
The Theorem of Copeland and Erdős on Normal
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Review Of Normality

Definition

A number α is normal with respect to the base β, provided each of
the digits 0, 1, 2, . . . , β − 1 occurs with a limiting relative frequency
of 1/β, and each of the βk sequences of k digits occurs with the
relative frequency 1/βk .

Definition

The natural density of the subset A ⊂ N, denoted d(A), is defined
as

d(A) = lim
x→∞

N(x)

x

where N(x) := #{a : a ∈ A, a 6 x}.

Example

The natural density of the even numbers is 1/2.
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Borel’s Conjecture

Definition

A number α is normal with respect to the base β, provided each of
the digits 0, 1, 2, . . . , β − 1 occurs with a limiting relative frequency
of 1/β, and each of the βk sequences of k digits occurs with the
relative frequency 1/βk .

With this definition in mind, we begin with the unknown:

Conjecture (Borel, 1950)

All real irrational algebraic numbers are normal.
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Normal Numbers

Some of the most well-known normal numbers discovered so far
include:

1933 0.123456789 . . . Champernowne’s Number
1946 0.23571113 . . . Copeland-Erdős Number
1956 0.f (1)f (2)f (3) . . . Davenport-Erdős Numbers

1973
∞∑
k=1

1

bck ck
Stoneham Numbers
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Copeland-Erdős Theorem

Copeland-Erdős Theorem
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Copeland-Erdős Theorem

Theorem (Copeland-Erdős, 1946)

If a1, a2, a3, . . . is an increasing sequence of integers such that for
every θ < 1 the number of ai ’s up to N exceeds Nθ provided N is
sufficiently large, then the infinite decimal

0.a1a2a3 . . .

is normal with respect to the base β in which these integers are
expressed.
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An Important Lemma

Lemma (Copeland-Erdős, 1946)

The number of integers up to N (N sufficiently large) which are not
(ε, k) normal with respect to a given base β is less than Nδ where
δ = δ(ε, k , β) < 1.

To understand this lemma, we must first be familiar with (ε, k)
normality:

Definition

A number α (in the base β) is said to be (ε, k) normal if any
combination of k digits appears consecutively among the digits of α
with a relative frequency between β−k − ε and β−k + ε.
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Proof Of Lemma – (ε, 1) normality

Let x be such that βx−1 6 N < βx , where βx refers to a number
(base−β) consisting of x digits.

We introduce the notation βj = (β − 1)x−j
(x
j

)
, where βj counts the

number of numbers (up to N) which have a single digit, for instance
0, occurring a total of j times amongst their x digits.

Since a given base β has β digits, and since βj counts the
occurrences of only a single digit, there are at most

β

 ∑
j<x(1−ε)/β

βj +
∑

j>x(1+ε)/β

βj


numbers up to N which have less than x(1− ε)/β or more than
x(1 + ε)/β 0’s,1’s,. . . ,(β − 1)’s.
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Proof Of Lemma – (ε, 1) normality

In order to prove the lemma for (ε, 1) normality, we have to show
that

β

 ∑
j<x(1−ε)/β

βj +
∑

j>x(1+ε)/β

βj

 < Nδ.

We first require some intermediate inequalities.

We have from the properties of the binomial expansion:∑
j<x(1−ε)/β

βj < (x + 1)βr1 ,
∑

j>x(1+ε)/β

βj < (x + 1)βr2

where
r1 = b(1− ε)x/βc, r2 = b(1 + ε)x/βc
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Proof Of Lemma – (ε, 1) normality

By repeated application of the relation

βj+1/βj = (x − j)/(j + 1)(β − 1)

we obtain
βr1ρ

εx/2
1 < βx , βr2ρ

εx/2
2 < βx

where

ρ1 = (x − r1)/(r1 + 1)(β − 1), ρ2 = (x − r2)/(r2 + 1)(β − 1)

and where ρ1, ρ2 > 1 for x sufficiently large.

It follows that

βr1 <
(
ρ
−ε/2
1 β

)x
, βr2 <

(
ρ
−ε/2
2 β

)x
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Proof Of Lemma – (ε, 1) normality

Hence

β

 ∑
j<x(1−ε)/β

βj +
∑

j>x(1+ε)/β

βj

 < β(x + 1) [βr1 + βr2 ]

< β(x + 1)
[(
ρ
−ε/2
1 β

)x
+
(
ρ
−ε/2
2 β

)x]
< βδ(x−1) 6 Nδ

and the lemma is established for (ε, 1) normality.
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Proof Of Lemma – (ε, k) normality

Consider the digits b0, b1, . . . of a number m 6 N grouped as
follows:

b0, b1, . . . , bk−1; bk , . . . , b2k−1; b2k , . . . , b3k−1; . . .

Each of these groups represents a single digit of m when m is
expressed in the base βk . Hence, there are at most Nδ integers
m 6 N for which the frequency among these groups of a given
combination of k digits falls outside the interval from β−k − ε to
β−k + ε.

The same holds for

b1, b2, . . . , bk ; bk+1, . . . , b2k ; . . .

and so on. This gives our result.

Jordan Velich The Theorem of Copeland and Erdős on Normal Numbers
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Copeland-Erdős Theorem

Theorem (Copeland-Erdős, 1946)
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Proof Of Copeland-Erdős Theorem

Consider the numbers a1, a2, . . . of the increasing sequence up to
the largest ai ≤ N, where N = βn. By a counting argument, these
numbers altogether have at least n(1− ε) · (Nθ − N1−ε) digits.

Let fN be the relative frequency of the digit 0. It follows from the
lemma that the number of ai ’s for which the frequency of the digit
0 exceeds β−1 + ε is at most Nδ, and hence

fN < β−1 + ε+
nNδ

n(1− ε)(Nθ − N1−ε)

= β−1 + ε+
Nδ−θ

(1− ε)(1− N1−ε−θ)

Jordan Velich The Theorem of Copeland and Erdős on Normal Numbers
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Proof Of Copeland-Erdős Theorem

Since we are permitted to take θ greater than δ and greater than
1− ε, it follows that limN→∞ fN is at most β−1 + ε and hence at
most β−1.

A similar result holds for the digits 1, 2, . . . , β − 1 and hence each of
these digits must have a limiting relative frequency of exactly β−1.

In a similar manner, it can be shown that the limiting relative
frequency of any combination of k digits is β−k .
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Questions Of Strong Normality

Questions of Strong Normality
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Strong Normality

Definition

A number α is simply strongly normal to the base β, if for each
k ∈ {0, 1, . . . , β − 1}, we have

lim sup
n→∞

mk(n)− n/β√
2n log log n

=

√
β − 1

β
and

lim inf
n→∞

mk(n)− n/β√
2n log log n

= −

√
β − 1

β

where mk(n) := #{i : ai = k , i 6 n}.
A number is strongly normal to the base β if it is simply strongly
normal in each base βj , j = 1, 2, 3, . . . , and is absolutely strongly
normal if it is strongly normal to every base.
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Strong Normality

Definition

A number α is normal with respect to the base β, if for each
combination of k digits, a1a2 . . . ak , we have

lim
x→∞

N(x)

x
=

1

βk

where N(x) is the number of occurrences of a1a2 . . . ak in the first x
digits of α.

Some interesting results arising from these definitions are:

A number which is strongly normal to the base β is normal to
the base β.

Champernowne’s base-β number is not strongly normal to the
base β.
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Our Conjecture

Conjecture

The number α (= 0.a1a2a3 . . . ) formed from the concatenation of
the increasing sequence a1, a2, a3, . . . is not strongly normal,
provided that the sequence of integers is dense enough, that is,
N(x) > xθ for every θ < 1 and sufficiently large x.

Heuristic: This conjecture is put forward as a consequence of
Champernowne’s number failing to be strongly normal. We
believe that all the other concatenation numbers should also
fail this strong normality test, the reason being that these
sequences are just too dense – there are too few integers being
excluded. In this way, we see these concatenation numbers as
being basically the same as Champernowne’s number – too
structured – and thus we conjecture that these numbers should
fail to be strongly normal.
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The End

Thank you!
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