent! also more cautious than value-at-risk

extreme cases: “αi = 0” ∼ expectation, “αi = 1” ∼ supremum



Minimization Formula for VaR and CVaR

CVaRα(X ) = min
C∈IR

{
C + 1

1−αE
[

max{0,X − C}
]}

VaRα(X ) = lowest C in the interval giving the min

Application to CVaR optimization: convert a problem like

minimize CVaRα0(c 0(x)) over x ∈ S subject to
CVaRαi (c i (x)) ≤ 0, i = 1, . . . ,m

into a problem for x ∈ S and auxiliary variables C0,C1, . . . ,Cm:

minimize C0 + 1
1−α0

E
[

max{0, c 0(x)− C0}
]

while requiring

Ci + 1
1−αi

E
[

max{0, c i (x)− Ci}
]
≤ 0, i = 1, . . . ,m



Further Modeling Possibilities

Coherency-preserving combinations of risk measures

(a) If R1, . . . ,Rr are coherent and λ1 > 0, . . . , λr > 0 with
λ1 + · · ·+ λr = 1, then
R(X ) = λ1R1(X ) + · · ·+ λrRr (X ) is coherent

(b) If R1, . . . ,Rr are coherent, then

R(X ) = max
{
R1(X ), . . . ,Rr (X )

}
is coherent

Example: R(X ) = λ1CVaRα1(X ) + · · ·+ λrCVaRαr (X )

Approach 7: safeguarding with CVaR mixtures

The CVaR approach already considered can be extended by
replacing single CVaR expressions with weighted combinations



Continuous CVaR Mixtures and Risk Profiles

For any nonnegative weighting measure λ on (0, 1), a coherent
measure of risk (in the basic sense) is given by

R(X ) =
∫ 1

0 CVaRα(X ) dλ(α)

Spectral representation

Associate with λ the profile function ϕ(α) =
∫ α

0 [1− β]−1 dλ(β)
Then, as long as ϕ(1) <∞, the above R has the expression

R(X ) =
∫ 1

0 VaRβ(X )ϕ(β) dβ



Risk Measures From Subdividing the Future

“robust” optimization modeling revisited with Ω subdivided

λk > 0 for k = 1, . . . , r , λ1 + · · ·+ λr = 1

R(X ) = λ1 sup
ω∈Ω1

X (ω) · · ·+ λr sup
ω∈Ωr

X (ω) is coherent

Approach 8: distributed worst-case analysis

Extend the ordinary worst-case model
minimize sup

ω∈Ω
c0(x , ω) subject to sup

ω∈Ω
ci (x , ω) ≤ 0 , i = 1, . . . ,m

by distributing each supremum over subregions of Ω, as above
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[3] H. Föllmer, A. Schied (2002, 2004), Stochastic Finance.

[4] R.T. Rockafellar, S.P. Uryasev (2000), “ Optimization of
Conditional Value-at-Risk,” Journal of Risk 2, 21–42.

[5] R.T. Rockafellar, S.P. Uryasev,, “Conditional value-at-risk for
general loss distributions,” Journal of Banking and Finance 26,
1443–1471.

[1], [4], [5], downloadable:
www.math.washington.edu/∼rtr/mypage.html


