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1 Introduction

The genesis of the material in this note can be found in the first author’s paper [2], where, among
other things, it was shown that weak Hadamard and Fréchet differentiability coincide for continuous
convex functions on Asplund spaces. This was expanded upon by the first author and M. Fabian in
[3] where relationships between various forms of differentiability for convex functions were connected
with sequential convergence of the related topologies in the dual space. In late 1993 whilst Simon
Fitzpatrick was visiting Simon Fraser University, he played a key role in producing the paper [5]
—which among other things connected boundedness properties of convex functions with sequential
convergence of related topologies in the dual space. A few years later, S. Simons [24] produced
examples of continuous convex functions whose biconjugates are not continuous and asked which
classes of Banach spaces admit such examples. The answer, as shown in [8], was connected to
sequential convergence in dual topologies and used techniques that had been developed in [5].

Our goal is to more thoroughly understand how properties of convex functions on Banach spaces are
connected to sequential convergence with respect to various topologies in the dual space. To this end,
the next two sections survey some of the key techniques and results in this topic. In the final section
of this note, we build on ideas of Simon Fitzpatrick’s (from [5]) to develop a new characterization
concerning extensions of convex functions and use it to show that any continuous convex function on
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a Banach space Y can be extended to a continuous convex function on a Banach space X for which
X/Y is separable. This answers a question implicitly found in [8, p. 1802].

We now introduce some of the notation that we will use in this article. We will work in real Banach
spaces X, whose unit ball and unit sphere are denoted by BX and SX respectively. As in [19, p.
59] we say a bornology on X is a family of bounded sets whose union is all of X, which is closed
under reflection through the origin and under multiplication by positive scalars, and the union of
any two members of the bornology is contained in some member of the bornology. We will denote
a general bornology by β, but our attention will focus on the following three bornologies: F the
Gâteaux bornology of all finite sets; W the weak Hadamard bornology of weakly compact sets; and
B the Fréchet bornology of all bounded sets. Given a bornology β on X, we will say a function
f : X → R ∪ {∞} is β-differentiable at x in the domain of f , if there is a φ ∈ X∗ such that for each
β-set S, the following limit exists uniformly for h ∈ S

lim
t→0

f(x+ th)− f(x)
t

= φ(h)

In particular, we say f is Gâteaux differentiable at x if β is the Gâteaux bornology. Similarly for
the weak-Hadamard and Fréchet bornologies. Also, given any bornology β on X, by τβ we mean
the topology on X∗ of uniform convergence on β-sets. In particular, τW is the Mackey topology of
uniform convergence on weakly compact sets, usually denoted by µ(X∗, X) in the theory of locally
convex spaces. Following [3], when we speak of the Mackey topology on X∗, we will mean µ(X∗, X).
Also, for ε ≥ 0, the ε-subdifferential of f at x0 in the domain of f is defined by

∂εf(x0) := {φ ∈ X∗ : φ(x)− φ(x0) ≤ f(x)− f(x0) + ε, for all x ∈ X}.

When ε = 0 in the above, this is just the subdifferential of f at x0, and is denoted by ∂f(x0).

2 Canonical Examples

We begin with constructions of convex functions that seem to be central to connecting their properties
with linear topological properties in the dual. The following result is essentially from [3, 5].

Proposition 2.1. Let {φn}∞n=1 ⊂ BX∗. Consider the functions from X into R ∪ {+∞} that are
defined as follows

f(x) := sup
n
{φn(x)− 1

n
, 0} g(x) := sup

n
(φn(x))2n h(x) :=

∞∑
n=1

(φn(x))2n

Then f , g and h are lower semicontinuous convex functions. Moreover

(a) f is β-differentiable at 0 if and only if φn →τβ
0 and, if this is the case, f is Lipschitz on X.

(b) g and h are bounded on β-sets if and only if φn →τβ
0 and, if this is the case, both functions

are continuous.

Proof. It is clear that the functions are lower semicontinuous and convex as sums and suprema of
such functions. We outline the other implications.

(a) Because f(0) = 0, and f ≥ 0, the only possibility is that f ′(0) = 0 if f is differentiable at 0. If
φn 6→τβ

0, we can find a β-set W and infinitely many n such that wn ∈W and φn(wn) > 2. Then for
such n, nf( 1

nwn) ≥ 1 from which it follows that f is not β-differentiable at 0.
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Conversely, if φn →τβ
0, then f is Lipschitz since {φn} is bounded. Moreover, given any ε > 0 and

any β-set W , there is an n0 ∈ N such that φn(w) < ε for all n > n0 and w ∈W . Now for t sufficiently
small, it follows that φn(tw)− 1

n ≤ 0 for all n ≤ n0 and all w ∈ W . Hence for sufficiently small t we
have f(tw)− f(0) ≤ ε|t| for all w ∈W . Thus f is β-differentiable at 0 with f ′(0) = 0.

(b) If φn →τβ
0, it is straightforward to check that g and h are bounded on β-sets. As finite-

valued lower semicontinuous convex functions, f and g are continuous (see e.g. [19, Proposition 3.3]).
Conversely, if φn 6→τβ

0, then we can find a β-set W such that φn(wn) > 2 for infinitely many n where
wn ∈W . Then neither g nor h is bounded on W .

We refer to the previous examples as “canonical” because they are natural constructions that
capture the essence of how convex functions can behave when comparing various bornological notions
of boundedness or differentiability. The next proposition follows from combining results from [3, 5, 6].

Proposition 2.2. Let X be a Banach space. Then the following are equivalent.

(a) Mackey and norm convergence coincide sequentially in X∗.

(b) Every sequence of lower semicontinuous convex functions that converges to a continuous affine
function uniformly on weakly compact sets converges uniformly on bounded sets to the affine function.

(c) Every continuous convex function that is bounded on weakly compact subsets of X is bounded
on bounded subsets of X.

(d) Weak Hadamard and Fréchet differentiability agree for continuous convex functions.

Proof. (a)⇒ (b): Suppose {fn} is a sequence of lower semicontinuous convex functions that converges
uniformly on weakly compact sets to some continuous affine function A. By replacing fn with fn−A
we may assume that A = 0. Now suppose fn does not converge to 0 uniformly on bounded sets. Thus
there are K > 0, {xk}k≥1 ⊂ KBX and ε > 0 so that fnk

(xk) > ε for a certain subsequence {nk} of {n}
(using convexity and the fact that fnk

(0) → 0). Now let Ck := {x : fnk
(x) ≤ ε} and choose φk ∈ SX∗

such that supCk
φk < φk(xk) ≤ K. We observe that φk do not converge to 0 in τW by (a). Find a

weakly compact set C ⊂ X so that supC φk > K for infinitely many k. We have supC φk = φk(ck)
for some ck ∈ C, and ck 6∈ Ck (so fnk

(ck) > ε) for infinitely many k, which contradicts the uniform
convergence to 0 of (fn) on C.

Now (b) implies (d) follows because difference quotients are lower semicontinuous convex functions,
and (d) implies (a) follows from Proposition 2.1.

Finally, (c) implies (a) follows from Proposition 2.1, so we conclude by establishing (a) implies (c).
For this, we suppose (c) is not true. We can find then a continuous convex function f that is bounded
on weakly compact subsets of X and not bounded on all bounded subsets of X. We may assume
f(0) = 0 and we let {xn} be a bounded sequence such that f(xn) > n, and let Cn := {x : f(x) ≤ n}.
By the separation theorem, choose φn ∈ SX∗ such that supCn

φn < φn(xn). Now choose K > 0 such
that K > φn(xn) for all n. If φn 6→τ W 0, then there is a weakly compact set W ⊂ X and infinitely
many n such that φn(wn) > K and wn ∈W . In particular, wn 6∈ Cn for those n and so f is unbounded
on W . Thus (a) is not true when (c) is not true.

The Banach spaces for which (a) in the previous proposition is true are precisely those that do not
contain an isomorphic copy of `1 [3, 18]. We conclude this section with a bornological extension of
Proposition 2.2 that combines results from [3, 5, 6].
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Theorem 2.3. Let X be a Banach space with bornologies β1 ⊂ β2. Then the following are equivalent.

(a) τβ1 and τβ2 agree sequentially in X∗.

(b) Every sequence of lower semicontinuous functions on X that converge to a continuous affine
function uniformly on β1-sets, converges uniformly on β2-sets.

(c) Every continuous convex function on X that is bounded on β1-sets is bounded on β2-sets.

(d) β1-differentiability agrees with β2-differentiability for continuous convex functions on X.

(e) β1-differentiability agrees with β2-differentiability for equivalent norms on X.

Proof. The equivalence of (a) and (e) follows from [3, Theorem 1]. The equivalence of (a), (b), (c)
and (d) is proved by naturally modifying the proof of Proposition 2.2. However, there is a subtlety in
the proof of (a) ⇒ (b). While the fact that {φk} 6→ 0 in the norm topology was automatic, to show
that {φk} 6→ 0 in the β2-topology one should additionally show that eventually supCk

φk > δ > 0 for
some δ > 0. For this, let Fn := {x ∈ X : fk(±x) ≤ ε for all k ≥ n}. Since {fn} converges pointwise to
0,

⋃
n≥1 Fn = X. The Baire category theorem ensures that Fn̄ has nonempty interior for some n̄ ∈ N ,

and because Fn̄ is a symmetric convex set, for some δ > 0 we have that δBX ⊂ Fn̄. Consequently, for
nk ≥ n̄, supCk

φk > δ.

In the next section we will delineate how this theorem applies in various classes of Banach spaces.
To avoid excessive redundancy, we will highlight only conditions (a), (c) and (d) from Theorem 2.3
in our statements.

3 Characterizations of Various Classes of Spaces

In this section we provide a listing of various classifications of Banach spaces in terms of properties of
convex functions. Many of the implications follow from Theorem 2.3 or dualization of the arguments
upon which it is based. We will organize these results based upon when two of the following notions
(Gâteaux, weak Hadamard or Fréchet) differentiability coincide for continuous convex functions on a
space, and then for continuous weak∗-lower semicontinuous functions on the space.

First, we consider when Gâteaux and Fréchet differentiability coincide for continuous convex func-
tions.

Theorem 3.1. For a Banach space X, the following are equivalent.

(a) X is finite dimensional.

(b) Weak∗ and norm convergence coincide sequentially in X∗.

(c) Every continuous convex function on X is bounded on bounded subsets of X.

(d) Gâteaux and Fréchet differentiability coincide for continuous convex functions on X.

Proof. The equivalence of (a) and (b) is the decidedly nontrivial Josefson-Nissenzweig Theorem (see,
for example, [10, p. 219]). The equivalence of (b) through (d) is a direct consequence of Theorem 2.3
with the Gâteaux and Fréchet bornologies.
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In particular, on every infinite dimensional Banach space there is a continuous convex function that
is unbounded on a ball and that assertion is equivalent to the Josefson-Nissenzweig Theorem.

Next, we consider when Gâteaux and weak Hadamard differentiability coincide. As in [4], we will
say a Banach space possess the DP∗-property if weak∗ and Mackey convergence (uniform convergence
on weakly compact subsets of X) coincide sequentially in X∗. Recall that a Banach space is said to
be a Grothendieck space if weak∗ and weak convergence coincide sequentially in X∗. A Banach space
is said to have the Dunford-Pettis property if 〈x∗n, xn〉 → 0 whenever xn →w 0 and x∗n →w 0. It is
straightforward to verify that a Banach space has the Dunford-Pettis property if and only if weak∗

and Mackey convergence agree sequentially in X∗, so a space has DP∗-property if it is a Grothendieck
space with the Dunford-Pettis property. Hence the spaces `∞(Γ) for any index set Γ have the DP∗-
property as they are C(K) spaces for K Stonian and so Grothendieck (see [11, pp. 156,179]) and they
have the Dunford-Pettis property (see, for example, [12, Theorem 11.36]). On the other hand, trivially
every space with the DP∗-property has the Dunford-Pettis property; however, there are spaces with
the DP∗-property which are not Grothendieck, such as `1 (every Grothendieck separable space is
reflexive); see the remarks after Theorem 3.2.

Theorem 3.2. For a Banach space X, the following are equivalent.

(a) X has the DP∗-property.

(b) Gâteaux and weak Hadamard differentiability coincide for all continuous convex functions on X.

(c) Every continuous convex function on X is bounded on weakly compact subsets of X.

Proof. This is a direct consequence of Theorem 2.3 using the Gâteaux and weak Hadamard bornolo-
gies.

Because `∞ has the DP∗-property, the previous theorem applies in spaces where the relatively
compact sets and relatively weakly compact sets form different bornologies. Recall that a subset L
of a Banach space X is called limited if every weak∗-null sequence in X∗ converges to 0 uniformly
on L. Then RK ⊂ L ⊂ B, where RK is the collection of the relatively compact subsets, L of the
limited subsets and B of the bounded subsets. The Josefson-Nissenzweig Theorem says that in infinite
dimensional Banach spaces, L 6= B. A Banach space is called Gelfand-Phillips if RK = L. If BX∗

is weak∗-sequentially compact, then X is Gelfand-Phillips (for these results, see [10, p. 116, 224 and
238]), while `∞ is not Gelfand-Phillips. Moreover, for a given bornology β in X, τβ and weak∗ agree
sequentially if and only if β ⊂ L. In particular, a Banach space has property DP ∗ if and only if
W ⊂ L, where as before W denotes the bornology of weakly compact subsets of X. If a Banach space
is DP ∗ and Gelfand-Phillips (for example, the space `1) then it is Schur, and every Schur space has
the DP ∗ property.

We now turn to spaces where weak Hadamard and Fréchet differentiability coincide for continuous
convex functions. Analogous to the previous result, these are not the spaces where the weak Hadamard
and Fréchet bornologies coincide—but where the dual topologies they induce agree sequentially.

Theorem 3.3. For a Banach space X, the following are equivalent.

(a) X 6⊃ `1.

(b) Mackey and norm convergence coincide sequentially in X∗.
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(c) Weak Hadamard and Fréchet differentiability coincide for continuous convex functions on X.

(d) Every convex function on X bounded on weakly compact sets is bounded on bounded sets.

Proof. The equivalence of (a) and (b) is established in both [18] and [25]; see also [3, Theorem 5].
The equivalence of (b) through (d) is in Proposition 2.2.

We now consider analogous situations for weak∗-lower semicontinuous convex functions. Recall
that a Banach space has the Schur property if its weakly convergent sequences are norm convergent.

Let us also recall that a function f is said to be supercoercive if lim
‖x‖→∞

f(x)
‖x‖

= ∞, while f is said to

be cofinite if its conjugate f∗ is defined everywhere on X∗; see [1, pp. 623,624]. A convex function is
β-subdifferentiable if limt→0+

1
t [f(x + th) − f(x)] exists uniformly on h ∈ S, for every β-set S. For

the bornology B of bounded sets, this concept has been studied in, for example, [9, 13, 15].

Theorem 3.4. For a Banach space X, the following are equivalent.

(a) X has the Schur property.

(b) Gâteaux differentiability and Fréchet differentiability coincide for continuous weak∗-lower semi-
continuous convex functions on X∗.

(c) Each continuous weak∗-lower semicontinuous convex function on X∗ is bounded on bounded subsets
of X∗.

(d) Every proper lower semicontinuous cofinite convex function on X is supercoercive.

(e) Gâteaux differentiability and weak Hadamard differentiability agree for Lipschitz functions on X.

(f) Gâteaux differentiability and weak Hadamard differentiability coincide for differences of Lipschitz
convex functions on X.

(g) Every continuous convex function on X is weak Hadamard subdifferentiable.

Proof. The equivalence of (a) through (c) follows by dualizing the proof of Theorem 2.3 (see e.g. [4,
Theorem 4.1]). See [1, Theorem 3.6] for the equivalence of the supercoercivity assertion (e) with (c).
It follows from the definitions involved that (a) implies each of (e), (f) and (g) which also uses the
local Lipschitzian property of continuous convex functions. Also, (e) implies (f) is trivial, the more
subtle results that (f) and (g) each imply (a) can be found in [7, Proposition 8].

The conditions (e), (f) and (g) deal with concepts that are outside the main focus of this note.
However, we feel it is important to mention them, because they show the sharpness of Theorem 2.3 in
various senses. For example, it follows from Theorem 3.2 that Gâteaux and weak Hadamard differen-
tiability agree for continuous convex functions on `∞. However, these two notions of differentiability
do not coincide even for differences of Lipschitz convex functions on `∞ by (f) of the previous theorem.
See [7] for further results showing that continuous convex functions cannot be replaced by differences
of continuous convex functions in Theorem 2.3 and that differentiability cannot be replaced with
subdifferentiability—at least for certain important bornologies.

Theorem 3.5. For a Banach space X, the following are equivalent.
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(a) X has the Dunford-Pettis Property.

(b) Weak and Mackey convergence coincide sequentially in X∗.

(c) Gâteaux differentiability and weak Hadamard differentiability coincide for continuous weak∗-lower
semicontinuous convex functions on X∗.

(d) Each continuous weak∗-lower semicontinuous convex function on X∗ is bounded on weakly compact
subsets of X∗.

Proof. This is a dualization of Theorem 2.3; see e.g. [4, Theorem 4.2].

Our last result regarding classes of differentiability for weak∗-lower semicontinuous functions is as
follows.

Theorem 3.6. For a Banach space X, the following are equivalent.

(a) Every sequence in X considered as a subset of X∗∗ that converges uniformly on weakly compact
subsets of X∗, converges in norm (i.e. Mackey convergence in X∗∗ agrees with norm convergence for
sequences in X).

(b) Weak Hadamard and Fréchet differentiability coincide for continuous weak∗-lower semicontinuous
convex functions on X∗.

(c) Every weak∗-lower semicontinuous convex function on X∗ that is bounded on weakly compact
subsets of X∗ is bounded on bounded subsets of X∗.

Proof. We will sketch the proof of the equivalence of (a) and (c), because we have not seen this
theorem elsewhere in the literature. (a) ⇒ (c): Suppose that f : X∗ → R is a convex and weak∗-lower
semicontinuous function bounded on weakly compact subsets of X∗. We may and do assume f(0) = 0.
Suppose that f is unbounded on KBX∗ for some K > 0. Let Cn := {x∗ : f(x∗) ≤ n}, a weak∗-closed
subset of X∗, n ∈ N. Now there are xn ∈ SX and x∗n ∈ KBX∗ so that K ≥ xn(x∗n) > supCn

xn. From
(a) it follows that xn 6→τ W 0. Then find a weakly compact set W ⊂ X∗ such that supW xn > K for
infinitely many n, and get that f is unbounded on W , a contradiction. To prove (c) ⇒ (a), apply
Proposition 2.1 with functionals xn →τ W 0 but ‖xn‖ 6→ 0. The equivalence of (a) and (b) follow
similarly from dualization of Theorem 2.3.

Note that the previous theorem applies to spaces X such that X does not have the Schur property
and X∗ ⊃ `1: for example X = `1 ⊕ `2. So this provides information that cannot be deduced from
Theorem 3.4 or Theorem 3.3.

Finally, we will consider two further classes of spaces; first, Grothendieck spaces because of their
significance to the continuity of bi-conjugate functions, and second, dual spaces with the Schur prop-
erty.

Theorem 3.7. For a Banach space X, the following are equivalent.

(a) X is a Grothendieck space.

(b) For each continuous convex function f on X, every weak∗-lower semicontinuous convex extension
of f to X∗∗ is continuous.
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(c) For each continuous convex function f on X, f∗∗ is continuous on X∗∗.

(d) For each continuous convex function f on X, there is at least one weak∗-lower semicontinuous
convex extension of f to X∗∗ that is continuous.

(e) For each Fréchet differentiable convex function f on X, there is at least one weak∗-lower semi-
continuous convex extension of f to X∗∗ that is continuous.

Proof. This proof again uses many ideas from Theorem 2.3 working with weak and weak∗ topologies
in X∗. The details are available in [8, Theorem 2.1].

Other characterizations of Grothendieck spaces concerning weak∗-lower semicontinuous convex ex-
tensions that preserve points of Gâteaux differentiability are given in [14]. For further information
on Grothendieck spaces and related spaces, see [10, 11, 16].

Theorem 3.8. For a Banach space X, the following are equivalent.

(a) X∗ has the Schur property.

(b) X 6⊃ `1 and X has the Dunford-Pettis property.

(c) If f : X → R is a continuous convex function such that f∗∗ is continuous, then f is bounded on
bounded sets.

Proof. See [10, p. 212] for the equivalence of (a) and (b). See [8, Proposition 2.4] for the equivalence
of (a) and (c) which uses Theorem 3.4 and ideas as needed in Theorem 3.7.

4 Extension of Convex Functions

We now consider the question of extending convex functions to preserve continuity:

Question 4.1. Suppose Y is a closed subspace of a Banach space X. If f : Y → R is a continuous
convex function, is there a continuous convex function f̃ : X → R such that f̃ |Y = f? That is can f
be extended to a continuous convex function on X?

First, we present an example showing that such extensions are not always possible.

Example 4.2. Let Y = c0 or `p with 1 < p <∞. Let h : Y → R be defined by h(y) =
∑∞

n=1(e
∗
n(y))2n

where e∗n are the coordinate functionals. If Y is considered as a subspace of `∞, then h cannot be
extended to a continuous convex function on `∞.

Proof. Because e∗n →w∗ 0, Example 2.1 shows that h is a continuous convex function. However, h is
not bounded on the weakly compact set {2en}∞n=1 ∪ {0}. Now `∞ is a space with the DP∗-property
and so Theorem 3.2 shows every continuous convex function on `∞ is bounded on weakly compact
subsets of `∞. Therefore, h cannot be extended to a continuous convex function on `∞.

We refer the reader to [8, Theorem 2.3] for a more general formulation of Example 4.2: such
examples exist whenever we consider an extension from a Gelfand-Phillips space that is not Schur, to
a superspace with the DP∗-property. We should also point out that in the case Y = c0, the preceding
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provides an example of a continuous convex function f whose biconjugate fails to be continuous; see
[24]. Before proceeding, observe that there are natural conditions that can be imposed on f that allow
it to be extended to any superspace. For example, if f is Lipschitz (just consider an infimal convolution
with an appropriate multiple of the norm on X, i.e., f̃(x) := inf{f(y) + (L + 1)‖y − x‖; y ∈ Y },
where L is the Lipschitz constant of f). More generally, the extension can be done if f is bounded
on bounded sets (see for example [8, p. 1801]). However, our present goal is to find conditions on X
and/or Y for which every continuous convex function on Y can be extended to a continuous convex
function on X. A well-known natural condition where this is true is recorded as

Remark 4.3. Suppose Y is a complemented subspace of a Banach space X. Then every continuous
convex function on Y can be extended to a continuous convex function on X.

Proof. Let f : Y → R be continuous and convex. Then f̃(x) := f(P (x)), where P : X → Y is a
continuous linear projection, is one such extension.

In light of Example 4.2, the above remark doesn’t extend to quasicomplements because c0 is qua-
sicomplemented in `∞; see [12, Theorem 11.42].

We were not aware of any existing result in the literature providing a positive answer to Question 4.1
even in the case X is separable when no additional restrictions are placed on the continuous convex
function f and the closed subspace Y ; this is why we consider that Corollary 4.10 below may have
some interest. To address this, we will consider ‘generalized canonical’ examples which will allow us
to, in some respects, capture the essence of all convex functions on the space. In this section, all nets
{φn,α}α∈An,n∈N, where An are nonempty sets, are directed by (n, α) ≤ (m,β) if and only if n ≤ m.
Thus, φn,α →w∗ 0 if for each ε > 0 and x ∈ X, there exists n0 ∈ N such that |φn,α(x)| < ε whenever
α ∈ An and n ≥ n0.

Proposition 4.4. Let {φn,α} ⊂ X∗ be a bounded net. Consider the lower semicontinuous convex
functions f : X → R ∪ {∞} that are defined as follows

f(x) := sup
n,α
{φn,α(x)− an,α, 0} and g(x) := sup

n,α
n(φn,α(x))2n

where bn ≤ an,α ≤ cn and bn ↓ 0, cn ↓ 0. Then

(a) f is β-differentiable at 0 if and only if φn,α →τβ
0. If this is the case, f is Lipschitz on X.

(b) g is bounded on β-sets if and only if φn,α →τβ
0. If this is the case, g is continuous.

Proof. Follow the details of the proof of Proposition 2.1.

We include the following fact for completeness, as we will have occasion to use it in what follows.

Lemma 4.5. Let Y be a closed subspace of a Banach space X, and let ε ≥ 0. Suppose f : Y → R is
continuous and convex, and suppose f̃ : X → R is a continuous convex extension of f . If φ ∈ ∂εf(y0),
then there is an extension φ̃ ∈ X∗ of φ such that φ̃ ∈ ∂εf̃(y0).

Proof. By shifting f , we may without loss of generality assume that f(0) = −1. Let φ ∈ ∂εf(y0)
and let a := φ(y0) − f(y0) + ε. Then f(y) − f(y0) + ε ≥ φ(y − y0) for all y ∈ Y . In particular,
f(0)−f(y0)+ε ≥ −φ(y0), so a ≥ 1. Moreover, considering (φ,−1) as an element of (Y ×R)∗ we have
(φ,−1)(y, t) = φ(y) − t ≤ φ(y) − f(y) ≤ a for all (y, t) ∈ epi f . Now define the continuous sublinear
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function ρ : X × R → [0,∞) by ρ := aµepi f̃ where µepi f̃ is the Minkowski functional of the epigraph
of f̃ . Then (φ,−1) ≤ ρ on Y × R. According to the Hahn-Banach theorem, (φ,−1) extends to a
continuous linear functional (φ̃,−1) on X ×R that is dominated by ρ. Therefore, (φ̃,−1)(x, t) ≤ a if
(x, t) ∈ epi f̃ which implies φ̃ ∈ ∂εf̃(y0).

Corollary 4.6. Suppose Y is a closed subspace of a Banach space X. Suppose f : Y → R and
g : X → R are continuous convex functions such that f ≤ g|Y . If, for some ε ≥ 0 we have φ ∈ ∂εf(y0)
then φ can be extended to a continuous linear functional φ̃ such that f(y0) + φ̃(x− y0) ≤ g(x) + ε for
all x ∈ X.

Proof. Let φ ∈ ∂εf(y0). Then φ ∈ ∂rg|Y (y0) where r := g(y0) − f(y0) + ε. Apply Lemma 4.5 to
obtain φ̃ such that

φ̃(x)− φ̃(y0) ≤ g(x)− g(y0) + g(y0)− f(y0) + ε, for all x ∈ X,

from which the conclusion is immediate.

Lemma 4.7. Let Y be a closed subspace of X, and suppose f : Y → R and g : X → R are
continuous convex functions such that f ≤ g|Y . Then f can be extended to a continuous convex
function f̃ : X → R such that f̃ ≤ g.

Proof. For each y ∈ Y , choose φy ∈ ∂f(y). Let φ̃y be an extension as given by the Corollary 4.6.
Now define f̃(x) := supy∈Y f(y) + φ̃y(x− y) for x ∈ X.

The following theorem provides a useful condition for determining when every continuous convex
function on a given subspace of a Banach space can be extended to the whole space.

Theorem 4.8. Suppose Y is a closed subspace of a Banach space X. Then the following are equiva-
lent.

(a) Every continuous convex function f : Y → R can be extended to a continuous convex function
f̃ : X → R.

(b) Every bounded net {φn,α} ⊂ Y ∗ that converges weak∗ to 0 can be extended to a bounded net
{φ̃n,α} ⊂ X∗ that converges weak∗ to 0.

Proof. (a) ⇒ (b). Suppose {φn,α} is a bounded net in Y ∗ that converges weak∗ to 0, and without
loss of generality suppose ‖φn,α‖ ≤ 1 for all n, α. Now define

f(y) := sup
n,α

(φn,α(y))2n.

Then f : Y → R is a continuous convex function (as in Proposition 4.4), so we extend it to a
continuous convex function f̃ : X → R. Now let Cn := {x ∈ X : f̃(x) ≤ 22n}. Observe that f̃(0) = 0,
and so the continuity of f̃ at 0 implies that there is an ε > 0 so that f̃(x) ≤ 1 for all ‖x‖ ≤ ε. Then

εBX ⊂ Cn and Cn ∩ Y ⊂ {x : φn,α(x) ≤ 2}.

Define the sublinear function pn := 2µCn . Then φn,α(y) ≤ pn(y) for all y ∈ Y . By the Hahn-Banach
theorem, extend φn,α to φ̃n,α so that φ̃n,α(x) ≤ pn(x) for all x ∈ X. Then ‖φ̃n,α‖ ≤ 2/ε. Now let us
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suppose that {φ̃n,α} does not converge weak∗ to 0. Then we can find x0 ∈ X, a subsequence {nk} of
{n} and a sequence (αk) such that φ̃nk,αk

(x0) > 2 for all k. Thus x0 6∈ Cn for infinitely many n, and
so f̃(x0) > 22n for infinitely n. Thus f̃(x0) = ∞ which contradicts the continuity of f̃ .

(b) ⇒ (a): Suppose f : Y → R is a continuous convex function. Without loss of generality we may
assume f(0) = 0. Now define Cn := {y ∈ Y : f(y) ≤ n}. Because f is continuous, there is a δ > 0
such that δBY ⊂ Cn for each n ∈ N. Thus we can write

Cn =
⋂
α

{y ∈ Y : φn,α(y) ≤ 1}

where ‖φn,α‖ ≤ 1/δ for all n ∈ N and α ∈ An (An can be chosen as a set with cardinality the density
of Y ). Also, {φn,α} converges weak∗ to 0, otherwise there would be a y0 ∈ Y , a subsequence {nk} of
{n} and a sequence {αk} such that φnk,αk

(y0) > 1 for all k. Consequently, y0 6∈ Cn for infinitely many
n which would yield the contradiction f(y0) = ∞. Thus, by the hypothesis of (b), {φn,α} extends to
a bounded net {φ̃n,α} ⊂ X∗ that converges weak∗ to 0. Now define

g(x) := supn(φ̃n,α(x))2n + 1.

Then g : X → R is a continuous convex function (Proposition 4.4). Moreover, g(y) ≥ f(y) for all
y ∈ Y ; this is because g(x) ≥ 1 for all x ∈ X, and if n − 1 < f(y) ≤ n where n ≥ 2, then y 6∈ Cn−1

and so φn−1,α0(y) > 1 for some α0 which implies g(y) > (n− 1)+1 ≥ f(y). According to Lemma 4.7,
there is a continuous convex extension f̃ : X → R of f .

We now show that Theorem 4.8(b) is satisfied when X/Y is separable. This is a direct consequence
of a theorem of Rosenthal’s [22] as we now outline for completeness. Recall that a Banach space X is
said to be injective if for each superspace Z of X, there is a continuous linear projection mapping Z
onto X; in the event that there is a norm 1 linear projection from Z onto X for each superspace Z,
then X is said to be 1-injective; see Zippin’s article [26] and [17, Section 2.f] for further information
concerning this subject.

Theorem 4.9. Let X be a Banach space, Y a closed subspace such that X/Y is separable. Let
{φn,α}α∈An,n∈N be a weak∗-null net in Y ∗ such that ‖φn,α‖ ≤ 1 for all α ∈ An, n ∈ N . Then, for
every ε > 0 there exists a weak∗-null net {φ̃n,α}α∈An,n∈N of elements in X∗ such that ‖φ̃n,α‖ ≤ 2 + ε
and φ̃n,α extends φn,α for all α ∈ An, n ∈ N.

Proof. Define a bounded linear operator T : Y → (
∑∞

n=1 `∞(An))c0 by T (y) := ({φn,α(y)}α∈An)n;
then ‖T‖ ≤ 1. Now using the following extension theorem of H. P. Rosenthal (see [22]): Let Z1, Z2, . . .
be 1-injective Banach spaces, X, Y be Banach spaces with Y ⊂ X and X/Y separable, and set
Z := (

∑∞
i=1 Zi)c0. Then for every non-zero operator T : Y → Z and every ε > 0, there exists

T̂ : X → Z extending T with ‖T̂‖ < (2 + ε)‖T‖. According to this result, T defined above extends to
T̂ : X → (

∑∞
n=1 `∞(An))c0 with ‖T̂‖ < 2 + ε. Now let e∗n,α denote the coordinate functional so that

e∗n,α(x) := xα for x = (xi)i∈An ∈ `∞(An). Then e∗n,α(T (y)) = φn,α(y) for all y and φ̃n,α = e∗n,α ◦ T̂
extends φn,α. Because T̂ (x) ∈ (

∑∞
n=1 `∞(An))c0 , it follows that φ̃n,α →w∗ 0; moreover, ‖φ̃n,α‖ ≤

1‖T̂‖ < 2 + ε.

Our main application of Theorem 4.8 is
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Corollary 4.10. Suppose X is a Banach space and Y is a closed subspace of X such that X/Y is
separable. Then every continuous convex function f : Y → R can be extended to a continuous convex
function f̃ : X → R.

Proof. Apply Theorem 4.8 and Theorem 4.9.

Observe that Example 4.2 shows the previous corollary can fail ifX/Y is not separable, it also shows
it is not always possible to extend a continuous convex function from a separable closed subspace of a
Banach space X to a continuous convex function on the whole space X. The following result provides
a condition on X for which the latter is always possible.

Corollary 4.11. Suppose Y is a separable closed subspace of a Banach space X, where X has a
countably norming M -basis. Then every continuous convex function on Y can be extended to a
continuous convex function on X.

Proof. There is a separable subspace Y1 of X such that Y ⊂ Y1 and Y1 is complemented in X; see
[20]. Extend the continuous convex function to Y1 by Theorem 4.10 and then use Remark 4.3 to
extend it to X.

Clearly, if Y is an injective Banach space, then any continuous convex function can be extended to
any superspace according to Remark 4.3. Another class of spaces that allow extensions to superspaces
is as follows.

Proposition 4.12. Suppose Y is a C(K) Grothendieck space. Then any continuous convex function
f : Y → R can be extended to a continuous convex function f : X → R where X is any superspace of
Y .

Proof. Write Y ⊂ X. Then Y ∗∗ ∼= Y ⊥⊥ ⊂ X∗∗. According to [8, Theorem 2.1] (cf. Theorem 3.7), f
can be extended to a continuous convex function on Y ∗∗. Now, Y ∗∗ as the bidual of a C(K) space
is isomorphic to a C(K) space where K is compact Stonian (i.e. K is extremely disconnected); see
[23, p. 121]. Therefore, Y ∗∗ is injective; see [23, Theorem 7.10, p. 110]. According to Remark 4.3 the
extension of f to Y ⊥⊥ can further be extended to X∗∗ which contains X.

Observe that the previous proposition doesn’t work for general C(K) spaces, e.g. c0 ⊂ `∞, and
it fail for some Grothendieck spaces, e.g. `2 ⊂ `∞. More significantly, using some deep results in
Banach space theory one can conclude that the above proposition applies to some cases where Y is
not a complemented subset of X.

Remark 4.13. There are Grothendieck C(K) spaces that are not injective.

Proof. Let X be Haydon’s Grothendieck C(K) space that does not contain `∞ [16]. Because X 6⊃ `∞,
X is not injective by a theorem of Rosenthal’s ([21], or [17, Theorem 2.f.3]).

We have focused on preserving continuity in our extensions. One could similarly ask whether
extensions exist preserving a given point of differentiability. Again, negative examples in the same
spirit of Example 4.2 have been constructed. We sketch one such example similar to [4, Example 3.8].
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Example 4.14. Let Y = c0 or `p with 1 < p <∞. Let f : Y → R be defined by f(y) := sup{e∗n(y)−
1
n , 0} where e∗n are the coordinate functionals. Then there is no continuous convex extension of f to
`∞ that preserves the Gâteaux differentiability of f at 0.

Proof. This follows because Gâteaux and weak Hadamard differentiability coincide for continuous
convex functions on `∞ (see Theorem 3.2); cf. Example 4.2.

A positive result that is analogous to Theorem 4.8 is as follows.

Theorem 4.15. Suppose Y is a closed subspace of a Banach space X. Then the following are
equivalent.

(a) Every Lipschitz convex function f : Y → R that is Gâteaux differentiable at some y0 ∈ Y can be
extended to a Lipschitz convex function f̃ : X → R that is Gâteaux differentiable at y0.

(b) Every bounded net {φn,α} ⊂ Y ∗ that converges weak∗ to 0 can be extended to a bounded net
{φ̃n,α} ⊂ X∗ that converges weak∗ to 0.

Proof. (a) ⇒ (b): Let {φn,α} ⊂ Y ∗ be a bounded net that converges weak∗ to 0. Define f(x) :=
sup{φn,α(x) − 1

n , 0}. Then f is a Lipschitz convex function that, according to Proposition 4.4, is
Gâteaux differentiable at 0 (observe, too, that f(0) = 0 and f(y) ≥ 0 for all y ∈ Y , so f ′(0) = 0).
Then extend f to a Lipschitz convex function f̃ that is Gâteaux differentiable at 0 with Gâteaux
derivative f̃ ′(0) = φ, where φ ∈ X∗. Now φ|Y = f ′(0) which implies φ|Y = 0. Thus f̃ − φ is a
Lipschitz convex function extending f , and whose Gâteaux derivative is 0. Replacing f̃ with f̃ − φ,
we can and do assume f̃(x) ≥ 0 for all x ∈ X and f̃ ′(0) = 0. Clearly φn,α ∈ ∂ 1

n
f(0), thus by

Lemma 4.5 there is an extension φ̃n,α ∈ X∗ of φn,α such that φ̃n,α ∈ ∂ 1
n
f̃(0). Thus ‖φ̃n,α‖ ≤ K+1/n,

where K is the Lipschitz constant for f̃ . Moreover, f̃(x) ≥ g(x), where g(x) = supn,α{φ̃n,α(x)− 1
n , 0}.

The Gâteaux differentiability of f̃ at 0 now forces the Gâteaux differentiability of g at 0. Use again
Proposition 4.4 to obtain the weak∗ convergence of {φ̃n,α} to 0.

(b) ⇒ (a): By subtracting off a derivative and translating f , we need only to consider the case
where f ′(0) = 0 and f(0) = 0. For each u ∈ Y , fix φu ∈ ∂f(u), and define ak,u := φu(u)− f(u) + 1

k .
Then, using properties of subgradients, it follows that f(y) = sup{φk,u(y) − ak,u, 0 : u ∈ Y, k ∈ N}.
Now, from the fact that f is Lipschitz (with Lipschitz constant L) we have 1/k ≤ ak,u ≤ 2L‖u‖+1/k
for every k ∈ N and u ∈ Y . Put

An := {(k, u) : k ∈ N, u ∈ Y, such that
1
n
≤ ak,u <

1
n− 1

}

for n = 2, 3, . . . and
A1 := {(k, u) : k ∈ N, u ∈ Y, such that 1 ≤ ak,u}.

It is plain that (n, 0) ∈ An and so An is nonempty, for every n ∈ N. Moreover, N × Y =⋃∞
n=1An. To each (n, (k, u)) ∈ {n} × An we associate ψ(n,(k,u)) := φu and b(n,(k,u)) := ak,u. Then

f(y) = sup{ψ(n,(k,u))(y) − b(n,(k,u)), 0 : (n, (k, u)) ∈
⋃∞

n=1{n} × An}. According to Proposition 4.4,
ψ(n,(k,u)) →w∗ 0 because f is Gâteaux differentiable at 0. The Lipschitz property of f guarantees that
{ψ(n,(k,u))} is bounded. According to (b), we can extend {ψ(n,(k,u))} to a bounded net {ψ̃(n,(k,u))} that
converges weak∗ to 0. Then f̃(x) = sup{ψ̃(n,(k,u))(x)− b(n,(k,u)), 0} is a convex Lipschitz function that
is Gâteaux differentiable at 0 by Proposition 4.4, and f̃ extends f .
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Let us remark that in contrast to this, Zizler ([27]) has shown that extensions of Gâteaux differ-
entiable norms from a subspace of a separable space to a Gâteaux differentiable norm on the whole
space are not always possible.

Finally, let us conclude by stating a bornological version that combines Theorems 4.8 and 4.15.

Theorem 4.16. Suppose Y is a closed subspace of a Banach space X. Then the following are
equivalent.

(a) Every continuous convex function f : Y → R bounded on β-sets can be extended to a continuous
convex function f̃ : X → R that is bounded on β-sets in X.

(b) Every Lipschitz convex function f : Y → R that is β-differentiable at some point y0 can be extended
to a Lipschitz convex function f : X → R that is β-differentiable at y0.

(c) Every bounded net {φn,α} ⊂ Y ∗ that converges τβ to 0 can be extended to a bounded net {φ̃n,α} ⊂
X∗ that converges τβ to 0.

Let us mention that if β is the bornology of bounded sets, then (c) is always possible according to
the Hahn-Banach theorem. Thus this recaptures the results: (i) a convex function that is bounded on
bounded sets can always be extended to a convex function bounded on bounded sets; (ii) Lipschitz
convex functions can be extended to a superspace while preserving a point of Fréchet differentiability.

Acknowledgment. We thank the referee for several helpful suggestions.
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