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Aversity in Risk

toward a fundamental connection with deviation measures

Recall axioms for coherent measures of risk

(R1) R(C ) = C for all constants C
(R2) R((1− λ)X + λX ′) ≤ (1− λ)R(X ) + λR(X ′)

for λ ∈ (0, 1) (convexity)
(R3) R(X ) ≤ R(X ′) when X ≤ X ′ (monotonicity)
(R4) R(X ) ≤ c when Xk → X with R(Xk) ≤ c (closedness)
(R5) R(λX ) = λR(X ) for λ > 0 (positive homogeneity)

basic sense:(R5) yes, extended sense:(R5) no

Another important category of risk measures

R is an averse measure of risk if it satisfies (R1), (R2), (R4) and

(R6) R(X ) > EX for all nonconstant X (aversity)

basic sense: (R5) yes, extended sense: (R5) no



Risk Measures Paired With Deviation Measures

• Many risk measures are both coherent and averse
R(X ) = CVaRα(X ), R(X ) = supX

• Some risk measures are coherent but not averse
R(X ) = EX , R(X ) = X (ω̄)

• Some risk measures are averse but not coherent
R(X ) = EX + λσ(X ) (to be seen shortly)

Coherency in deviation: require D(X ) ≤ supX − EX for all X

THEOREM: deviation versus risk

A one-to-one correspondence D ←→ R between deviation
measures D and averse risk measures R is furnished by

R(X ) = EX +D(X ), D(X ) = R(X − EX ),

where moreover R is coherent ⇐⇒ D(X ) is coherent

Note: coherency fails for deviation measures D(X ) = λσ(X )!
=⇒ risk measures R(X ) = µ(X ) + λσ(X ) aren’t coherent



Safety Margins Revised

Recall the traditional approach to µ(X ) being “safely” below 0:

µ(X ) + λσ(X ) ≤ 0 for some λ > 0 scaling the “safety”

but R(X ) = µ(X ) + λσ(X ) is not coherent

Can the coherency be restored if σ(X ) is replaced by some D(X )?

Yes! R(X ) = µ(X ) + λD(X ) is coherent when D is coherent

Safety margin modeling with coherency

In the safeguarding problem model

minimize c̄0(x) over x ∈ S with c̄i (x) ≤ 0 for i = 1, . . . ,m
where c̄i (x) = Ri (c i (x)) for c i (x) : ω → ci (x , ω)

coherency is obtained with
Ri (X ) = µ(X ) + λiDi (X ) for λi > 0 and Di coherent



Risk Envelope Characterization of Coherency

for coherent risk measures in the basic sense

A subset Q of L2 is a coherent risk envelope if it is nonempty,
closed and convex, and Q ∈ Q =⇒ Q ≥ 0, EQ = 1

Interpretation: Any such Q is the “density” relative to the
probability measure P on Ω of an alternative probability
measure P ′ on Ω : EP′ [X ] = E [XQ], Q = dP ′/dP

[specifying Q] ←→ [specifying a comparison set of measures P ′]

Theorem: basic dualization

∃ one-to-one correspondence R ←→ Q between coherent risk
measures R in the basic sense and coherent risk envelopes Q:

R(X ) = sup
Q∈Q

E [XQ], Q =
{
Q
∣∣E [XQ] ≤ R(X ) for all X

}
Conclusion: basic coherency = “customized” worst-case analysis



Some Risk Envelope Examples

recall that “1” = density Q of underlying P with respect to itself

R(X ) = EX ←→ Q = {1}

R(X ) = supX ←→ Q =
{

all Q ≥ 0, EQ = 1
}

R(X ) = CVaRα(X )←→ Q =
{
Q ≥ 0, EQ = 1, Q ≤ (1− α)−1

}
R(X ) =

∑r
k=1 λkR(X )←→ Q =

{∑r
k=1 λkQk

∣∣Qk ∈ Qk

}
Dual characterization of aversity:
• R ←→ Q as before, but Q ∈ Q =⇒/ Q ≥ 0
• must have 1 ∈ Q “strictly”



Entropic Characterization of Extended Coherency

what happens for coherent R without positive homogeneity?

Generalized entropy

Call a functional I on L2 an entropic distance when
(I1) I is convex and lower semicontinuous
(I2) I(Q) <∞ =⇒ Q ≥ 0, EQ = 1
(I3) inf I = 0 =⇒ cl(dom I) is a risk envelope Q

Theorem: extended dualization with conjugacy

∃ one-to-one correspondence R ←→ I between coherent risk
measures R in the extended sense and entropic distances I:

R(X ) = sup
Q

{
E [XQ]− I(Q)

}
, I(Q) = sup

X

{
E [XQ]−R(X )

}
Previous correspondence: I = “indicator” of Q
Aversity: (I3) demands I(1) = 0 with 1 ∈ Q “strictly”



A Particularly Interesting Example

A pairing with Bolzmann-Shannon entropy

R(X ) = log E [eX ] coherent and averse corresponds to

I(Q) = E [Q logQ] when Q ≥ 0, EQ = 1 but =∞ otherwise

How does this fit into the fundamental quadrangle?

• D(X ) = log E [ e(X−EX ) ] deviation measure paired with R
• E(X ) = E [eX − X − 1] error measure projecting to D
• S(X ) = log[eX ] = R(X ) ! the “statistic” associated with E

−→ some development to be pursued in regression?



Expected Utility

Utility in finance: having a big role in traditional theory
X = incoming money in future, random variable
u(x) = “utility” (in present terms ) of getting future amount x

u generally concave, nondecreasing
u(X (ω)) = utility of amount received in state ω ∈ Ω
E [u(X )] = expected utility, something to consider maximizing

Importance of a threshold: X = gain/loss against benchmark
incrementally, people hate losses more than they love gains!

Normalization of utility: x > 0 rel. gain, x < 0 rel. loss
u(0) = 0, u′(0) = 1 for differentiable u, but the latter is
equivalent without differentiability to u(x) ≤ x for all x

Resulting interpretation:
u(x) = the amount of present money deemed to be

acceptable in lieu of getting the future amount x



Translation to Minimization Framework

Utility replaced by regret: v(x) = −u(−x)
v(x) = the regret in contemplating a future loss x

= the amount of present money deemed necessary as
compensation for a relative loss x in the future

v is convex, nondecreasing, with v(0) = 0, v(x) ≥ x

Converted context:
X = relative loss in future, random variable
E [v(X )] = expected regret something to consider minimizing

Insurance interpretation:
E [v(X )] = the amount to charge (with respect to v)

for covering the uncertain future loss X

Observations: about V(X ) = E [v(X )] as a functional on L2

V is convex, nondecreasing, with V(0) = 0, V(X ) ≥ EX



Quantifications of Regret in General

expressions V(X ) for potential losses X , not just of form E [v(X )]

Coherency in regret

Call V a coherent measure of regret if
(V1) V(0) = 0
(V2) V((1− λ)X + λX ′) ≤ (1− λ)V(X ) + λV(X ′) (convexity)
(V3) V(X ) ≤ V(X ′) when X ≤ X ′ (monotonicity)
(V4) V(X ) ≤ c when Xk → X with V(Xk) ≤ c (closedness)
(V5) V(λX ) = λV(X ) for λ > 0 (positive homogeneity)

Aversity in regret

Call V an averse measure of regret if (V3) is relinquished, but

(V6) V(X ) > EX for all nonconstant X (aversity)

basic sense: (V5) yes, extended sense:(V5) no



A Trade-off That Identifies Risk

For V = some measure of regret consider the expression:

C + V(X − C ) for a future loss X and constants C

Interpretation: accept a certain loss C , thereby shifting the
threshold and only regetting a residual future loss X − C

Theorem: derivation of risk from regret

Given an averse regret measure V, define R and S by

R(X ) = min
C

{
C + V(X − C )

}
, S(X ) = argmin

C

{
C + V(X − C )

}
Then • R is an averse risk measure (coherent for V coherent)

• S(X ) is a nonempty closed interval (singleton?)

CVaR example: V(X ) = E [ 1
1−αX+]

R(X ) = min
C

{
C + 1

1−αE [X − C ]+
}

= CVaRα(X )

−→ the key minimization rule with argmin = VaRα(X ) = qα(X )



Completing the Fundamental Quadrangle of Risk

Error versus regret

The simple relations
E(X ) = V(X )− EX , V(X ) = EX + E(X ),

provide a one-to-one correspondence between error measures E
and averse regret measures V (with V (C ) <∞?), where

V is coherent ⇐⇒ E(−X ) ≤ EX when X ≥ 0

Moreover, the R from V is paired with the D from E , and in the
minimization formulas giving statistics S,

the S(X ) from V → R = the S(X ) from E → D

Expectation version:
V(X ) = E [v(X )] ←→ E(X ) = E [ε(X )]
ε(x) = v(x)− x , v(x) = x + ε(x)



Further Development From an Engineering Perspective

Uncertain “cost”: X = c(x1, . . . , xn;Y1, · · · ,Yr )
x1, . . . , xn =design variables, Y1, . . . ,Yr =stochastic parameters

Probability of failure: pf = prob
{
X > 0

}
• How to compute or at least estimate?
• How to cope with dependence on x1, . . . , xn in optimization?

Both pf and the threshold shift with changes in x1, . . . , xn



Buffered Failure — Enhanced Safety

Uncertain “cost”: X = c(x1, . . . , xn;Y1, · · · ,Yr )

Buffered probability of failure: Pf = prob
{
X > q

}
q determined so as to make E [X |X > q ] = 0

Suggestion: adjust failure modeling to Pf in place of pf
safer by integrating tail information, and
easier also to work with in optimization!



Quantiles and “Superquantiles”

quantile: qp(X ) = F−1X (p) = VaRp(X )
superquantile: Qp(X ) = E [X |X > qp(X ) ] = CVaRp(X )
terms in finance: value-at-risk and conditional value-at-risk



Diagram of Relationships

qp(X ) = F−1X (p), Qp(X ) = 1
1−p

∫ 1
p qs(X ) ds

qp(X ) can depend poorly on p, but Qp(X ) depends smoothly on p

failure modeling: pf determined by qp(X ) = 0, p = 1− pf
Pf determined by Qp(X ) = 0, p = 1− Pf



Comparison of Roles in Optimization

Key fact: R(X ) = Qp(X ) is coherent but R(X ) = qp(X ) is not!

Constraint pf ( c(x1, . . . , xn,Y1, . . . ,Ym) ) ≤ 1− p corresponds to
qp( c(x1, . . . , xn,Y1, . . . ,Ym) ) ≤ 0

Constraint Pf ( c(x1, . . . , xn,Y1, . . . ,Ym) ) ≤ 1− p corresponds to
Qp( c(x1, . . . , xn,Y1, . . . ,Ym) ) ≤ 0

Minimizing qp( c(x1, . . . , xn,Y1, . . . ,Ym) ) corresponds to
finding x1, . . . , xn with lowest C such that
c(x1, . . . , xn,Y1, . . . ,Ym) ≤ C with probability < 1− p

Minimizing Qp( c(x1, . . . , xn,Y1, . . . ,Ym) ) corresponds to
finding x1, . . . , xn with lowest C such that, even in the 1− p

worst fraction of cases, c(x1, . . . , xn,Y1, . . . ,Ym) ≤ C on average
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