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What is a Random Walk?

A path formed by a succession of n steps (of unit length) in
random directions.

In 1905, Karl Pearson was interested in the distribution of the
distance from the origin for an n-step random walk.

We look at two functions:

• pn(x) the probability density function
• Wn(s) the moment function

Figure: A 26-step random walk in the plane
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Probability Density Functions

For a continuous random variable X, the probability density
function (pdf) describes the relative likelyhood that X takes on a
given value.
The probability of X falling within a range of values is given by the
integral of the pdf over that range.

Figure: Probability of X taking on a value in the interval from a to b



Moment Functions

Definition
The s-th moment function of a real-valued continuous function
p(x) is

W (s) =

∫ ∞
−∞

xsp(x)dx

When p(x) is a probability density function of a random variable
X, we have

W (s) = E[Xs]

where E[·] is the expected value.

The moments describe the shape of the distribution independent of
translation.
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The 2-Dimensional Case

In 2 dimensions we can represent a random walk in the following
way

n∑
k=1

e2πixk where x ∈ [0, 1]n

Definition
The moments of the distance from the origin after an n-step
random walk in 2-dimensions is given by

Wn(s) :=

∫
[0,1]n

∣∣∣∣∣
n∑
k=1

e2πixk

∣∣∣∣∣
s
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Even Moments in 2 Dimensions

The even moments in 2 dimensions are all integral.

W2(0; 2k) : 1, 2, 6, 20, 70, 252, 924, 3432, 12870, . . .

W3(0; 2k) : 1, 3, 15, 93, 639, 4653, 35169, 272835, 2157759, . . .

W4(0; 2k) : 1, 4, 28, 256, 2716, 31504, 387136, 4951552, 65218204, . . .

W5(0; 2k) : 1, 5, 45, 545, 7885, 127905, 2241225, 41467725, 798562125, . . .

W6(0; 2k) : 1, 6, 66, 996, 18306, 384156, 8848236, 218040696, 5651108226, . . .

they are given by

Wn(2k) =
∑

k1+···+kn=k

(
k

k1, . . . , kn

)2

=
∑

k1+···+kn=k

(
k!

k1! · k2! · · · kn!

)2

which counts abelian squares (strings of length 2k over an n letter
alphabet where the first k letters are a permutation of the last k
letters.)
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The Probability Density Function

In 1905, Lord Rayleigh gave an asymptotic form for large n

pn(x) ∼ 2x

n
exp

(
−x2

n

)
as n→∞

a Rayleigh distribution with mean
√

nπ
4 .



The Probability Density Function

Figure: pn(x) for n = 3, 4, . . . , 8



The Probability Density Function

In 1905, Lord Rayleigh gave an asymptotic form for large n

pn(x) ∼ 2x

n
exp

(
−x2

n

)
as n→∞

a Rayleigh distribution with mean
√

nπ
4 .

For walks of 7 steps or more this is a very good approximation.

For this reason we will restrict ourselves to n-step walks where
2 ≤ n ≤ 6 (hence the name “short” walks).
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Gamma Function

Definition
The Gamma function is an extension of the factorial function such
that for a positive integer n

Γ(n) = (n− 1)!

For complex numbers z with positive real part it can be defined by
(Euler’s definition)

Γ(z) =

∫ ∞
0

tz−1e−tdt



Bessel Functions of the First Kind

Definition
The Besel function of the first kind Jν(x) is a solution to the
differential equation

x2 d2y

dx2
+ x

dy

dx
+ (x2 − ν2)y = 0

we can define them by their taylor series around x = 0

Jν(x) =

∞∑
k=0

(−1)k

k! Γ(k + ν + 1)

(x
2

)2k+ν



Bessel Functions of the First Kind

Figure: Jν(x) for ν = 0, 1, 2, 3, 4



Towards Higher Dimensions

For walks in d ≥ 2 dimensions, we define

ν =
d

2
− 1

notice that when d = 2 we have ν = 0.

We also define

jν(x) = ν!

(
2

x

)ν
Jν(x)

where Jν(x) is the Bessel function of the first kind.
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In Higher Dimensions

Definition
The probability density function of the distance to the origin in
d ≥ 2 dimensions after n ≥ 2 steps is

pn(ν;x) =
1

2νν!

∫ ∞
0

(tx)ν+1Jv(tx)jnν (t)dt for x > 0



In Higher Dimensions

Figure: p3(ν, x) for ν = 0, 12 , 1, . . . ,
7
2
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Figure: p4(ν, x) for ν = 0, 12 , 1, . . . ,
7
2



In Higher Dimensions

Definition
The probability density function of the distance to the origin in
d ≥ 2 dimensions after n ≥ 2 steps is

pn(ν;x) =
1

2νν!

∫ ∞
0

(tx)ν+1Jv(tx)jnν (t)dt for x > 0

Asymptotically, for x > 0, as ν →∞

pn(ν;x) ∼ 2−ν

Γ(ν + 1)

(
2ν + 1

n

)ν+1

x2ν+1 exp

(
−2ν + 1

2n
x2

)

a Chi distribution with mean
√

2n
2ν+1

Γ(ν+
3
2 )

Γ(ν+1) →
√
n as ν →∞.

The proof follows from

jν(t) ∼ exp

(
−t2

4ν + 2

)
as ν →∞



In Higher Dimensions

Definition
The probability density function of the distance to the origin in
d ≥ 2 dimensions after n ≥ 2 steps is

pn(ν;x) =
1

2νν!

∫ ∞
0

(tx)ν+1Jv(tx)jnν (t)dt for x > 0

Asymptotically, for x > 0, as ν →∞

pn(ν;x) ∼ 2−ν

Γ(ν + 1)

(
2ν + 1

n

)ν+1

x2ν+1 exp

(
−2ν + 1

2n
x2

)

a Chi distribution with mean
√

2n
2ν+1

Γ(ν+
3
2 )

Γ(ν+1) →
√
n as ν →∞.

The proof follows from

jν(t) ∼ exp

(
−t2

4ν + 2

)
as ν →∞



In Higher Dimensions

Definition
The probability density function of the distance to the origin in
d ≥ 2 dimensions after n ≥ 2 steps is

pn(ν;x) =
1

2νν!

∫ ∞
0

(tx)ν+1Jv(tx)jnν (t)dt for x > 0

Asymptotically, for x > 0, as ν →∞

pn(ν;x) ∼ 2−ν

Γ(ν + 1)

(
2ν + 1

n

)ν+1

x2ν+1 exp

(
−2ν + 1

2n
x2

)

a Chi distribution with mean
√

2n
2ν+1

Γ(ν+
3
2 )

Γ(ν+1) →
√
n as ν →∞.

The proof follows from

jν(t) ∼ exp

(
−t2

4ν + 2

)
as ν →∞



The Moment function

By definition the moment function is

Wn(ν; s) =

∫ ∞
0

xspn(ν;x)dx

Theorem
Let n ≥ 2 and d ≥ 2. For any nonnegative integer k,

Wn(ν; s) =
2s−k+1Γ( s2 + ν + 1)

Γ(ν + 1)Γ(k − s
2)

∫ ∞
0

x2k−s−1

(
−1

x

d

dx

)k
jnν (x)dx



Combinatorial Intepretation of the Moments

Theorem
The even moments of an n-step random walk in d dimensions are

Wn(ν; 2k) =
(k + ν)!ν!n−1

(k + nν)!

∑
k1+···+kn=k

(
k

k1, . . . , kn

)(
k + nν

k1 + ν, . . . , kn + ν

)

Proof.
Replace k by k + 1 and set s = 2k, we obtain

Wn(ν; 2k) =
2k(k + ν)!

ν!

∫ ∞
0
− d

dx

(
−1

x

d

d
x

)k
jnν (x)dx

=

[
(k + ν)!

ν!

(
−2

x

d

dx

)k
jnν (x)

]
x=0



Combinatorial Intepretation of the Moments

Proof.
Replace k by k + 1 and set s = 2k, we obtain

Wn(ν; 2k) =

[
(k + ν)!

ν!

(
−2

x

d

dx

)k
jnν (x)

]
x=0

jν(x) = ν!
∑
m≥0

(−x2/4)m

m!(m+ ν)!



Moment Recursion

For positive integers n1, n2, half-integer ν and nonnegative integer
k

Wn1+n2(ν; 2k) =

k∑
j=0

(
k

j

)
(k + ν)!ν!

(k − j + ν)(j + ν)!
Wn1(ν; 2j)Wn2(ν; 2(k − j))

In particular when n2 = 1 we have Wn2(ν, s) = 1 we obtain the
recursive relation

Wn(ν; 2k) =

k∑
j=0

(
k

j

)
(k + ν)!ν!

(k − j + ν)(j + ν)!
Wn−1(ν; 2j)

This gives a nice way of computing even moments of walks.
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Even Moments in 2 and 4 dimensions

The even moments in 2 and 4 dimensions are all integral.

W2(0; 2k) : 1, 2, 6, 20, 70, 252, 924, 3432, 12870, . . .

W3(0; 2k) : 1, 3, 15, 93, 639, 4653, 35169, 272835, 2157759, . . .

W4(0; 2k) : 1, 4, 28, 256, 2716, 31504, 387136, 4951552, 65218204, . . .

W5(0; 2k) : 1, 5, 45, 545, 7885, 127905, 2241225, 41467725, 798562125, . . .

W6(0; 2k) : 1, 6, 66, 996, 18306, 384156, 8848236, 218040696, 5651108226, . . .

W2(1; 2k) : 1, 2, 5, 14, 42, 132, 429, 1430, 4862, . . .

W3(1; 2k) : 1, 3, 12, 57, 303, 1743, 10629, 67791, 448023, . . .

W4(1; 2k) : 1, 4, 22, 148, 1144, 9784, 90346, 885868, 9115276, . . .

W5(1; 2k) : 1, 5, 35, 305, 3105, 35505, 444225, 5970725, 85068365, . . .

W6(1; 2k) : 1, 6, 51, 546, 6906, 99156, 1573011, 27045906, 496875786, . . .



Catalan Numbers

Definition
For integers n > 0 the Catalan numbers Cn are defined by

Cn =
1

n+ 1

(
2n

n

)
for n ≥ 0

n 0 1 2 3 4 5 6 7 8 9 10

Cn 1 1 2 5 14 42 132 429 1430 4862 16796

The Catalan numbers come up in many combinatorial problems:

• triangulation of convex polygons with n+ 2 sides

• lattice paths from (0, 0) to (n, n) below the diagonal

• rooted binary trees with n leaves

• etc.
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Narayana Numbers

Definition
For integers 0 ≤ k ≤ n the Narayana numbers N(k, j) are

N(k, j) =
1

j + 1

(
k

j

)(
k + 1

j

)
k\j 0 1 2 3 4 5

0 1
1 1 1
2 1 3 1
3 1 6 6 1
4 1 10 20 10 1
5 1 15 50 50 15 1

∑
j

1
2
5
14
42
132

the Catalan numbers!
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Closed Form for Even Moments

Recall the recursion

Wn(ν; 2k) =

k∑
j=0

(
k

j

)
(k + ν)!ν!

(k − j + ν)(j + ν)!
Wn−1(ν; 2j)

Definition
For integers ν and k (even moments in even dimensions) we define
the matrix A(ν) by

Ak,j(ν) =

(
k

j

)
(k + ν)!ν!

(k − j + ν)!(j + ν)!

notice that in the case where ν = 1, A(1) is the Narayana triangle.

The moments Wn(ν; 2k) are given by the sum of the entries in the
k-th row of A(ν)n+1.
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Narayana Numbers

A(1) =


1 0 0 0 · · ·
1 1 0 0
1 3 1 0
1 6 6 1
...

. . .

 :

1
2
5
14
...

A(1)3 =


1 0 0 0 · · ·
3 1 0 0
12 9 1 0
57 72 18 1
...

. . .

 :

1
4
22
148

...

W2(1; 2k) : 1, 2, 5, 14, 42, 132, 429, 1430, 4862, . . .

W3(1; 2k) : 1, 3, 12, 57, 303, 1743, 10629, 67791, 448023, . . .

W4(1; 2k) : 1, 4, 22, 148, 1144, 9784, 90346, 885868, 9115276, . . .

W5(1; 2k) : 1, 5, 35, 305, 3105, 35505, 444225, 5970725, 85068365, . . .

W6(1; 2k) : 1, 6, 51, 546, 6906, 99156, 1573011, 27045906, 496875786, . . .



Even Moments of a Three Step Walk

Theorem
The nonnegative even moments for a 3-step walk in d dimensions is

W3(ν; 2k) =

k∑
j=0

(
k

j

)(
k + ν

j

)(
2j + 2ν

j

)(
j + ν

j

)−2

Its Ordinary Generating Function is

∞∑
k=0

W3(ν; 2k)xk =
(−1)ν(

2ν
ν

) (1− 1
x)2ν

1 + 3x
2F1

(1
3 ,

2
3

1+ν

∣∣∣∣27x(1− x)2

(1 + 3x)3

)
−q(1/x)

where q(x) is a polynomial such that q(1/x) is the principal part of
the hypergeometric term on the right.


