An Investigation Into Gram
Matrices Of Rectangular 1
Matrices

Joshua Hartigan
Supervisor: Judy-anne Osborn




Gram Matrices

1L 1 =1 a1

» Here’s a £ matrix R:(_1 1 1 1

Cn

» And here’s its’ Gram matrix G = (_3

» In general, the Gram matrix is

G= RR'




Why bother?

» Gram matrices relate to determinants and
high determinants are interesting to
combinatorialists and statisticians




Context

» A lot of work has been done on square =1
matrices, their Gram matrices and their
determinants

» We decided to investigate rectangular +1
matrices and were going to look at
determinants but got interested in Gram
matrices along the way for their own sake




The first thing we tried

» We started with random =1 matrices,
computed their Gram matrices and looked at

what we got
» We found Gram matrices like this:
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Things we noticed for Gram
matrices of k x n =1 matrices

» ‘n’s on the diagonal
» Symmetry

» All entries either even or odd, and from the
set{-n, -n+2,...,n}

» And we can prove them all, so it’s a Theorem




e.g. Proof of symmetry

» Take any k x n matrix, called R:

(al.l g s ﬂ1.1*1\
a1 4a22 a2 n
\@k1 Gk2 -+ Gra)

Our definition of Gram matrices is that G= RRT

So, to get the ijth entry of the Gram matrix, we
take the dot product of row i with row j, i.e:
G=ri-r

Similarly, for entry G;=r;-r; = r;-1r; = G

1ce, Gram matrices are always symmetric.




Next, we were more systematic

» We considered 2 x n =1 matrices for n=1..10
» And 3 X n case
» And 4 X n case
» And 5 X n case

» And then the computer went crazy




Computing the frequency

» With the previous theorem, we focused on the
entries on the right hand side of the main
diagonal

» As all of these entries came from the set
{-n, -n+2,..., n}, we could code these entries
in their respective base and add them up,
giving each matrix its own ID and allowing us
to find the frequency each matrix occurred




Encoding Grams example

3 1 -1
» Take the Gram matrix G:(_ll _33 _33)
This comes from a 3x3 =1 matrix, so the
possible entries off the main diagonal come
from the set{-3, -1, 1, 3}->{0,1,2,3} in base 4.
Doing the appropriate sum allows us to create
an ID for each distinct Gram:

1 3.. 5 —1 3
((§)+(§)) x 4% + ((T)-F(g)) X 4+((T)+

| o

)

=(2) x 42+ (1) x 440

= 36




Here’s some data
£): 6 )G T)
26 2) )5 %)
22 G3)Ga)(G )G )

Curiously, all possible Grams occurred
subject to our Theorem




More data

» Furthermore, they occurred with the following
frequencies:

()G )G )

2 2

£ 9:G2)6 )G %)

4 8 4

(£ 23):G3):0 )G )G F)

8 24 24 8



Here’s those frequencies again
2 2

16 64 96 64 16

- ...Anyone notice anything?



Here’s what we noticed

2 (1 1)
4 (1 2 1)
8 (1 3 3 1)
16 (1 4 6 4

Pascal’s Triangle in disguise!



We can explain the powers of 2!

Multiplying a column by -1 doesn’t change the
Gram for a 2 x n R-matrix!

» Proof:
Let’s begin with any 2 x n matrix Rz(

a1 Q12 -+ Q1n
a1 Q292 -*-+ AQ2n

Now, take any column and multiply by -1:
R = (—”1_: g e ﬂ-l.;.l)
—a2 1 g e az n —a1 1 _”ﬂ.l\

o s i e a2 a2
Finding the Gram: G:( g £ Sa ) ; ;
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We can explain the powers of 2!

, G= [—ff1.1)2+ﬂ-iq.g+""|'0-t12,ﬂ (—a11)(—a21) +a19029+ - + a1 nag
(_”‘_‘.1 )(_”1‘1 ) T022019 T+ T 09 nQ] p (_”'.].l ,}2 ¢ & 05‘2 e G%.n
2 2 4...4102
_ 11 +aj9+ T4y, 11,1091 + 12029+ ++ + a1 n02 p
a2,101,1 T 22012+ * T 2001 a-%_] + G-%‘g +: 4 a%m

Which is the same Gram that comes from a =1
matrix where the first column isn’t multiplied
by -1. There are 2" choices of sign change of
columns.




We can explain the powers of 2!

» As multiplying columns by -1 doesn’t change
the resulting Gram matrix, we can reduce the
number of R-matrices used to find all Grams
by making every entry in the first row +1.

» So we made our program more efficient by
applying this.




We can explain Pascal’s Triangle too!

Remember, first row all +1s now!

Then look at the number of ways to put -1 in
the second row:

2x1 case:

Binomial coefficients: (1) (1)
1




We can explain Pascal’s Triangle too!

» 2X2 case:

2X3 case:




Conclusion: Pascal’s Triangle




3Xn is more mysterious

Interestingly, not all possible Grams occur.

3x1 case: Out of 8 possible Grams, only 4 occur
each with a frequency of 2

3x2 case: Out of 27 possible Grams, only 10
occur with a frequency of: 4 84 8 88 84 8 4

3x3 case: Out of 64 possible Grams, only 20

occur with a frequency of:
8242424 8244824 244824242448 482424824248



Frequencies

» Once again, we can take out powers of 2 and
now end up with something which contains
Pascals triangle:

1

7~
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2 2 1 2 1)
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4 (1 2 1
3 6 3 3

(O) N )
w N =

8 (1 3 3 1

This can be explained in a similar way to that
of the 2xn cases, it just has an extra row of
possible £1s!




Explaining those frequencies

The first row is all +1s




Explaining those frequencies

Now we’ll arrange the second row
so all the +1s are on the left.




Explaining those frequencies

e e +
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In the third row, within each
“block”, arrange all +1s on the left.




Explaining those frequencies

2nd row: k minuses, means(;) possibilities
3rd row: i minuses in the left block (length n-k),

and j minuses in the right block means (” "") (’1)
possibilities.

l J




3xn frequency multi-set

() 7)CJouavn

e.g. when n=2:
1212222121




Frequencies multi-set summary




Frequencies multi-set summary

» 2XN: {()0 k<n
() ><>o<
() o)) )
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Frequencies multi-set summary

| - i, 7,k <n
; .
n—ki\ (ki\(n—Fki—ka\ (ko (k1 — k3 (k3 ; Vki }
ko k3 ks ks s =

This is nice, but gets intricate...
...s0 we decided to look at a simpler question




Frequencies aside, how many
Grams are there?

» For 3xn, remember we had (empirically)
n=1: 4 out of 8
n=2: 10 out of 27
n=3: 20 out of 64
n=4: 35 out of 729




Frequencies aside, how many
Grams are there?

» For 3xn, remember we had (empirically)
n=1: 4 out of 8
n=2: 10 out of 27
n=3: 20 out of 64
n=4: 35 out of 125




Gram counting formulas

2x1 case: 2=(?%) 3x1 case: 4=(3)
2x2 case: 3=(3) 3x2 case: 10=(3)
2x3 case: 4=(5) 3x3 case: 20=(3)

("T)

(")

Still empirical




Following diagonals on Pascal’s
Triangle

] ‘E,»Z)(n
1 1
! 5 1 3Xn
1 3 3 T“”
1 4 (§) 4 1

1 5 10 10 5 1
1 6 15 20 15 (§) 1

1 / 21 35 35 21 /
1 8 28 56 /70 56 28 8

1 9 36 84 126 126 84 36




Following diagonals on Pascal’s
Triangle

] [2xn
1 1
! 5 1 3Xn
1 3 3 1/
1 4 (§) 4 1

1 5 10 10 5 1
1 6 15 20 15 (§) 1

1 / 21 35 35 21 /
8 28 56 /70 56 28 8

9 36 84 126 126 84 36




Counting formula conjecture

We have:
» 2xn: #Grams =(”J{1)

n+3
» 3xn: #Grams =( ;r )




We thought we had a conjecture

for 4xn too: 11 1
Because... . , .
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 3
1 9 36 84 126 126 84 36 9

252 210 120 45

10



We thought we had a conjecture

for 4xn too: 1
1 1
B u t . om 1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1
1 9 36 84 126 126 84 36 9 1

1 10 45 120 210 252 210 120 45 10
1 11 55 165 330 462 462 >3< 165 55 11

12 66 220 495 792 924 }9{ 495 220 66

12



The actual sequence is

» 8, 36, 120, 329, 784

» Unfortunately, this does not occur in Sloan's
online Encyclopedia of Integer Sequences:

8, 36, 120, 329, 784 Search | Hiats
(Greetings from The On-Line Encyclopedia of Integer Sequences!)

Search: seq:8,36,120,329,784

Sorry, but the terms do not match anything in the table.

If your sequence is of general interest, please submit it using the form
provided and it will (probably) be added to the OEIS! Include a brief
description and if possible enough terms to fill 3 lines on the screen. We need
at least 4 terms.




Program limitations

» We are beginning to hit the limits of how far
we can investigate using our C-program. For
example, the 6x3 case is causing the
program to crash




So we still have
mysteries to investigate
further!

Thanks for your attention
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