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I Prefer Pi: A Brief History and Anthology of Articles
in the American Mathematical Monthly

Jonathan M. Borwein and Scott T. Chapman

Abstract. In celebration of both a special ‘big’ π Day (3/14/15) and the 2015 centennial of the Mathematical
Association of America, we review the illustrious history of the constant π in the pages of the American Mathe-
matical Monthly.

1. INTRODUCTION. Once in a century Pi Day is accurate not just to three digits, but to five. The
year the MAA was founded (1915) was such a year, and so is the MAA’s centennial year (2015). To
arrive at this auspicious conclusion, we consider the date to be given as month-day-two digit year.1

This year Pi Day turns 26. For a more detailed discussion of Pi and its history, we refer to last year’s
article [46]. We do note that “I prefer pi” is a succinct palindrome.2

In honour of this happy coincidence, we have gone back and selected roughly seventy five represen-
tative papers relating to Pi (the constant not the symbol) published in this journal since its inception
in 1894 (which predates that of the MAA itself). Those 75 papers listed in three periods (before 1945,
1945–1989, and 1990 on) form the core bibliography of this article. The first author and three under-
graduate research students3 ran a seminar in which they looked at the 75 papers. Here is what they
discovered.

Common themes In each of the three periods one observes both the commonality of topics and the
changing stye of presentation. We shall say more about this as we proceed.
• We see authors of varying notoriety. Many are top-tier research mathematicians whose names remain

known. Others once famous are unknown. Articles come from small colleges, big ten universities,
ivy league schools and everywhere else. In earlier days, articles came from people at big industrial
labs, but nowadays, those labs no longer support research as they used to.

• These papers cover relatively few topics.
◦ Every few years a ‘simple proof’ of the irrationality of π is published. Such proofs can be found

in [?58, 26, 29, 31, 39, 52, 59, 62, 76].
◦ Many proofs of ζ(2) :=

∑
n≥1 1/n2 = π2/6 appear, each trying to be a bit more slick or ele-

mentary than the last. Of course, whether you prefer your proofs concise and high tech, or more
leisurely and lower tech, is a matter of taste and context. See [?38, ?58, 20, 28, 34, 42, 57, 68, 69].

◦ Articles on mathematics outside the European tradition have appeared since the Monthly’s earliest
days. See the papers [3, 9, 11, 15].

• In the past thirty years, computer algebra begins to enter the discussions – sometimes in a funda-
mental way.
1For advocates of τ = 2π, your big day 6/28/31 will come in 2031.
2Given by the Professor in Yöko Ozawa, The Housekeeper and the Professor, Picador Books, 2003. Kindle location 1095, as is

“a nut for a jar of tuna?”
3The students are Elliot Catt from Newcastle, and Ghislain McKay & Corey Sinnamon from Waterloo.
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• Of course the compositing style of the MONTHLY has changed several times.
• The process of constructing this selection highlights how much our scholarly life has changed over

the past 30 years. Much more can be found and studied easily, but there is even more to find than
in previous periods. The ease of finding papers in Google Scholar has the perverse consequence –
like Gresham’s law in economics – of making less easily accessible material even more likely to be
ignored.

While our list is not completely exhaustive, almost every paper listed in the bibliography has been
cited in the literature. In fact, several have been highly cited. Some highly used research, such as Ivan
Niven’s proof of the irrationality of π [14], is rarely cited as it has been fully absorbed into the literature.
Indeed, a quick look at the AMS’s Mathematical Reviews reveals only 15 citations of Niven’s paper.

We deem as pi-star (or π?) papers from our MONTHLY bibliography that have been cited in the
literature more than 30 times. The existence of JSTOR means that most readers can access all these
papers easily, but we have arranged for the π?s to be available free for the next year on our website
(http://www.shsu.edu/ bks006/Monthly.html). Here are the π?s with citation numbers accord-
ing to Google Scholar (as of 1/7/2015). These papers are marked with a ? in the regular bibliography.

1. 133 citations: J. M. Borwein, P. B. Borwein, D. H. Bailey, Ramanujan, modular equations, and
approximations to pi or how to compute one billion digits of pi, 96(1989) 201–219.

2. 119 citations: G. Almkvist, B. Berndt, Gauss, Landen, Ramanujan, the arithmetic-geometric
mean, ellipses, π, and the ladies diary, 95(1988) 585–608.

3. 73 citations: A Kufner, L Maligrand, The prehistory of the Hardy inequality, 113(2006) 715–732.
4. 63 citations: J.M. Borwein, P.B. Borwein, K. Dilcher, Pi, Euler numbers, and asymptotic expan-

sions, 96(1989) 681–687.
5. 56 citations: N.D. Baruah, B.C. Berndt, H.H. Chan, Ramanujan’s series for 1/π: a survey,

116(2009) 567–587.
6. 40 citations: J. Sondow, Double integrals for Euler’s constant and lnπ/4 and an analog of Had-

jicostas’s formula, 112(2005) 61–65.
7. 39 citations: D. H. Lehmer, On arccotangent relations for π, 45(1938) 657–664.
8. 39 citations: I. Papadimitriou, A simple proof of the formula

∑∞
k=1 1/k2 = π2/6, 80(1973) 424–

425.
9. 36 citations: V. Adamchik, S. Wagon, A simple formula for π, 104(1997) 852–855.

10. 35 citations: D. Huylebrouck, Similarities in irrationality proofs for π, ln 2, ζ(2), and ξ(3),
108(2001) 222–231.

11. 35 citations: L. J. Lange, An elegant continued fraction for π, 106(1999) 456–458.
12. 33 citations: S. Rabinowitz, S. Wagon, A spigot algorithm for the digits of π, 102(1995) 195–203.
13. 32 citations: W. S. Brown, Rational exponential expressions and a conjecture concerning π and

e, 76(1969) 28–34.

The remainder of this article. We begin with a very brief history of Pi, both mathematical and al-
gorithmic, which can be followed in more detail in [80] and [46]. We then turn to our three periods,
and make a very few extra comments about some of the articles. For the most part the title of each
article is a pretty good abstract. We then make a few summatory remarks and list a handful of refer-
ences from outside the MONTHLY, such as David Blattner’s Joy of Pi [79] and Arndt and Haenel’s Pi
Unleashed [78].
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2. PI: A BRIEF HISTORY. Pi is arguably the most resilient of mathematical objects. It has been
studied seriously over many millennia and by every major culture, remaining as intensely examined
today as in the Syracuse of Archimedes’ time. Its role in popular culture was described in last year’s Pi
Day article [46]. We also recall the recent movies Life of Pi ((2012, PG) directed by Ang Lee) and Pi
((1998, R) directed by Darren Aronofsky)4.

From both an analytic and computational viewpoint, it makes sense to begin with Archimedes.
Around 250 BCE, Archimedes of Syracuse (287–212 BCE) is thought to have been the first (in Mea-
surement of the Circle) to show that the “two possible Pi’s” are the same. For a circle of radius r
and diameter d, Area= π1 r

2 while Perimeter = π2 d, but that π1 = π2 is not obvious, and is often
overlooked; see [55].

Figure 1. Archimedes’ method of computing π with 6- and 12-gons

Archimedes’ Method The first rigorous mathematical calculation of π was also due to Archimedes,
who used a brilliant scheme based on doubling inscribed and circumscribed polygons,

6 7→ 12 7→ 24 7→ 48 7→ 96

and computing the perimeters to obtain the bounds 3 10
71
< π < 3 10

70
= . . . .5 The case of 6-gons and 12-

gons is shown in Figure 1; for n = 48 one already ‘sees’ near-circles. No computational mathematics
approached this level of rigour again until the 19th century. Phillips in [41] or [80, pp. 15-19] calls
Archimedes the ‘first numerical analyst’.

Archimedes’ scheme constitutes the first true algorithm for π, in that it can produce an arbitrarily
accurate value for π. It also represents the birth of numerical and error analysis – all without positional
notation or modern trigonometry. As discovered in the 19th century, this scheme can be stated as a
simple, numerically stable, recursion, as follows [82].

Archimedean Mean Iteration (Pfaff-Borchardt-Schwab). Set a0 = 2
√

3 and b0 = 3, which are the
values for circumscribed and inscribed 6-gons. If

an+1 =
2anbn
an + bn

(H) and bn+1 =
√
an+1bn (G), (1)

4Imagine, an R–rated movie involving Pi!
5All rules are meant to be broken. Writing 10/70 without cancellation makes it easier to see that 1/7 is larger than 10/71.
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then an and bn converge to π, with the error decreasing by a factor of four with each iteration. In this
case the error is easy to estimate – look at a2n+1 − b2n+1 – and the limit is somewhat less accessible, but
still reasonably easy to determine [82].

Variations of Archimedes’ geometrical scheme were the basis for all high-accuracy calculations of
π over the next 1800 years – far after its ‘best before’ date. For example, in fifth century China, Tsu
Chung-Chih used a variant of this method to obtain π correct to seven digits. A millennium later,
al-Kāshī in Samarkand “who could calculate as eagles can fly” obtained 2π in sexadecimal:

2π ≈ 6 +
16

601
+

59

602
+

28

603
+

01

604
+

34

605
+

51

606
+

46

607
+

14

608
+

50

609
,

good to 16 decimal places (using 3 · 228-gons). This is a personal favourite; reentering it in a computer
centuries later and getting the predicted answer gives the authors horripilation (‘goose-bumps’).

Pi’s centrality is emphasised by the many ways it turns up early in new subjects from irrationality
theory to probability and harmonic analysis. For instance, Francois Viéta’s (1540–1603) formula

2

π
=

√
2

2

√
2 +
√

2

2

√
2 +

√
2 +
√

2

2
· · · (2)

and John Wallis’ (1616–1703) infinite product [67, 74, 75]

π

2
=

2 · 2 · 4 · 4 · 6 · 6 · 8 · 8
1 · 3 · 3 · 5 · 5 · 7 · 7 · 9

· · · (3)

are accounted among the first infinitary objects in mathematics. The latter leads to the Gamma function,
Stirling’s formula, and much more [64] including the first infinite continued fraction6 for 2/π by Lord
Brouncker (1620–1684), first President of the Royal Society of London:

2

π
=

1

1 +

9

2 +

25

2 +

49

2 · · ·
. (4)

Here we use the modern concise notation for a continued fraction.

Arctangents and Machin formulas With the development of calculus, it became possible to extend
calculations of π dramatically as shown in Figure 4. Almost all calculations between 1700 and 1980
reduce to exploiting the series for the arctangent (or another inverse trig function) and using identities
to require computation only near the centre of the interval of convergence. Thus, one starts with

arctan(x) = x− x3

3
+
x5

5
− x7

7
+ · · · for − 1 ≤ x ≤ 1 (5)

and arctan(1) = π/4. Substituting x = 1 proves the Gregory-Leibniz formula (1671–74)

π

4
= 1− 1

3
+

1

5
− 1

7
+

1

9
− 1

11
+ · · · . (6)

6This was discovered without proof as was (3) .
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James Gregory (1638–75) was the greatest of a large Scottish mathematical family. The point x = 1,
however, is on the boundary of the interval of convergence of the series. Justifying substitution requires
a careful error estimate for the remainder or Lebesgue’s monotone convergence theorem, but most
introductory calculus texts ignore the issue. The arctan integral and series were known centuries earlier
to the Kerala school, which was identified with Madhava (c. 1350 – c. 1425) of Sangamagrama near
Kerala, India. Madhava may well have computed 13 digits of π.

To make (5) computationally feasible, we can use one of many formulas such as:

arctan(1) = 2 arctan

(
1

3

)
+ arctan

(
1

7

)
(Hutton) (7)

arctan(1) = arctan

(
1

2

)
+ arctan

(
1

5

)
+ arctan

(
1

8

)
(Euler) (8)

arctan(1) = 4 arctan

(
1

5

)
− arctan

(
1

239

)
(Machin). (9)

All of this, including the efficiency of different Machin formulas as they are now called, is lucidly
described by the early and distinguished computational number theorist D.H. Lehmer [?13]. See also
[2,5,49] and [19] by Wrench, who in 1961 with Dan Shanks performed extended computer computation
of π using these formulas; see Figure 5.

In [?13] Lehmer gives what he considered to be a best possible self-checking pair of arctan relations
for computing π. The pair was:

arctan (1) = 8 arctan

(
1

10

)
− arctan

(
1

239

)
− 4 arctan

(
1

515

)
(10)

arctan (1) = 12 arctan

(
1

18

)
+ 8 arctan

(
1

57

)
− 5 arctan

(
1

239

)
. (11)

In [2], Ballantine shows that this pair makes a good choice since the series for arctan(1/18) and
arctan(1/57) have terms that differ by a constant factor of ‘0,’ a decimal shift. This observation was
implemented in both the 1961 and 1973 computations listed in Figure 4.

Mathematical landmarks in the life of Pi. The irrationality of π was first shown by Lambert in 1761
using continued fractions [?63]. This is a good idea since a number α has an eventually repeating
non-terminating simple continued fraction if and only if α2 is rational, as made rigorous in 1794 by
Legendre. Legendre conjectured that π is non algebraic7, that is, that π is transcendental. Unfortunately
all the pretty continued fractions for π are not simple [?63, 70, 83]. In [?63] Lange examines various
proofs of

π = 3 +
12

2 +

32

2 +

52

2 +

72

2 · · ·
. (12)

7It can be argued that he was anticipated by Maimonides (the Rambam, 1135–1204) [81].

January 2014] PI IN THE MONTHLY 5



Mathematical Assoc. of America American Mathematical Monthly 121:1 February 10, 2015 2:47 p.m. 31415v12.tex page 6

Legendre was validated when in 1882 Lindemann proved π transcendental. He did this by extending
Hermite’s 1873 proof of the transcendence of e. There followed a spate of simplifications by Weierstrass
in 1885, Hilbert in 1893, and many others. Oswald Veblen’s article [18], written only ten years later, is
a lucid description of the topic by one of the leaders of the early 20th century American mathematical
community.8 A 1939 proof of the transcendence of π by Ivan Niven [14] is reproduced exactly in
Appendix A since it remains entirely appropriate for a class today.

We next reproduce our personal favorite MONTHLY proof of the irrationality of π. All such proofs
eventually arrive at a putative integer that must lie strictly between zero and one.

Theorem 1 (Breusch [26]). π is irrational.

Proof. Assume π = a/b with a and b integers. Then, with N = 2a, sinN = 0, cosN = 1, and
cos(N/2) = ±1. If m is zero or a positive integer, then

Am(x) ≡
∞∑
k=0

(−1)k(2k + 1)m
x2k+1

(2k + 1)!
= Pm(x) cosx+Qm(x) sinx

where Pm(x) and Qm(x) are polynomials in x with integral coefficients. (The proof follows by in-
duction on m : Am+1 = xdAm/dx, and A0 = sinx.) Thus Am(N) is an integer for every positive
integer m.

If t is any positive integer, then

Bt(N) ≡
∞∑
k=0

(−1)k
(2k + 1− t− 1)(2k + 1− t− 2) · · · (2k + 1− 2t)

(2k + 1)!
N2k+1

=
∞∑
k=0

(−1)k
(2k + 1)t − b1(2k + 1)t−1 + · · · ± bt

(2k + 1)!
N2k+1

= At(N)− b1At−1(N) + · · · ± btA0(N).

Since all the bi are integers, Bt(N) must be an integer too. Break the sum for Bt(N) into the three
pieces

[(t−1)/2]∑
k=0

,
t−1∑

k=[(t+1)/2]

, and
∞∑
k=t

.

In the first sum, the numerator of each fraction is a product of t consecutive integers, therefore it is
divisible by t!, and hence by (2k + 1)! since 2k + 1 ≤ t. Thus each term of the first sum is an integer.
Each term of the second sum is zero. Thus the third sum must be an integer, for every positive integer
t.

This third sum is
∞∑
k=t

(−1)k
(2k − t)!

(2k + 1)!(2k − 2t)!
N2k+1

8He was also nephew of Thorstein Veblen, one of the founders of sociology and originator of the term ‘conspicuous consump-
tion.’
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= (−1)t
t!

(2t+ 1)!
N2k+1

(
1− (t+ 1)(t+ 2)

(2t+ 2)(2t+ 3)

N2

2!

+
(t+ 1)(t+ 2)(t+ 3)(t+ 4)

(2t+ 2)(2t+ 3)(2t+ 4)(2t+ 5)

N4

4!
− · · ·

)
.

Let S(t) stand for the sum in the parenthesis. Certainly

|S(t)| < 1 +N +
N2

2!
+ · · · = eN .

Thus the whole expression is absolutely less than

t!

(2t+ 1)!
N2t+1eN <

N2t+1

tt+1
eN < (N2/t)t+1eN ,

which is less than 1 for t > t0.
Therefore S(t) = 0 for every integer t > t0. But this is impossible, because

lim
t→∞

S(t) = 1− 1

22
· N

2

2!
+

1

24
· N

4

4!
− · · · = cos(N/2) = ±1.

A similar argument shows that the natural logarithm of a rational number must be irrational. From
log(a/b) = c/d would follow that ec = ad/bd = A/B. Then

B ·
∞∑
k=0

(k − t− 1)(k − t− 2) · · · (k − 2t)

k!
ck

would have to be an integer for every positive integer t, which leads to a contradiction.
Irrationality measures, denoted µ(α), as described in [83] seem not to have seen much attention in

the MONTHLY. The irrationality measure of a real number is the infimum over µ > 0 such that the
inequality ∣∣∣∣α− p

q

∣∣∣∣ ≤ 1

qµ

has at most finitely many solutions in p ∈ Z and q ∈ N . Currently, the best irrationality measure
known for π is 7.6063. For π2 it is 5.095412, and for log 2 it is 3.57455391. For every rational num-
ber the irrationality measure is 1 and the Thue-Siegel-Roth theorem states that if α is a real algebraic
irrational then µ(α) = 2. Indeed, almost all real numbers have an irrationality measure of 2 and tran-
scendental numbers have irrationality measure 2 or greater. For example, the transcendental number e
has µ(e) = 2 while Liouville numbers such as

∑
n≥0 1/10n! are precisely those numbers having in-

finite irrationality measure. The fact that µ(π) <∞ (equivalently π is not a Louisville number) was
first proved by Mahler [85] in 1953.9 This fact does figure in the solution of many MONTHLY problems
over the years; for instance, it lets one estimate how far sin(n) is from zero.

9He showed µ(π) ≤ 42. Douglas Adams would be pleased. The entire Mahler Archive is on line at http://carma.

newcastle.edu.au/mahler/.
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The Riemann zeta function10 is defined for s > 1 by ζ(s) =
∑

n≥1 1/ns. The Basel problem, first
posed by Pietro Mengoli in 1644, which asked for the evaluation of ζ(2) =

∑
n≥1 1/n2, was pop-

ularized by the Bernoullis, who came from Basel in Switzerland, and hence the name. In 1735, all
even values of ζ were evaluated by Euler. He argued that sin(πx) could be thought of as an infinite
polynomial and so

sin(πx)

x
= π

∞∏
n=1

(
1− x2

n2

)
, (13)

since both sides have the same zeros and value at zero. Comparing the coefficients of the Taylor series
of both sides of (13) establishes that ζ(2) = π2/6 and then one recursively can determine a closed
form (involving Bernoulli polynomials). In particular, ζ(4) = π4/90, ζ(6) = π6/945, and ζ(8) =
π8/9450 and so on. By contrast, ζ(3) was only proven irrational in the late 1970s and the status of
ζ(5) is unsettled – although every one who has thought about this knows it is irrational. It is a nice
exercise to confirm the values of ζ(4), ζ(6) from (13). A large number of the papers in this collection
centre on the Basel problem and its extensions; see [?58, ?73, 50, 72]. An especially nice accounting is
in [43]. As is discussed in [?24, 46], it is striking how little more is known about the number–theoretic
structure of π.

Algorithmic high spots in the life of Pi. In the large, only three methods have been used to make
significant computations of π: before 1700 by Archimedes’ method, between 1700 and 1980 using
calculus methods (usually based on the arctangent’s Maclaurin series and Machin formulas), and since
1980 using spectacular series or iterations both based on elliptic integrals and the arithmetic-geometric
mean. The progress of this multi-century project is shown in Figures 2, 4, and 5. If plotted on a log
linear scale, the records line up well, especially in Figure 5, which neatly tracks Moore’s law.

Name Year Digits
Babylonians 2000? BCE 1
Egyptians 2000? BCE 1
Hebrews (1 Kings 7:23) 550? BCE 1
Archimedes 250? BCE 3
Ptolemy 150 3
Liu Hui 263 5
Tsu Ch’ung Chi 480? 7
Al-Kashi 1429 14
Romanus 1593 15
van Ceulen (Ludolph’s number) 1615 35

Figure 2. Pre-calculus π calculations

The ‘post-calculus’ era was made possible by the simultaneous discovery by Eugene Salamin and
Richard Brent in 1976 of identities – actually known to Gauss but not recognised for their value [?24,
37, 82] – that lead to the following two illustrative reduced complexity algorithms.

10As expressed in Stigler’s law of eponymy, discoveries are often named after later researchers, but in Euler’s case he needs no
more glory.
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Quadratic Algorithm (Salamin-Brent). Set a0 = 1, b0 = 1/
√

2, and s0 = 1/2. Calculate

ak =
ak−1 + bk−1

2
(Arithmetic), bk =

√
ak−1bk−1 (Geometric), (14)

ck = a2k − b2k, sk = sk−1 − 2kck and compute pk =
2a2k
sk

. (15)

Then pk converges quadratically to π. Note the similarity between the arithmetic-geometric mean
iteration (14) (which for general initial values converges quickly to a non-elementary limit), and the out-
of-kilter harmonic-geometric mean iteration (1) (which in general converges slowly to an elementary
limit), and which is an arithmetic-geometric iteration in the reciprocals (see [82]).

Each iteration of the Brent-Salamin algorithm doubles the correct digits. Successive iterations pro-
duce 1, 4, 9, 20, 42, 85, 173, 347, and 697 good decimal digits of π, and take logN operations to
compute N digits. Twenty-five iterations compute π to over 45 million decimal digit accuracy. A dis-
advantage is that each of these iterations must be performed to the precision of the final result. Likewise,
we have the following.

Quartic Algorithm (The Borweins). Set a0 = 6− 4
√

2 and y0 =
√

2− 1. Iterate

yk+1 =
1− (1− y4k)1/4

1 + (1− y4k)1/4
and ak+1 = ak(1 + yk+1)

4 − 22k+3yk+1(1 + yk+1 + y2k+1).

Then 1/ak converges quartically11 to π. Note that only the power of 2 used in ak depends on k.
Twenty five iterations yield an algebraic number that agrees with π to in excess of a quadrillion digits.
This iteration is nicely derived in [56].

As charmingly detailed in [?21], see also [?47, 82], Ramanujan discovered that

1

π
=

2
√

2

9801

∞∑
k=0

(4k)! (1103 + 26390k)

(k!)43964k
. (16)

Each term of this series produces an additional eight correct digits in the result. When Gosper used this
formula to compute 17 million digits of π in 1985, and it agreed to many millions of places with the
prior estimates, this concluded the first proof of (16). As described in [?24], this computation can be
shown to be exact enough to constitute a bona fide proof! Actually, Gosper first computed the simple
continued fraction for π, hoping to discover some new things in its expansion, but found none. At the
time of this writing, 500 million terms of the continued fraction for π have been computed by Neil
Bickford (then a teenager) without shedding light on whether the sequence is unbounded (see [77]).

G.N. Watson, on looking at various of Ramanujan’s formulas such as (16), reports the following
sensations [86]:

...a thrill which is indistinguishable from the thrill I feel when I enter the Sagrestia Nuovo of the Capella Medici
and see before me the austere beauty of the four statues representing ‘Day’, ‘Night’, ‘Evening’, and ‘Dawn’ which
Michelangelo has set over the tomb of Guiliano de‘Medici and Lorenzo de‘Medici. – G. N. Watson, 1886–1965.

11A fourth-order iteration might be a compound of two second-order ones; this one cannot be so decomposed.
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Soon after Gosper did his computation, David and Gregory Chudnovsky found the following even
more rapidly convergent variation of Ramanujan’s formula. It is a consequence of the fact that

√
−163

corresponds to an imaginary quadratic field with class number one:

1

π
= 12

∞∑
k=0

(−1)k (6k)! (13591409 + 545140134k)

(3k)! (k!)3 6403203k+3/2
. (17)

Each term of this series produces an extraordinary additional 14 correct digits. Note that in both (16)
and (17) one computes a rational series and has a single multiplication by a surd to compute at the end.

Some less familiar themes While most of the articles in our collection fit into one of the big themes
(irrationality [57] , transcendence, arctangent formulas, Euler’s product for sinx, evaluation of ζ(2), π
in other cultures) there are of course some lovely sporadic examples. These include the following.
• Spigot Algorithms, which drip off one more digit at a time for π and use only integer arithmetic

[?71, 54]. As described in [?44], the first spigot algorithm was discovered for e. While the ideas are
simple, the specifics for π need some care; we refer to Rabinowitz and Wagon [?71] for the carefully
explained details.

• Series for π · e and π/e [35]. Melzack, then at Bell Labs, proved12 that

π

2e
= lim

N→∞

2N∏
n=1

(
1 +

2

n

)(−1)n+1n

(18)

6

πe
= lim

N→∞

2N+1∏
n=2

(
1 +

2

n

)(−1)nn

. (19)

Melzak begins by showing that limn→∞ V (Cn)/V (Sn) =
√

2/(πe), where Sn is the n-sphere and
Cn is the inscribed n-dimensional cylinder of greatest volume. He then proves (18) and (19), saying
that it closely follows the derivation of Wallis’ formula, and he conjectures that (18) can be used to
prove that e/π is irrational. We remind the reader that the transcendentality of eπ follows from the
Gelfond-Schneider theorem (1934) [82] since eπ/2 = i−i, but the statuses of e+ π, e/π, e · π, and
πe are unsettled.

Both (18) and (19) are very slowly convergent. To check (19), one may take logs and expand
the series for log, then exchange the order of summation to arrive at the more rapidly convergent
‘zeta’-series

∞∑
n=2

(−2)
n

n
(α (n− 1)− 1) = log

(π e
6

)
where α(s) :=

∑
k≥0(−1)k/(k + 1)s is the alternating zeta function, which is well defined for

Re s > 0.
If we consider the partial products for (18), then we obtain(

2

1
· 2

3
· 4

3
· 4

5
· 6

5
· 6

7
· 8

7
· 8

9
· · · 2N

2N + 1

)
·
(

2N + 1

2N + 2

)2N

.

12We correct errors in Melzak’s original formulas.
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As N →∞ the left factor yields Wallis’s product for π/2 and the right factor tends to 1/e, which
confirms (18). A similar partial product can be obtained from (19).

• A curious predictability in the error in the Gregory-Liebnitz series (6) for π/4 [?25, 45]. In
1988, it was observed that the series

π = 4
∞∑
k=1

(−1)k+1

2k − 1
= 4

(
1− 1

3
+

1

5
− 1

7
+

1

9
− 1

11
+ · · ·

)
, (20)

when truncated to 5,000,000 terms, differs strangely from the true value of π:

3.14159245358979323846464338327950278419716939938730582097494182230781640...
3.14159265358979323846264338327950288419716939937510582097494459230781640...

2 -2 10 -122 2770.

Values differ as expected from truncating an alternating series: in the seventh place a “4” that
should be a “6.” But the next 13 digits are correct, and after another blip, for 12 digits. Of the
first 46 digits, only four differ from the corresponding digits of π. Further, the “error” digits seem-
ingly occur with a period of 14. Such anomalous behavior begs for explanation. A great place
to start is by using Neil Sloane’s internet-based integer sequence recognition tool, available at
www.oeis.org. This tool has no difficulty recognizing the sequence of errors as twice the Euler
numbers. Even Euler numbers are generated by secx =

∑∞
k=0(−1)kE2kx

2k/(2k)!. The first few
are 1,−1, 5,−61, 1385,−50521, 2702765. This discovery led to the following asymptotic expan-
sion:

π

2
− 2

N/2∑
k=1

(−1)k+1

2k − 1
≈

∞∑
m=0

E2m

N2m+1
. (21)

Now the genesis of the anomaly is clear: by chance the series had been truncated at 5,000,000
terms – exactly one-half of a fairly large power of ten. Indeed, settingN = 10, 000, 000 in equation
(21) shows that the first hundred or so digits of the truncated series value are small perturbations of
the correct decimal expansion for π.

On a hexadecimal computer with N = 167 the corresponding strings and hex errors are:

3.243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89452821E...
3.243F6A6885A308D31319AA2E03707344A3693822299F31D7A82EFA98EC4DBF69452821E...

2 -2 A -7A 2AD2

with the first being the correct value of π. (In hexadecimal or hex one uses ‘A,B, . . ., F’ to write
10 through 15 as single ‘hex-digits’.) Similar phenomena occur for other constants; see [80]. Also,
knowing the errors means we can correct them and use (21) to make Gregory’s formula computa-
tionally tractable.

• Hilbert’s inequality [?61, 48] In its simplest incarnation, Hilbert’s inequality is

∞∑
m,n=1

an bm
n+m

≤ π

√√√√ ∞∑
n=1

a2n

∞∑
n=1

b2n (for an, bm ∈ R, an, bm > 0) (22)

with the assertion that the constant π is best possible. Actually 2π was the best constant that Hilbert
could obtain. Hardy’s inequality, which originated in his successful attempt to prove (22) early in
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the development of the modern theory of inequalities, is well described in [?61]. One could write a
nice book on the places in which π or ζ(2) arise as the best possible constant in an inequality.

• The distribution of the digits of π [46]. Single digit distribution of the first trillion digits base ten
and sixteen is shown in Figure 3. All the counts in these figures are consistent with π being random.

Decimal Digit Occurrences

0 99999485134
1 99999945664
2 100000480057
3 99999787805
4 100000357857
5 99999671008
6 99999807503
7 99999818723
8 100000791469
9 99999854780

Total 1000000000000

Hex Digit Occurrences

0 62499881108
1 62500212206
2 62499924780
3 62500188844
4 62499807368
5 62500007205
6 62499925426
7 62499878794
8 62500216752
9 62500120671
A 62500266095
B 62499955595
C 62500188610
D 62499613666
E 62499875079
F 62499937801

Total 1000000000000

Figure 3. Seemingly random behaviour of single digits of π in base 10 and 16

Name Year Correct Digits
Sharp (and Halley) 1699 71
Machin 1706 100
Strassnitzky and Dase 1844 200
Rutherford 1853 440
Shanks 1874 (707) 527
Ferguson (Calculator) 1947 808
Reitwiesner et al. (ENIAC) 1949 2,037
Genuys 1958 10,000
Shanks and Wrench 1961 100,265
Guilloud and Bouyer 1973 1,001,250

Figure 4. Calculus π calculations

12 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 121



Mathematical Assoc. of America American Mathematical Monthly 121:1 February 10, 2015 2:47 p.m. 31415v12.tex page 13

3. PI IN THIS MONTHLY: 1894-1944. This period yielded twenty papers for our selection. The
July 1894 issue of this MONTHLY contained the most embarrassing article on Pi [10] ever to grace the
pages of the MONTHLY. Flagged only by “published by the request of the author”, who indicated it
was copyrighted in 1889, it is the origin of the famous usually garbled story of the attempt by Indiana
in 1897 to legislate the value of π; see [81] and [80, D. Singmaster, The legal values of Pi]. It contains
a nonsensical geometric construction of π. So π and the MONTHLY got off on a bad footing.

Luckily the future was brighter. While most early articles would meet today’s criteria for publication,
this is not true of all. For example, [20] offers a carefully organised list of 68 consequences of Euler’s
product for sin given in (13) with almost no English. By contrast, [6] is perhaps the first discussion of
the efficiency of calculation in the MONTHLY.

REFERENCES FROM 1894 TO 1944

1. R. C. Archibald, Historical notes on the relation e−(π/2) = ii, Amer. Math. Monthly 28(1921) 116–121. MR1519723
2. J. P. Ballantine, The best (?) formula for computing π to a thousand places, Amer. Math. Monthly 46(1939), 499–501.

MR3168990
3. J. M. Barbour, A sixteenth century Chinese approximation for π, Amer. Math. Monthly 40(1933) 69–73. MR1522708
4. A. A. Bennett, Discussions: Pi and the factors of x2 + 1, Amer. Math. Monthly 32(1925) 375–377. MR1520736
5. A. A. Bennett, Two new arctangent relations for π, Amer. Math. Monthly 32(1925) 253–255. MR1520682
6. C. C. Camp, Discussions: A new calculation of π, Amer. Math. Monthly 33(1926) 472–473. MR1521028
7. J. S. Frame, A series useful in the computation of π, Amer. Math. Monthly 42(1935) 499–501. MR1523462
8. M. G. Gaba, A simple approximation for π, Amer. Math. Monthly 45(1938) 373–375. MR1524313
9. S. Ganguli, The elder Aryabhata’s value of π, Amer. Math. Monthly 37(1930) 16–22. MR1521892

10. Edward J. Goodwin, Quadrature of the circle, Amer. Math. Monthly 1(1894) 246–248.
11. G.B. Halsted, Pi in Asia, Amer. Math. Monthly 15(1908) 84. MR1517012
12. W. E. Heal, Quadrature of the circle, Amer. Math. Monthly 3(1896) 41–45. MR1514010
?13. D. H. Lehmer, On arccotangent relations for π, Amer. Math. Monthly 45(1938) 657–664. MR1524440
14. I. Niven, The transcendence of π, Amer. Math. Monthly 46(1939) 469–471. MR0000415
15. C. Schoy, Discussions: Al-Biruni’s computation of the value of π, Amer. Math. Monthly 33(1926) 323–325. MR1520959
16. D. E. Smith, Historical survey of the attempts at the computation and construction of π, Amer. Math. Monthly 2(1895) 348–351.

MR1513968
17. R. S. Underwood, Discussions: Some results involving π, Amer. Math. Monthly 31(1924) 392–394. MR1520517
18. O. Veblen, The transcendence of π and e, Amer. Math. Monthly 11(1904) 219–223. MR1516235
19. J. W. Wrench, On the derivation of arctangent equalities, Amer. Math. Monthly 45(1938) 108-109. MR1524198
20. G. B. Zerr, Summation of series, Amer. Math. Monthly 5(1898) 128–135. MR1514571

4. PI IN THIS MONTHLY: 1945-1989. This second period collects 22 papers. It saw the birth and
evolution of the digital computer with many consequences for the computation of π. Even old topics
are new when new ideas and tools arise. A charming example is as follows.

Why π is not 22/7. Did you know that

0 <

∫ 1

0

(1− x)4x4

1 + x2
dx =

22

7
− π? (23)
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Name Year Correct Digits
Miyoshi and Kanada 1981 2,000,036
Kanada-Yoshino-Tamura 1982 16,777,206
Gosper 1985 17,526,200
Bailey Jan. 1986 29,360,111
Kanada and Tamura Sep. 1986 33,554,414
Kanada and Tamura Oct. 1986 67,108,839
Kanada et. al Jan. 1987 134,217,700
Kanada and Tamura Jan. 1988 201,326,551
Chudnovskys May 1989 480,000,000
Kanada and Tamura Jul. 1989 536,870,898
Kanada and Tamura Nov. 1989 1,073,741,799
Chudnovskys Aug. 1991 2,260,000,000
Chudnovskys May 1994 4,044,000,000
Kanada and Takahashi Oct. 1995 6,442,450,938
Kanada and Takahashi Jul. 1997 51,539,600,000
Kanada and Takahashi Sep. 1999 206,158,430,000
Kanada-Ushiro-Kuroda Dec. 2002 1,241,100,000,000
Takahashi Jan. 2009 1,649,000,000,000
Takahashi April. 2009 2,576,980,377,524
Bellard Dec. 2009 2,699,999,990,000
Kondo and Yee Aug. 2010 5,000,000,000,000
Kondo and Yee Oct. 2011 10,000,000,000,000
Kondo and Yee Dec. 2013 12,200,000,000,000

Figure 5. Post-calculus π calculations

The integrand is strictly positive on (0, 1), so the integral in (23) is strictly positive – despite claims
that π is 22/7 which rage over the millennia.13 Why is this identity true? We have∫ t

0

x4 (1− x)
4

1 + x2
dx =

1

7
t7 − 2

3
t6 + t5 − 4

3
t3 + 4 t− 4 arctan (t) ,

as differentiation easily confirms, and so the Newtonian Fundamental Theorem of Calculus proves (23).
One can take the idea in (23) a bit further. Note that∫ 1

0

x4 (1− x)
4
dx =

1

630
, (24)

and we observe that

1

2

∫ 1

0

x4 (1− x)
4
dx <

∫ 1

0

(1− x)4x4

1 + x2
dx <

∫ 1

0

x4 (1− x)
4
dx. (25)

13One may still find adverts in newspapers offering such proofs for sale. A recent and otherwise very nice children’s book “Sir
Cumference and the the Dragon of Pi (A Math Adventure)” published in (1999) repeats the error, and email often arrives in our
in-boxes offering to show why things like this are true.
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Combine this with (23) and (24) to derive

223

71
<

22

7
− 1

630
< π <

22

7
− 1

1260
<

22

7
,

and so we re-obtain Archimedes’ famous computation

3
10

71
< π < 3

10

70
. (26)

This derivation was popularized in Eureka, a Cambridge University student journal, in 1971.14 A recent
study of related approximations is made by Lucas [65]. It seems largely happenstance that 22/7 is an
early continued fraction approximate to π.

Another less standard offering is in [33] where Y. V. Matiyasevich shows that

π = lim
m→∞

√
6 log fcm(F1, . . . , Fm)

log lcm(u1, . . . , um)
. (27)

Here ‘lcm’ is the least common multiple, ‘fcm ’is the formal common multiple (the product), and Fn is
the n-th Fibonacci number with F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2, n ≥ 2 (without the square root
we obtain a formula for ζ(2)).

REFERENCES FROM 1945 TO 1989
?21. G. Almkvist, B. Berndt, Gauss, Landen, Ramanujan, the arithmetic-geometric mean, ellipses, π, and the ladies diary, Amer.

Math. Monthly 95(1988) 585–608. MR0966232
22. B.H. Arnold, H. Eves, A simple proof that, for odd p > 1, arccos 1/p and π are incommensurable, Amer. Math. Monthly

56(1949) 20. MR0028343
23. L. Baxter, Are π, e, and

√
2 equally difficult to compute?, Amer. Math. Monthly 88(1981) 50–51. MR1539586

?24. J. M. Borwein, P. B. Borwein, D. H. Bailey, Ramanujan, modular equations, and approximations to pi or how to compute one
billion digits of pi, Amer. Math. Monthly 96(1989) 201–219. MR099186

?25. J.M. Borwein, P.B. Borwein, K. Dilcher, Pi, Euler numbers, and asymptotic expansions, Amer. Math. Monthly 96(1989)
681–687. MR1019148

26. R. Breusch, A proof of the irrationality of π, Amer. Math. Monthly 61(1954) 631-632. MR0064087
?27. W. S. Brown, Rational exponential expressions and a conjecture concerning π and e, Amer. Math. Monthly 76(1969) 28–34.

MR0234933
28. B.R. Choe, An elementary proof of

∑∞
n=1 1/n

2 = π2/6, Amer. Math. Monthly 94(1987) 662–663. MR0935853
29. J. D. Dixon, π is not algebraic of degree one or two, Amer. Math. Monthly 69(1962) 636. MR1531775
30. J. Gurland, On Wallis’ formula, Amer. Math. Monthly 63(1956) 643–645. MR0082117
31. J. Hancl, A simple proof of the irrationality of π4, Amer. Math. Monthly 93(1986) 374–375. MR0841114
32. D. K. Kazarinoff, A simple derivation of the Leibnitz-Gregory series for π/4, Amer. Math. Monthly 62(1955) 726–727.

MR1529178
33. Y. V. Matiyasevich, A new formula for π, Amer. Math. Monthly 93(1986) 631–635. MR1712797
34. Y. Matsuoka, An elementary proof of the formula

∑∞
k=1 1/k

2 = π2/6, Amer. Math. Monthly 68(1961) 485–487. MR0123858
35. Z. A. Melzak, Infinite products for π · e, and π/e, Amer. Math. Monthly 68(1961) 39–41. MR0122920
36. K. Menger, Methods of presenting e and π, Amer. Math. Monthly 52(1945) 28–33. MR0011319
37. G. Miel, An algorithm for the calculation of π, Amer. Math. Monthly 86(1979) 694–697. MR0546184
?38. I. Papadimitriou, A simple proof of the formula

∑∞
k=1 1/k

2 = π2/6, Amer. Math. Monthly 80(1973) 424-425. MR0313666
39. A. E. Parks, π , e, and other irrational numbers, Amer. Math. Monthly 93(1986) 722– 723. MR0863976

14Equation (23) was on a Sydney University examination paper in the early sixties and the earliest source we know of dates from
the 1940’s [65] in an article by Dalzell, who lamentably did not cite himself in [84].
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40. L. L. Pennisi, Expansions for π and π2, Amer. Math. Monthly 62(1955), 653-654. MR1529151
41. G. M. Phillips, Archimedes the numerical analyst, Amer. Math. Monthly 88(1981) 165–169. MR0619562
42. E.L. Stark, Another proof of the formula

∑∞
k=1 1/k

2 = π2/6, Amer. Math. Monthly 76(1969) 552–553. MR1535429
43. K. Venkatachaliengar, Elementary proofs of the infinite product for sin z and allied formulae, Amer. Math. Monthly 69(1962)

541–545. MR1531736

5. PI IN THIS MONTHLY: 1990-2015. In the final period we have collected 32 papers, and see no
sign that interest in π is lessening. A new topic [?44, 46, 51, 81] is that of BBP formulas, which can
compute individual digits of certain constants such as π in base 2 or π2 in bases 2 and 3 without using
the earlier digits. The phenomenon is based on the formula

π =
∞∑
i=0

1

16i

(
4

8i+ 1
− 2

8i+ 4
− 1

8i+ 5
− 1

8i+ 6

)
. (28)

On August 27, 2012, Ed Karrel used (28) to extract 25 hex digits of π starting after the 1015 position.
They are 353CB3F7F0C9ACCFA9AA215F2.15 In 1990 a billion digits had not yet been computed, see
[80], and even now it is inconceivable to compute the full first quadrillion digits in any base.

Over this period the use of the computer has become more routine even in pure mathematics, and
concrete mathematics is back in fashion. In this spirit, we record the following evaluation of ζ(2),
which to our knowledge first appeared as an exercise in [82].

Theorem 2 (Sophomore’s Dream). One may square term-wise to obtain(
∞∑

n=−∞

(−1)n

2n+ 1

)2

=
∞∑

n=−∞

1

(2n+ 1)2
. (29)

In particular ζ(2) = π2/6.

Proof. Let

δN :=
N∑

n=−N

N∑
m=−N

(−1)m+n

(2m+ 1)(2n+ 1)
−

N∑
k=−N

1

(2k + 1)2
,

and note that δN =
∑N

n=−N
(−1)n
(2n+1)

∑N
n 6=m=−N

(−1)m
m−n . We leave it to the reader to show that for large

N the inner sum εN(n) is of order 1/(N − n+ 1), which goes to zero.
The proof is finished by evaluating the left side of (29) to π2/4 using Gregory’s formula (6) and then

noting that this means
∑∞

n=0 1/(2n+ 1)2 = π2/8.

Another potent and concrete way to establish an identity is to obtain an appropriate differential
equation. For example, consider

f(x) :=

(∫ x

0

e−s
2

ds

)2

and g(x) :=

∫ 1

0

exp(−x2(1 + t2))

1 + t2
dt.

The derivative of f + g is zero: in Maple,
15All processing was done on four NVIDIA GTX 690 graphics cards (GPUs) installed in CUDA; the computation took 37 days.

CUDA is a parallel computing platform and programming mode developed by NVIDIA for use in their graphics processing units
(GPUs).
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f:=x->Int(exp(-s^2),s=0..x)^2;

g:=x->Int(exp(-x^2*(1+t^2))/(1+t^2),t=0..1);

with(student):d:=changevar(s=x*t,diff(f(x),x),t)+diff(g(x),x);

d:=expand(d);

shows this. Hence, f(x) + g(x) is constant for 0 ≤ x ≤ ∞ and so, after justifying taking the limit at
∞, (∫ ∞

0

exp(−t2) dt
)2

= f(∞) = g(0) = arctan(1) =
π

4
.

Thus, we have evaluated the Gaussian integral using only elementary calculus and Gregory’s formula
(6). The change of variables t2 = x shows that this evaluation of the normal distribution agrees with
Γ(1/2) =

√
π.

In similar fashion, we may evaluate

F (y) :=

∫ ∞
0

exp(−x2) cos(2xy) dx

by checking that it satisfies the differential equation F ′(y) + 2y F (y) = 0. We obtain

F (y) =

√
π

2
exp(−y2),

since we have just evaluated F (0) =
√
π/2.
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6. CONCLUDING REMARKS.

It’s generally the way with progress that it looks much greater than it really is. – Ludwig Wittgenstein16

It is a great strength of mathematics that ‘old’ and ‘inferior’ are not synonyms. As we have seen in this
selection, many seeming novelties are actually rediscoveries. That is not at all a bad thing, but it does
behoove authors to write “I have not seen this before” or “this is to my knowledge new” rather than
unnecessarily claiming ontological or epistemological primacy.
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A. APPENDIX: I. NIVEN - THE TRANSCENDENCE OF π [14]

Among the proofs of the transcendence of e, which are in general variations and simplifications of the
original proof of Hermite, perhaps the simplest is that of A. Hurwitz.17 His solution of the problem
contains an ingenious device, which we now employ to prove the transcendence of π.

We assume that π is an algebraic number, and show that this leads to a contradiction. Since the
product of two algebraic numbers is an algebraic number, the quantity iπ is a root of an algebraic
equation with integral coefficients

θ1(x) = 0, (30)

whose roots are α1 = iπ, α2, α3, . . . , αn. Using Euler’s relation eiπ + 1 = 0, we have

(eα1 + 1) (eα2 + 1) · · · (eαn + 1) = 0. (31)

We now construct an algebraic equation with integral coefficients whose roots are the exponents in the
expansion of (2). First consider the exponents

α1 + α2, α1 + α3, α2 + α3, . . . , αn−1 + αn. (32)
17A. Hurwitz, Beweis der Transendenz der Zahl e, Mathematische Annalen, vol. 43, 1893, pp. 220-221 (also in his Mathematische

Werke, vol. 2, pp. 134-135).
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By equation (30), the elementary symmetric functions of α1, α2, . . . , αn are rational numbers. Hence
the elementary symmetric functions of the quantities (32) are rational numbers. It follows that the
quantities (32) are roots of

θ2(x) = 0, (33)

an algebraic equation with integral coefficients. Similarily, the sums of the α’s taken three at a time are
the nC3 roots of

θ3(x) = 0. (34)

Proceeding in the same way, we obtain

θ4(x) = 0, θ5(x) = 0, . . . , θn(x) = 0, (35)

algebraic equations with integral coefficients, whose roots are the sums of the α’s taken 4, 5, · · · , n
at a time respectively. The product equation

θ1(x)θ2(x) · · · θn(x) = 0, (36)

has roots that are precisely the exponents in the expansion of (31).

The deletion of zero roots (if any) from equation (36) gives

θ(x) = cxr + c1x
r−1 + · · ·+ cr = 0, (37)

whose roots β1, β2, . . . , βr are the non-vanishing exponents in the expansion of (31), and whose
coefficients are integers. Hence (31) may be written in the form

eβ1 + eβ2 + · · ·+ eβr + k = 0, (38)

where k is a positive integer.

We define

f(x) =
csxp−1 {θ(x)}p

(p− 1)!
, (39)

where s = rp− 1, and p is a prime to be specified. Also, we define

F (x) = f(x) + f (1)(x) + f (2)(x) + · · ·+ f (s+p+1)(x), (40)

noting, with thanks to Hurwitz, that the derivative of e−xF (x) is −e−xf(x). Hence we may write

e−xF (x)− e0F (0) =

∫ x

0

−e−ξf(ξ)dξ.
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The substitution ξ = τx produces

F (x)− exF (0) = −x
∫ 1

0

e(1−τ)xf(τx)dτ.

Let x range over the values β1, β2, . . . , βr and add the resulting equations. Using (38) we obtain

r∑
j=1

F (βj) + kF (0) = −
r∑
j=1

βj

∫ 1

0

e(1−τ)βjf(τβj)dτ. (41)

This result gives the contradiction we desire. For we shall choose the prime p to make the left side a
non-zero integer, and make the right side as small as we please.

By (39), we have

r∑
j=1

f (t) = 0, for 0 ≤ t < p.

Also by (39) the polynomial obtained by multiplying f(x) by (p− 1)! has integral coefficients. Since
the product of p consecutive positive integers is divisible by p!, the pth and higher derivatives of
(p− 1)!f(x) are polynomials in x with integral coefficients divisible by p!. Hence the pth and higher
derivatives of f(x) are polynomials with integral coefficients, each of which is divisible by p. That each
of these coefficients is also divisible by cs is obvious from the definition (39). Thus we have shown that,
for t ≥ p, the quantity f (t)(βj) is a polynomial in βj of degree at most s, each of whose coefficients
is divisible by pcs. By (37), a symmetric function of β1, β2, . . . , βr with integral coefficients and of
degree at most s is an integer, provided that each coefficient is divisible by cs (by the fundamental
theorem on symmetric functions). Hence

r∑
j=1

f (1)(βj) = pkt, (t = p, p+ 1, · · · , p+ s)

where the kt are integers. It follows that

r∑
j=1

F (βj) = p
n+s∑
t=p

kt.

In order to complete the proof that the left side of (41) is a non-zero integer, we now show that
kF (0) is an integer that is prime to p. From (39) it is clear that

f (t)(0) = 0, (t = 0, 1, · · · , p− 2)

f (p−1)(0) = cscpr,

f (t)(0) = pKt, (t = p, p+ 1, · · · , p+ s)
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where the Kt are integers. If p is chosen greater than each of k, c, cr (possible since the number of
primes is infinite), the desired result follows from (40).

Finally, the right side of (41) equals

−
r∑
j=1

1

c

∫ 1

0

{crβjθ(τβj)}p

(p− 1)!
e(1−r)βjdτ.

This is a finite sum, each term of which may be made as small as we wish by choosing p very large,
because

lim
p→∞

{crβjθ(τβj)}p

(p− 1)!
= 0.
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