
Automated Theorem Proving

Jeremy Avigad

Department of Philosophy and
Department of Mathematical Sciences

Carnegie Mellon University

May 2015

Sequence of lectures

1. Formal methods in mathematics

2. Automated theorem proving

3. Interactive theorem proving

4. Formal methods in analysis

Automated reasoning

Ideal: given an assertion, ϕ, either

• provide a proof that ϕ is true (or valid), or

• give a counterexample

Dually: given some constraints, ϕ, either

• provide a solution, or

• prove that there aren’t any.

Partial solutions:

• search for proofs

• search for solutions

Automated reasoning

One can distinguish between:

• Domain-general methods and domain-specific methods

• Decision procedures and search procedures

• “Principled” methods and heuristics

Automated reasoning

Domain-general methods:

• Propositional theorem proving

• First-order theorem proving

• Equational reasoning

• Higher-order theorem proving

• Nelson-Oppen “combination” methods

Domain-specific methods:

• Linear arithmetic (integer, real, or mixed)

• Nonlinear real arithmetic (real closed fields, transcendental
functions)

• Algebraic methods (such as Gröbner bases)

References

An excellent starting point:

• Harrison, John, Handbook of Practical Logic and Automated
Reasoning, Cambridge University Press, 2009.

An authoritative reference:

• J. Allen Robinson and Andrei Voronkov, Handbook of
Automated Reasoning, MIT Press and North Holland, 2001.

General message: automated methods do especially well on large,
homogeneous problems, but often fail to capture even the most
straightforward mathematical inferences.

Propositional logic

In this talk, I will focus on classical logic.

Start with variables p, q, r , (Semantics: each can be either
“true” or “false”.)

Build compound formulas with ∧, ∨, ¬, →, for example

p ∧ q ∧ ¬r → ¬(¬p ∨ s) ∨ (¬s ∧ q).

A formula ϕ is

• satisfiable if there is some assignment of truth values that
makes is true,

• valid if every truth assignment makes it true.

Propositional logic

Note: ϕ is valid iff ¬ϕ is unsatisfiable.

Challenge: given ϕ, prove ϕ, for find a falsifying assignment.

Dually: given ϕ, find a satisfying assignment, or establish that
there is none.

Propositional logic

A variable p is called an atomic formula, p and ¬p are literals

Normal forms:

• Negation normal form (NNF): built up from literals using only
∧ and ∨. Example:

¬p ∨ ¬q ∨ r ∨ (p ∧ ¬s) ∨ (¬s ∧ q).

• Disjunctive normal form (DNF):
∨
ϕi , where each ϕi is a

conjunction of literals.

• Conjunctive normal form (CNF):
∧
ϕi , where each ϕi is a

disjunction of literals.

Putting a formula in NNF is cheap, but putting a formula in DNF
or CNF can yield exponential increase in length.

Propositional logic

Tseitin’s trick (1968): given ϕ, one can find an equisatisfiable
DNF ϕ′ efficiently (length O(n)).

Dually, there is a short CNF ϕ′′ that is valid iff ϕ is.

Idea: introduce new variables to define subformulas and avoid
blowup.

Rephrased challenge:

• Decide whether a formula in DNF is satisfiable.

• Decide whether a set of clauses (disjunctions of literals) is
satisfiable.

• Decide whether a formula in CNF is valid.

Propositional logic

I will describe three approaches

• tableau (cut-free) proofs

• resolution

• DPLL (Davis-Putnam-Logemann-Loveland)

Tableau proofs

Consider a 1-sided sequent calculus:

• Use formulas in negation normal form (∧, ∨, p, p̄).

• Define ¬ϕ by switching ∧ and ∨, p and p̄, e.g.

¬(p ∧ (q̄ ∨ r)) 7→ p̄ ∨ (q ∧ r̄).

• A sequent is a finite set {ϕ1, . . . , ϕn}, read disjunctively.

Rules:

Γ, p, p̄
Γ, ϕ Γ, ψ

Γ, ϕ ∧ ψ
Γ, ϕ, ψ

Γ, ϕ ∨ ψ

Tableau proofs

Notice that each rule is “bidirectional”: the conclusion is valid iff
the hypothesis is.

Reading upwards, the ∧ and ∨ rules remove one connective.

A sequent with only literals (variables and negated variables) is
valid if and only if it is an axiom.

Applying the rules backwards then either yields a proof, or a
counterexample.

Resolution theorem proving

Using Tseitin’s trick, we can reduce the goal of proving ϕ to
refuting a set of clauses.

Let Γ, ∆ stand for clauses, e.g. {p, q, r̄ , s̄, t}.

Use the resolution rule:

Γ ∨ ϕ ∆ ∨ ¬ϕ
Γ ∨∆

Keep deriving new clauses in this way, until we obtain the empty
clause {}, or cannot make any more progress.

DPLL

p

q q̄

p̄

q q̄

• Try to decide satisfiability of a set of clauses.

• Keep track of which clauses are not yet satisfied.

• Use unit propagation.

• Backtrack when a clause is unsatisfiable.

SAT solvers

Most modern SAT solvers use variants of DPLL.

Innovations:

• non-chronological backtracking

• conflict-driven clause learning

• efficient data structures and implementation tricks

Modern SAT solvers can handle tens of thousands of variables and
millions of clauses.

First-order theorem proving

First-order logic adds relations r(x , y , z), functions f (x , y), g(x),
and quantifiers ∃x ϕ(x),∀x ϕ(x).

Formulas can still be put in negation normal form.

For tableau search, add the following rule for the universal
quantifier:

Some rules for working backwards:

Γ, ϕ(a)

Γ, ∀x ϕ(x)

First-order theorem proving

What about the existential quantifier?

Γ, ∃x ϕ(x), ϕ(?t(a, b, c , . . .))

Γ, ∃x ϕ(x)

Notes:

• ?t can be instantiated to any term involving the other
parameters.

• It’s best to delay the choice.

• More than one term may be needed.

• All the background knowledge is lumped into Γ.

Unification

Suppose you know that for every x and y , A(x , f (x , y))→ B(x , y).

Suppose you also know that for every w and z , A(g(w), z).

Then you can conclude B(g(w), y) by solving x = g(w) and
z = f (g(w), y).

Theorem (Robinson)

There is an algorithm that determines whether a set of pairs
{(s1, t1), . . . , (sn, tn)} of first-order terms has a unifier, and, if it
does, finds a most general unifier.

Skolemization

If ϕ is the formula ∀x ∃y ∀z ∃w θ(x , y , z ,w , u), the Skolem
normal form ϕS is the formula

∀x , z θ(x , g(x , u), z , f (x , g(x , u), z , u), u)

Dually, the Herbrand normal form ψH of ψ replaces the universal
quantifiers.

• ` ϕS → ϕ

• If ϕS ` α then ϕ ` α.

• ` ψ → ψH

• If ∆ ` ψH then ∆ ` ψ.

Putting it all together: T ` ϕ if and only if TH ` ϕS .

Resolution

Herbrand’s theorem (1930): TH ` ϕS if and only if there is a
propositional proof of a disjunction of instances of ϕS from
instances of TH .

Resolution tries to prove ⊥ from TH ∪ {¬ϕS}:
• Leave the universal quantifiers implicit.

• Put all formulas in conjunctive normal form, and split up
conjuncts.

• So, the goal is to prove ⊥ from clauses, i.e. disjunctions of
atomic formulas and literals.

• Use the resolution rule:
Γ ∨ ϕ ∆ ∨ ¬ϕ

Γ ∨∆
More generally, use unification to instantiate clauses to the
form above.

Resolution

Main loop:

1. Use resolution to generate new clauses.

2. Check for redundancies (subsumption) and delete clauses.

Issues:

• How much effort to put into each phase?

• How to choose new clause (biggest, widest, heaviest, . . .)?

• How to handle equality? (paramodulation, superposition)

• How to handle other equivalence relations, transitive relations?

• How to distinguish different kinds of information (like sort
information)?

• How to incorporate domain specific information, like
arithmetic, or AC operations?

Comparison

General approaches to theorem proving:

• global / top-down (e.g. tableaux): goal directed, works
backwards to construct a proof (or countermodel)

• local / bottom-up (e.g. resolution): start with a set of facts,
reason forwards to derive additional facts

Equality reasoning

It is reasonable to simplify terms:

• x + 0 = x

• x > 0→ |x | = x

• y 6= 0→ (x/y) ∗ y = x

• x + (z + (y + 0) + x) = x + x + y + z

There are stand-alone equational systems, but equational reasoning
is also built-in to first-order systems.

Higher-order unification

Sometimes mathematics requires higher-order unification:

P(0) ∧ ∀x (P(x)→ P(x + 1))→ ∀x P(x)

or ∑
x∈A

(f (x) + g(x)) =
∑
x∈A

f (x) +
∑
x∈A

g(x)

Notes:

• Second-order unification is undecidable (Goldfarb).

• Huet’s algorithm is complete.

• Miller patterns are a decidable fragment.

Decision procedures

Full first-order theory:

• Quantifier elimination (integer / linear arithmetic, RCF , ACF)

• “Global” methods (Cooper, CAD)

• Reductions to Rabin’s S2S

• Feferman-Vaught (product structures)

Sometimes it is enough to focus on the universal fragment:

• Some theories are only decidable at this level (e.g.
uninterpreted functions)

• Can be more efficient (integer / linear arithmetic).

• Can use certificates.

• A lot of mathematical reasoning is close to quantifier-free.

• These can be combined.

Combining decision procedures

Theorem (Nelson-Oppen, 1979)

Suppose T1 and T2 are “stably infinite” and there is a decision
procedure for their universal consequences. Suppose that the
languages are disjoint, except for the equality symbol. Then the
set of universal consequences of T1 ∪ T2 is decidable.

In particular, if T1 and T2 have only infinite models, they are
stably infinite.

This allows you to design decision procedures for individual
theories and then put them together.

Combining decision procedures

First idea: one can “separate variables” in universal formulas.

That is, ∀~x ϕ(~x) is equivalent to ∀~y (ϕ1(~y) ∨ ϕ2(~y)), where ϕ1 is
in the language of T1, and ϕ2 is in the language of T2.

To do this, just introduce new variables to name subterms.

Second idea: the Craig interpolation theorem.

Theorem (Craig, 1957)

Suppose ψ1 is a sentence in L1 and ψ2 is a sentence in L2, such
that ` ψ1 → ψ2. Then there is a sentence θ in L1 ∩ L2 such that

• ` ψ1 → θ

• ` θ → ψ2

Combining decision procedures

Let ϕ be any universal sentence, equivalent to ∀~x (ϕ1(~x) ∨ ϕ2(~x)).

Then T1 ∪ T2 ` ϕ if and only if there is θ in the common
language, such that

• T1 ∪ {¬ϕ1(~x)} ` θ(~x)

• T2 ∪ {¬ϕ2(~x)} ` ¬θ(~x)

We can assume θ is in disjunctive normal form. All that each
disjunct can do is declare certain variables equal to one another,
and others unequal!

Use the decision procedures for T1 and T2 to test each possibility.

Combining decision procedures

Nelson-Oppen methods are based on this idea.

• A fast propositional SAT solver “core” tries to build a
satisfying assignment.

• Individual decision procedures examine proposals, and report
conflicts.

• The SAT solver incorporates this information into the search.

• Some systems go beyond the universal fragment, for example,
instantiating universal axioms in sensible ways.

For example, SMT solvers user methods for integer/linear
arithmetic that support backtracking search.

Combining decision procedures

SMT solvers are both constraint solvers and theorem provers.

They incorporate domain-specific methods in a domain-general
framework.

They are modular and extensible.

There are used to verify hardware and software, but also to
synthesize objects.

Summary

Formal methods provide languages for

• expressing mathematical background,

• making mathematical assertions, and

• describing mathematical objects.

They provide general ways of

• searching for proofs, and

• searching for objects.

Combination methods provide ways of incorporating
domain-specific methods.

Thesis: the matematical potential has not yet been realized.

