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What is a Random Walk?

A path formed by a succession of n steps (of unit length) in
random directions.

Figure: A 26-step random walk in the plane
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What is a Random Walk?

A path formed by a succession of n steps (of unit length) in
random directions.

In 1905, Karl Pearson was interested in the distribution of the
distance from the origin for an n-step random walk.

We look at two functions:
e p,(z) the probability density function
e W, (s) the moment function



Probability Density Functions

For a continuous random variable X, the probability density
function (pdf) describes the relative likelyhood that X takes on a

given value.
The probability of X falling within a range of values is given by the

integral of the pdf over that range.

p(x)

_

Figure: Probability of X taking on a value in the interval from a to b



Moment Functions

Definition
The s-th moment function of a real-valued continuous function
p(z) is
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Definition
The s-th moment function of a real-valued continuous function
p(z) is
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W (s) :/ z*p(x)dx
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When p(zx) is a probability density function of a random variable
X, we have

W(s) = E[X?]

where EJ[-] is the expected value.



Moment Functions

Definition
The s-th moment function of a real-valued continuous function
p(z) is

o0

W (s) :/ z*p(x)dx

— 00
When p(zx) is a probability density function of a random variable
X, we have

W(s) = E[X?]

where EJ[-] is the expected value.

The moments describe the shape of the distribution independent of
translation.



The 2-Dimensional Case

In 2 dimensions we can represent a random walk in the following
way

n
Z i where x € [0,1]"
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The 2-Dimensional Case

In 2 dimensions we can represent a random walk in the following
way

n
Z i where x € [0,1]"
k=1

Definition
The moments of the distance from the origin after an n-step
random walk in 2-dimensions is given by

Whi(s) ::/ e2miTk
[0,1]" kzl

dx




Even Moments in 2 Dimensions

The even moments in 2 dimensions are all integral.

Wa(0;2k) = 1,2,6,20,70,252,924, 3432, 12870, ..

Ws5(0;2k) : 1,3,15,93,639,4653, 35169, 272835, 2157759, . ..

Wi(0;2k) : 1,4,28,256, 2716, 31504, 387136, 4951552, 65218204, . ..
Ws(0;2k) : 1,5,45, 545, 7885, 127905, 2241225, 41467725, 798562125, . ..
We(

0;2k) : 1,6,66,996, 18306, 384156, 8848236, 218040696, 5651108226, . .



Even Moments in 2 Dimensions

The even moments in 2 dimensions are all integral.

Wa(0;2k) : 1,2,6,20,70,252,924, 3432, 12870, . . .

W5(0;2k) : 1,3,15,93,639, 4653, 35169, 272835, 2157759, . ..

W4(0;2k) : 1,4,28,256,2716, 31504, 387136, 4951552, 65218204, . . .
W5(0;2k) : 1,5,45, 545, 7885, 127905, 2241225, 41467725, 798562125, . . .
We(0;2k) : 1,6,66,996, 18306, 384156, 8848236, 218040696, 5651108226, . . .

they are given by

W (o k 2 k! 2
n(2) = Z k(klkn> B Z k(kl!-/@!mkn!)

k1t = ki tkn =

which counts abelian squares (strings of length 2k over an n letter
alphabet where the first k letters are a permutation of the last k&
letters.)



The Probability Density Function

In 1905, Lord Rayleigh gave an asymptotic form for large n

2x < 2)
pn(x) ~ —exp| — | asn — oo
n n

a Rayleigh distribution with mean /7.



The Probability Density Function
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Figure: p,(x) forn =3,4,...,8



The Probability Density Function
In 1905, Lord Rayleigh gave an asymptotic form for large n
2 <z2>
pn(x) ~ —exp| — | asn — oo
n n
a Rayleigh distribution with mean /7.

For walks of 7 steps or more this is a very good approximation.



The Probability Density Function

In 1905, Lord Rayleigh gave an asymptotic form for large n

2z < 2)
pn(x) ~ —exp| — | asn — oo
n n
a Rayleigh distribution with mean /7.

For walks of 7 steps or more this is a very good approximation.

For this reason we will restrict ourselves to n-step walks where
2 < n < 6 (hence the name “short” walks).



Gamma Function

Definition
The Gamma function is an extension of the factorial function such
that for a positive integer n

I'(n)=(n-1)!

For complex numbers z with positive real part it can be defined by
(Euler’s definition)

F(z):/ t*le~tdt
0



Bessel Functions of the First Kind

Definition
The Besel function of the first kind J, () is a solution to the
differential equation

we can define them by their taylor series around x = 0

B o (—1)* \ 2k+v
Tul) = I;) KIT(k+v+1) (5)



Bessel Functions of the First Kind
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Figure: J,(x) for v =0,1,2,3,4



Towards Higher Dimensions

For walks in d > 2 dimensions, we define

d
v=—-—-1
2

notice that when d = 2 we have v = 0.



Towards Higher Dimensions

For walks in d > 2 dimensions, we define

d
v=—-—-1
2

notice that when d = 2 we have v = 0.

julw) = v! (i)yJu(x)

where J,(x) is the Bessel function of the first kind.

We also define



In Higher Dimensions

Definition
The probability density function of the distance to the origin in
d > 2 dimensions after n > 2 steps is

pn(v;x) / (tz)? 1T, (tx)j (t)dt for x >0

2111/! 0






In Higher Dimensions




In Higher Dimensions

Definition
The probability density function of the distance to the origin in
d > 2 dimensions after n > 2 steps is

pn(v;x) / (tx) 1T, (tx)i (t)dt for z >0
0

~ oyl



In Higher Dimensions

Definition
The probability density function of the distance to the origin in
d > 2 dimensions after n > 2 steps is

pn(v;x) = / (tx) 1T, (tx)i (t)dt for z >0
0

2vpl

Asymptotically, for z > 0, as v — o0

277 (2w 1\, w41,
patvia) ~ i (P e (-2

3
e ) T(v+5
a Chi distribution with mean ,/2311 F(( 2)) — \/n as v — oo.




In Higher Dimensions

Definition
The probability density function of the distance to the origin in
d > 2 dimensions after n > 2 steps is

pn(v;x) = / (tx) 1T, (tx)i (t)dt for z >0
0

2vpl

Asymptotically, for z > 0, as v — o0

277 (2w 1\, w41,
patvia) ~ i (P e (-2

e . on (v +§)
a Chi distribution with mean ,/21/11 T 2) — \/n as v — oo.
The proof follows from

—#2
ju(t) Nexp<4y+2> as v — o0




The Moment function

By definition the moment function is
o
Wi(v;s) = / x°pp(v; x)de
0

Theorem
Let n > 2 and d > 2. For any nonnegative integer k,

2sfk+1r(% Ty+ 1) 9 ok L 1 d
Ce) — —s— 2)dz




Combinatorial Intepretation of the Moments

Theorem

The even moments of an n-step random walk in d dimensions are

(k + v)lpn—1

k k+ nv

Wi (v; 2k) = -

Wi2k) = = 2 (kl,...7kn><k1+u7...,kn+u)
ky+-Akn=k

Proof.
Replace k£ by k£ + 1 and set s = 2k, we obtain

P(k+v) [ d( 1d\",
W"(V;2k):<yg)/0 —<—xdm> in(x)dx

kv (—ii) kjﬁ(@] g




Combinatorial Intepretation of the Moments

Proof.
Replace k£ by k£ + 1 and set s = 2k, we obtain

k
w2 = | EEE (22 jz<x>]

z=0



Moment Recursion

For positive integers ni,ns, half-integer v and nonnegative integer
k

. Mk (k + )l . . )
Wiy tns (5 2k) = j;) (]) Ry ETea y)!Wm(V’ 25) W, (5 2(k — 7))



Moment Recursion

For positive integers ni,ns, half-integer v and nonnegative integer
k

k

&y " o
Wi, gy (v; 2k) = ) (]) Ry ETea y)!Wm(V’ 25) W, (5 2(k — 7))

=0

In particular when ngy = 1 we have W,,, (v, s) = 1 we obtain the
recursive relation

k

& ko .
Walvi2k) =3 (a) GojrG o )

Jj=0



Moment Recursion

For positive integers ni,ns, half-integer v and nonnegative integer
k

k
k (k + v)Iw! _ .
Wiy 4n, (V5 2k) = . - - W, (v 20 W, (v; 2(k —
o209 = 3 () o W 020 W 520k~ )
In particular when ngy = 1 we have W,,, (v, s) = 1 we obtain the
recursive relation

k

& ko .
Walvi2k) =3 (a) GojrG o )

Jj=0

This gives a nice way of computing even moments of walks.



Even Moments in 2 and 4 dimensions

The even moments in 2 and 4 dimensions are all integral.

Wa(0;2k) = 1,2,6,20,70,252,924, 3432, 12870, ..

Ws5(0;2k) : 1,3,15,93,639,4653, 35169, 272835, 2157759, . ..

Wa(0;2k) : 1,4,28,256,2716, 31504, 387136, 4951552, 65218204, . . .
Ws5(0;2k) = 1,5,45,545,7885,127905, 2241225, 41467725, 798562125, . . .
We(

0;2k) : 1,6,66,996, 18306, 384156, 8848236, 218040696, 5651108226, . .

Wa(1;2k) : 1,2,5,14,42, 132,429, 1430, 4862, . ..

Ws(1;2k) : 1,3,12,57,303, 1743, 10629, 67791, 448023, . ..

Wi(1;2k) : 1,4,22,148,1144, 9784, 90346, 885868, 9115276, . .
Ws(1;2k) @ 1,5,35,305, 3105, 35505, 444225, 5970725, 85068365, . . .
We(1;2k) : 1,6,51,546,6906,99156, 1573011, 27045906, 496875786, . . .



Catalan Numbers

Definition
For integers n > 0 the Catalan numbers C,, are defined by
1 2
C, = < n> forn>0
n+1\n
n |01 234 5 6 7 8 9 10
Chn ‘ 1 1 2 5 14 42 132 429 1430 4862 16796



Catalan Numbers

Definition
For integers n > 0 the Catalan numbers C,, are defined by
1 2
C, = < n) forn>0
n+1\n
n |01 234 5 6 7 8 9 10
Chn ‘ 1 1 2 5 14 42 132 429 1430 4862 16796

The Catalan numbers come up in many combinatorial problems:
e triangulation of convex polygons with n + 2 sides

e lattice paths from (0,0) to (n,n) below the diagonal

e rooted binary trees with n leaves

e ectc.



Catalan Numbers

Wal(0; 2k) :
3(0;2k) :
(0;2k) :
(
(0;

EEEE

0;2k)
: 1,6,66,996, 18306, 384156, 8848236, 218040696, 5651108226, . .

1,2, 6,20, 70,252,924, 3432, 12870, . .
1,3,15,93, 639, 4653, 35169, 272835, 2157759, . ..

1,4, 28,256, 2716, 31504, 387136, 4951552, 65218204, . . .
1,5, 45, 545, 7885, 127905, 2241225, 41467725, 798562125, . ..

: 1,2,5,14,42, 132, 429, 1430, 4862, . . .
: 1,3,12, 57,303, 1743, 10629, 67791, 448023, . ..

© 1,4,22,148, 1144, 9784, 90346, 885868, 9115276, . .

: 1,5,35,305, 3105, 35505, 444225, 5970725, 85068365, . ..

. 1,6,51, 546, 6906, 99156, 1573011, 27045906, 496875786, . . .



Narayana Numbers

Definition
For integers 0 < k < n the Narayana numbers N(k, j) are

e =)

N0 1 2 3 4 5
0 |1

1 |1 1

2 |1 3 1

3 /11 6 6 1
4 |1 10 20 10 1
5 |1 15 50 50 15 1




Narayana Numbers

Definition
For integers 0 < k < n the Narayana numbers N(k, j) are

e =)

PV]0 1T 2 3 4 5 3,
0 |1 1
1 |1 1 2
2 |1 3 1 5
3 /11 6 6 1 14
4 |1 10 20 10 1 42
5 |1 15 50 50 15 1 132

the Catalan numbers!



Closed Form for Even Moments

Recall the recursion

k
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Closed Form for Even Moments

Recall the recursion

k
(k !
(v:2) Z( ) S )
J=

(k—j+v)(j+v)

Definition
For integers v and k (even moments in even dimensions) we define
the matrix A(v) by

[k (k+v)W!
Ap(v) = (;) (k =7+ +v)!

notice that in the case where v =1, A(1) is the Narayana triangle.



Closed Form for Even Moments

Recall the recursion

k
(k !
(v:2) Z( ) S )
J=

(k—j+v)(j+uv)

Definition
For integers v and k (even moments in even dimensions) we define
the matrix A(v) by

[k (k+v)W!
Ap(v) = (;) (k =7+ +v)!

notice that in the case where v =1, A(1) is the Narayana triangle.

The moments W, (v; 2k) are given by the sum of the entries in the
k-th row of A(v)"+1.



Narayana Numbers

S Ty

SEFEEF

1;2k) :
1;2k) :
1;2k) :
1;2k) :
1,2k)

000 - 1 1 0 0 0 1
100 2 31 0 0 4
310 .5 AP =1{12 9 10 . 22
6 6 1 14 57 72 18 1 148
1,2,5,14,42, 132,429, 1430, 4862, . .
1,3,12,57,303, 1743, 10629, 67791, 448023, . . .

1,4,22,148, 1144, 9784, 90346, 885868, 9115276, . .

1,5, 35,305, 3105, 35505, 444225, 5970725, 85068365, . . .
1,6,51,546,6906, 99156, 1573011, 27045906, 496875786, . . .



Even Moments of a Three Step Walk

Theorem
The nonnegative even moments for a 3-step walk in d dimensions is

-5 (000

J=0

Its Ordinary Generating Function is

-ty gz
( 1) ( x) 2F1<5’3

> . . 27x(1 — z)?
kZ:OW3(V72k)x - (QVV) 1+ 32 14+v

(14 3x)3

)—qu/x)

where ¢(z) is a polynomial such that ¢(1/z) is the principal part of
the hypergeometric term on the right.



