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(1. Introduction to Part I}

Suppose Ci,...,Cpy are finitely many closed
convex subsets of a Hilbert space X with

The Convex Feasibility Problem is simply:

(CFP) Find a point in C.

The sets C; are referred to as the constraints
and the set C is the set of all solutions.

Prototype: the constraints C; are hyperplanes

{z :(a;, =) = b}
for some row vectors a; of a matrix A and real
components b; of a vector b. Then

z€C & Az =b.

(Could also impose nonnegativity of solutions
by adding the nonnegative orthant as a con-
straint.)

The CFP is very common in mathematical and
physical sciences:

Best Approximation Theory
Constraints: closed subspaces.
Applications: statistics (linear prediction the-
ory), complex analysis (Bergman kernels), par-
tial differential equations (Dirichlet problem).

Discrete Image Reconstruction
Constraints: convex polyhedral sets; X is Eu-
clidean.

Applications: medical imaging (computerized
tomography), electron microscropy.

Subgradient algorithms

Constraints: sublevel sets of convex functions
(approximated by supersets).

Applications: convex inequalities, minimization
of convex (nonsmooth) functions.




Typically:

e one cannot find a solution in C directly, but
e each constraint set C; is “simple” in the sense
that its (nearest point mapping) is
easy to compute.

Consequently, one tries to solve CFP algorith-
mically by generating a sequence of points that
is supposed to converge to a solution.

The (projection) algorithm analyzed in Part I
computes the next iterate from a current iter-
ate z, by

N

T,41 = Tn + anpn Z wi (P ptn — n).
=1

Here:

e P, is the projection onto some C;,, 2 C;;
e an € [0,2] is a relaxation parameter;

e pp (> 1) is an extrapolation parameter;

® w;, > 0 are weights: ;w;,, = 1.

This framework is broad enough to cover MANY
algorithms.

Important questions concerning sequences (zy)
generated by this algorithm are:

e when does (z,) converge weakly to z € C?
e when in norm?
e when linearly: ||z —z|| = O(8™) for § < 17

There are numerous apparently unrelated re-
sults for incarnations of the projection algo-
rithm.

Some of my favourite incarnations of the pro-
jection algorithm follow. For simplicity, each
C;n = C;. Denote the projection onto C;, C
by P;, P, respectively. zqg € X is the starting
point.

Cyclic projections. |

The sequence (z,) is obtained by projecting
cyclically onto the constraints:

(zg,P1zq, PyP1zg, ... , Py -+ Pizo,
P1PN-~~P1m0,...)

(Thatis: w;p, €{0,1}, an=1, pp=1.)

For N = 2 constraints, we obtain the
method of alternating projections:

(zo, Przo, PoPizg, PLPoPr2g, PyP1 PoPrzg, .. .)

von Neumann/Halperin (1933/1962)
If each C; is a closed subspace, then (zp) con-
verges in norm to Pzg.

Browder (1967)
If each C; is a closed subspace with Cll+ 4
C’ﬁ closed, then (z,) converges linearly to Pzg.

Kaczmarz (1937)
If each C; is a hyperplane and X is Euclidean,
then (zp) converges to Pzxg.

Gubin et al. (1967)
If Cyn r]fv:_ll intC; # 0, then (z,) converges
linearly to some point in C.

Bregman (1965)
(zn) converges weakly to some point in C.




Remotest-set projections. |

For a current iterate z,, find first the most

violated constraint, i.e., ¢ € {1,...,N} such
that ||lzn — Pznl|| = max; [|zn — ijn” and then
update

Tp41 = Pxp.

Agmon/Motzkin&Schoenberg (1954)
If each C; is a halfspace, then (z,) converges
to some point in C.

Bregman (1965)
(zn) converges weakly to some point in C.

Gubin et al. (1967)
If Cy N ﬂf\;_lintci # 0, then (z,) converges

linearly to some point in C.

Parallel projections. |

Cimmino (1938)

Suppose each C; is a hyperplane, X is finite-
dimensional, w;, = 1/N, an = 2, and pp = 1.
Then (zp) converges to some point in C.

Pierra (1984)
Suppose w;, = 1/N, an =a <1, and
Y winllzn — Pizn|? :
: v it zn € Nier, Cin:
pn = HZiwz‘,n(iBn - Pﬂn)|‘2 " i€ ur
1, otherwise.

If X is Euclidean or N;intC; # 0, then (zp)
converges in nhorm to some point in C.
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The aim of Part I is to analyze the projection
algorithm in detail, to bring out underlying re-
curring key concepts, and to improve, unify,
and review existing results.
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2. Projections
We want to be able to compute the

onto a closed convex nonempty set C which we
denote by P, or P.

Fact. Suppose y € X. Then:
(i) The (unique) point Py is characterized by

PyeC and (C- Py,y— Py)<0.
(ii) For every z € X,

|z — y|> = ||Px — Py|?
+1(I— P)z — (I - P)y|?
+ 2 (z — Pz, Px — Py)
>0
+ 2 (y — Py, Py — Px).
>0

In particular, P is (firmly) nonexpansive.
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Some explicit examples.

unit ball C = {z € X : ||z|| < 1}. Then Pgz =
z, if z € C; Poxz = z/||z||, otherwise.

nonnegative orthant ¢ = {z € X : z > 0}.
Then Poz = zt.

hyperplane C = {z € X : (a,z) = b}, where
a#0and be R. Then

Por =z —

halfspace C = {z € X : {(a,z) < b}, where
a7#0and beR. Then

((a,z) — o)t
Por =2 — —"F—F—"—
|a]|?
subspace C = span{ay,...,an}, Where a; are
linearly independent column vectors of a matrix
A. Then Poz = A(A*A) 1A%z
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[3. (bounded) (linear) regularity)

For simplicity, we define these notions first for
two closed convex sets Cq,C5 in X with C :=
CiNCy# 0.

We say that {Cq1,Co}is ...

[regular], if ¥ (z,) in X:

max{d(mna Cl)a d(:Cn, CQ)} —0 = d(mna C) — 0.

|boundedly regular], if V bounded (z) in X:
max{d(zn, C1),d(zn, C2)} — 0 =  d(wn,C) — 0.

linearly regular], if 3x > 0 such that
d(z,C) < kmax{d(z,Cq),d(z,C3)}, Vze X.

[boundedly linearly regular], if ¥ bounded S C
X, dkg > 0 such that

d(z,C) < kgmax{d(z,C1),d(z,C2)}, VzeS.
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The following implications are immediate from
the definitions:

linearly regular = boundedly linearly regular

I I

regular = boundedly regular.

If S is a convex subset of X, then the strong
relative interior of S, denoted sri S, is defined
by

xz €sri S < cone (S—z)=75pan (S —z).

The best result on regularities is:

Fact. If 0 € sri (C1 — Cy), then {C1,Cs} is
boundedly linearly regular.

Let's record some consequences and further
facts.
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Corollary. If ConintCy # 0, then {Cq1,C5} is
boundedly linearly regular.

Proof. ConNintCy # (0 = 0 € sri (C1 —Cy).

[

Fact. Suppose C; and C, are closed sub-
spaces. Then TFAE:

e 0 csri(Cy—C»).

e C1 + C5 is closed.

e Cf + C5 is closed.

e The "angle” between C; and Cy is positive.
e {C1,C5} is (boundedly) (linearly) regular.

(This is false for cones.)

Fact. If X is finite-dimensional, then {Cq,C5}
is boundedly regular.
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Regularities for finitely many sets Cq,...,Cy
with C :=; C; # 0 are defined analogously.

Some striking (and sharp) results are:
Fact. Suppose each C; is a closed subspace.
Then {Cq,...,Cy}is (boundedly) (linearly) reg-

ular if and only if C{- 4+ ...Cy is closed.

Fact. Suppose Cy N ﬂf\;_llint C; # 0. Then

{C41,...,Cn} is boundedly linearly regular.
Fact. (Hoffman; 1952) Suppose each C; is a
halfspace. Then {Cq,...,Cy} is linearly regu-
lar.

Fact. Suppose C4,...,Cys are finitely many
convex polyhedra, Cp;4q,...,Cn are finitely

many closed convex sets, and X is Euclidean.
If

M N
(N Cin () ric;#0,
i=1 j=M4+1

then {C4q,...,Cy} is boundedly linearly regular.
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[4. Fejér monotone sequences]

Definition. A sequence (z,) is ] Fejer monotonel

with respect to a closed convex nonempty set
Cin X, if

lzp41 — ¢l < lzn =€, Vn € N,c € C.

Punchline: our sequences are!

Facts. Suppose (z,) is Fejér monotone with
respect to C. Then:

(i) The sequence (Pgzp) converges in norm,
say c¢* :=limy, Pozy, € C.

(ii) (zpn) is bounded and (d(zp,C)) =
(|lzn — Poznl) is decreasing, hence convergent.
(iii) (zp) is weakly convergent to c¢* if and only
if all weak cluster points of (z,) lie in C.

(iv) (zn) converges in norm to c¢* if and only
if d(zp,C) — 0.

(v) If there exists § < 1 such that d(z,41,C) <
0d(zyn,C), Vn, then (z,) converges linearly to
c* with rate 6.
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(5. A prototypical result]

We now show how the key concepts (projec-
tions, regularities, Fejér monotonicity) work
together by proving a prototypical result on
the method of alternating projections:

| (zo, P1zo, PyPizg, PLPyPizg, PaPLPyPiag, . ..) |
Let (WLOG) z := =z, and y := Pz, be two
consecutive iterates so that : € {1,2} and z €
Cj for {j} = {1,2} \ {i}. Fix an arbitrary c €
C=CiNnC. Then |y—c| = [Pz — Pl <
||z — ¢||; hence

‘(wn) is Fejér monotone with respect to C.‘

Also, ||z — ¢||?> > ||Pix — ¢||? + ||z — P;z||%, which

yields d?(z,C) > d2(y,C) + d?(z,C;). Since z €

Cj, we obtain further max{d?(z, C;),d?(z, C;)} <
d?(z,C) — d?(y, C), which translates back to

max{d>(zn, C1), d*(zn, C2)}
< d%(zn,C) — d*(zpy1,C), Yn>1.
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Theorem. Suppose Cq,C5 are closed convex
subsets of X with C := C1 N Cy = (. Suppose
further (mn)nzo is Fejér monotone with respect
to C with

max{d?(zn, C1),d?(zn, C2)}
< d(zn,C) = d*(zp41,C),  Vn.

Let ¢* :=limy, Pozn. Then:

(i) (zp) converges weakly to c*.

(ii) If {C1,C5} is boundedly regular, then (zn)
converges in norm to c*.

(iii) If {Cq1,C5} is boundedly linearly regular,
then (z,) converges linearly to c*.

(iv) If {C1,C5} is linearly regular, then (zn)
converges linearly to ¢* with a rate independent
of the starting point.

Remark. If (zp) is a sequence of alternat-
ing projections, then the Theorem is applicable
(see previous page).
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Proof. The sequence (zp) is bounded and
so is S := {zn : n > 0}. Also, the sequence
(d(zn,C)) is convergent; hence

d?(zn, C) — d*(z,41,C) — 0, which yields

(%) max{d(zn, C1), d(zn,C2)} — 0.

(i): (x) implies that all weak cluster points of
(zn) lie in C. Apply Fejér Facts (iii).

(ii): Bounded regularity and (x) yield

d(zn,C) — 0, which is equivalent to z, — c*,
by Fejér Facts (iv).

(iii): There exists kg > 0 such that d(z,,C) <
kg Mmax{d(zn, C1),d(zn,C>)}, Vn. Hence
d?(zn, C) < k2(d?(zn,C) — d?*(241,C)), Vn,
which implies that (z,) converges linearly to c*
with rate /1 — 1/x% (Fejér Facts (v)).

(iv): Analogous to (iii) with the difference

that we can pick kg independent of S. =

Remark. If C is an affine subspace, then c¢* =
Poxg and we obtain best approximation re-
sults.
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(6. Conclusion of Part I

We have improved, unified, and reviewed many
existing results on projection algorithms by us-
ing the following key modules:

. and their properties;

. ‘(bounded) (linear) regularityl;

o |Fejér monotone sequences|.

The tools employed are from the beautiful and
powerful area of Convex Analysis.
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(7. Introduction to Part II)

First motivation. Suppose A is an n x n ma-
trix that is |positive semi-definite], i.e., z'Az =
(z, Az) > 0, Yz € R™. Then the transpose of A
is also positive semi-definite.

Question: More generally, is this true for op-
erators defined on Banach spaces??

Second motivation. Recently, several no-
tions of monotonicity have been coined that:
e imply maximal monotonicity;

e are automatic in reflexive spaces;

e hold for subdifferentials of convex functions.

Question: What about continuous linear pos-
itive semi-definite operators??
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Throughout: X is some real Banach space
with dual space X*. If z* €¢ X* and z € X,
then (z* z) or (z,z*) is z* evaluated at =z.

Definition. A set-valued map 7 from X to X*
is a [monotone operator|, if

(Tz —Ty,x —y) >0, Vz,yeX.

T is [maximal monotonel, if T is monotone and
the graph of T is maximal in X x X* with re-
spect to set-inclusion.

Example. (Rockafellar) The subdifferential
map 0f is maximal monotone, for every convex
lower semi-continuous proper function f on X.

Example. Every continuous linear positive semi-
definite operator on X is maximal monotone.
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The zoo. (Gossez, Simons, Fitzpatrick&Phelps)
Suppose T is maximal monotone on X. Define
(set-valued) extensions of T" whose graphs re-
side in X™** x X* as follows:

x* € Tyz**|, if 3 bounded net (zq,zk) € graph(T)

*I

with z4 W7 2% and T — T
z* € Toz™™ |, if infye)((Ty — ¥y — 3:**) = 0.
xz* € Tx**|, if infyex(Ty —z*,y — z**) > 0.

Then T is:

or “dense”, if Ty =T.

E

or “range-dense”, if range Ty = rangeT.

~
ZIl X
=1 ke

N

or “nonnegative infimum”, if Tp = T.
(LMM)] or “locally maximal monotone”, if
vV weak* closed convex bounded subset C of
X* with rangeT NnintC # 0, and V zg € X,
zh € (int C)\Tzg, 3 (2,2%) € graph(T)N(X xC)
with (z* — z{,z — 2g) < 0.
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Facts. (Gossez and Simons)

e In general: (D) = (RD) = (NI).

e (D) and (LMM) hold in reflexive spaces.
e Subdifferentials are (D) and (LMM).

Question: What is (D), (RD), (NI), (LMM)

for continuous linear monotone (a.k.a. positive
semi-definite) operators??
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The aim of Part I is to study the various mono-
tonicities for continuous linear positive semi-
definite operators.
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7. The tools

Tool. (Decomposition/Quadratic Function)
Suppose T'is a continuous linear monotone op-
erator on X. Then T can be written uniquely
as the sum of two continuous linear opera-
tors, T = P + S, where P is symmetric (i.e.
P*|x = P), and S is skew (i.e. S*|x = —5). In
fact:
THTIX g 5= T=Tx

2 2
Let g(z) := 3(z,Tz), Vz € X. Then

P =

9q(z) = {Vq(z)} = Pz, Vz € X;

hence P is (as the subdifferential of a contin-
uous convex function) extremely nice; for in-
stance, P is (D). Although S is far away from
being a subdifferential, it has the good prop-
erty that (Sz,z) =0, Vz € X.
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Key Tool. (Fenchel's Duality Theorem)
Suppose A is a continuous linear operator from
X to some Banach space Y. Suppose further f
is a convex lower semi-continuous proper func-
tion on X as is g on Y. Define

p:= Inf {f(z) +g(Az)}
and
di=— Inf {/"(-A"Y)+" GO}

Then p > d. If A(dom f)nintdomg* 0 and p
is finite, then p =d and d is attained.

Reminder: The Fenchel conjugate f* of f is
defined by

£ (z*) ;= sup(z*,z) — f(z), Vz* e X"
zeX
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(8. The main results)

Theorem. Suppose T is a continuous linear
monotone operator on X with skew part S.
Then TFAE:

(i) T is (D).

(ii) T is (RD).

(iii) T is (NI).

(iv) T is (LMM).
(v) T* is monotone.

(vi) S is (D).

(vii) S is (RD).
(viii) S is (NI).

(ix) S is (LMM).
(x) S* is monotone.

Remark. “(v)=-(i)" gives an affirmative an-
swers to an old question by Gossez.
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Theorem. Suppose T is a continuous linear
monotone operator on X with skew part S.
Then TFAE:

(i) T and T*|x are (D).
(if) T and T*|x are (NI).
(iii) T and T*|x are (LMM).
(iv) T* and (T*|x)* are monotone.
(v) T is weakly compact.

(vi) S and —S are (D).
(vii) S and —S are (NI).
(viii) S and —S are (LMM).
(ix) S* and —S* are monotone.
(x) S* is skew.
(xi) S is weakly compact.

Remark. We can interpret monotonicity of T*
as “one half” of weak compactness of T
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[9. “Weird" examples and (cms) spaces]

If T is a continuous linear monotone operator
on X with skew part S, then T will satisfy one
of the following alternatives:

“good”: S* and —S* are both monotone.
“s0-s0": only one of {S* —S*} is monotone.
“bad": neither S* nor —S* is monotone.

Question: Do these cases all happen?

Gossez’s Example. Let G from {; t0 foo = {3
be given by the infinite matrix:

o 1 1 1

-1 0 1 1
-1 -1 0 1
0

-1 -1 -1
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Then G is "s0-s0™:

G is skew |,

G* is not monotone|, but
—G* is monotone|.

Note that

(Gz)p ==Y ap+ > zp, Vz €41 Vn.
k<n k>n

This suggests a ‘“continuous” version.

Fitzpatrick&Phelps’s Example. Define F
from L1[0,1] to L[0,1] = Lj[0, 1] by

t 1
(Fz)(t) = 7/ x(s)ds-l—/ 2(s)ds, Yz € L1[0, 1] V4.
JO Jt
Then F is “bad”:

F is skew|,

F* is not monotone\, and
—F* is not monotone|.

Remark. 1 re-derived these examples system-
atically and with less pain.
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Definition. The Banach space X is

or “a conjugate monotone space’”,

if the conjugate of every continuous linear mono-
tone operator on X is again monotone.

The Theorems yield: X is (cms) if and only if
every continuous linear monotone operator on
X is “good” (or weakly compact).

Some (cms) Banach spaces:
reflexive spaces; in particular, £, and Lp[0,1]
for 1 < p < oo, and Hilbert spaces.

Some Banach spaces that are not (cms):
£1, L1[0, 1], and their biduals; every space that
contains a complemented copy of £;. (Lift the
“so-so” and “bad” examples!)

(cms) Banach lattices:
are precisely those that do not contain a com-
plemented copy of ¢;. (Uses deeper Banach
Space Theory.) In particular: ¢q, ¢, £00, Loo[0, 1],
and C[0,1] are (cms).
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We now know that the “monotonicities” (D),
(RD), (NI), and (LMM) all coincide

e for subdifferentials;

e in reflexive spaces;

e for continuous linear monotone operators.

Question: Can they actually differ??

Still open, next best candidates for counter-
examples are regularizations, i.e., maps of the
form

T+ \J,

where T is continuous linear monotone on X,
A>0, and J:= 83| - |2 is the duality map.

Theorem. TFAE in cg, ¢, #1, %s0, L1]0,1],
Lx[0, 1], and C[0, 1]:
e T is (D).
e T+ A\J is (RD), VA > 0.
o T+ AJ is (LMM), VYA > 0.
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(11. Conclusion of Part II)

We have shown that the various monotonici-
ties all coincide for continuous linear monotone
operators although they do not hold automat-
ically.

The study depended on results from Func-
tional Analysis, Convex Analysis, and Banach
Space Theory, but most importantly on

e |[Fenchel’s Duality Theorem],

which continues to amaze me by its wide range
of applications.

The End
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