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1 Introduction

The seminal paper of Asplund and Rockafellar [1] established duality results between Fréchet differ-
entiability and well-posedness for convex functions. In this note we focus on what can be derived
when the conjugate is differentiable, but the original function in not necessarily assumed to be convex.
Many of the results we present are known; however, our proofs use a theorem on differentiability that
is motivated by Šmulian’s work [10], and it is our hope that this approach makes transparent the
tight connection between differentiability of conjugate functions and certain minimization principles.

We work in real Banach spaces X whose closed unit ball is denoted by BX . By a proper function
f : X → (−∞,+∞] we mean a function that is somewhere finite valued. We use the notation ∂f(x)
for the subdifferential of f at x in the domain of f , and for ε > 0 we denote the ε-subdifferential of f
at x in the domain of f by ∂εf(x), that is,

∂εf(x) = {φ ∈ X∗ : φ(y)− φ(x) ≤ f(y)− f(x) + ε, x ∈ X};

when ε = 0, this is the definition of ∂f(x). The conjugate function of f : X → (−∞,+∞] is defined
for x∗ ∈ X∗ by f∗(x∗) = supx∈X〈x∗, x〉 − f(x). Our main tool will be the following theorem and its
variant for conjugate functions.

Theorem 1.1. Suppose the convex function f is continuous at x0. Then f is Fréchet differentiable
at x0 if and only if φn → φ whenever φn ∈ ∂εnf(x0), φ ∈ ∂f(x0) and εn → 0+, and necessarily φ is
the Fréchet derivative at f at x0.

A proof of this theorem can be found in Zalinescu’s book [12, Theorem 3.3.2]. The following shows
for conjugate functions that one need only consider the analogous epsilon subgradients in X.
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Theorem 1.2. Suppose a conjugate function f∗ : X∗ → (−∞,+∞] is continuous at φ0. Then f∗

is Fréchet differentiable at φ0 if and only if xn → Φ whenever xn ∈ ∂εnf∗(φ0), Φ ∈ ∂f∗(φ0) and
εn → 0+. In particular, ∇f∗(φ0) ∈ X when f∗ is Fréchet differentiable at φ0.

Proof. The “only if”’ implication follows from the previous theorem. For the converse, suppose f∗ is
not Fréchet differentiable at φ0. Then there exist hn ∈ SX∗ , tn → 0+ and ε > 0 such that

f∗(φ0 + tnhn)− f∗(φ0)− Φ(tnhn) ≥ εtn.

Choose xn ∈ ∂εnf∗(φ0 + tnhn) where εn = tnε/2 (note that the definition of conjugate functions
ensures ε-subdifferentials meet X). Then

(xn − Φ)(tnhn) ≥ f∗(φ0 + tnhn)− f∗(φ0)− Φ(tnhn)− tn
ε

2
≥ tn

ε

2
.

Consequently, xn 6→ Φ.

2 Perturbed Minimization Principles

We begin with a basic fact that we include for completeness.

Lemma 2.1. Suppose f : X → (−∞,+∞] is a proper function such that f∗ is Fréchet differentiable
at φ and ∇f∗(φ) = x0 ∈ X. If f is lower semicontinuous at x0, then f∗∗(x0) = f(x0).

Proof. Because f∗∗|X ≤ f , it suffices to show f∗∗(x0) ≥ f(x0). Now choose xn ∈ X such that

φ(xn)− f(xn) ≥ f∗(φ)− εn where εn → 0+.

Then φ(xn) − f∗∗(xn) ≥ f∗(φ) − εn and it follows that xn ∈ ∂εnf∗(φ) for all n. According to
Theorem 1.1, xn → x0. In particular, φ(xn) → φ(x0). Therefore,

f∗∗(x0) = φ(x0)− f∗(φ) = lim
n→∞

φ(x)− [φ(xn)− f(xn)] = lim
n→∞

f(xn).

Now f is lower semicontinuous at x0, and so lim infn→∞ f(xn) ≥ f(x). Therefore, f∗∗(x0) ≥ f(x0) as
desired.

We will say a function f attains its strong minimum at x0 ∈ X if ‖xn − x0‖ → 0 whenever
f(xn) → f(x0) and f(x0) = infX f . We next present a simple minimization principle which can also
be found in [12, Theorem 3.9.1] with a slightly different approach.

Proposition 2.2. Suppose that X is a Banach space and f : X → (−∞,+∞] is a proper lower
semicontinuous function such that f∗ is Fréchet differentiable at φ ∈ X∗, then

(a) ∇(f∗)(φ) = x0 where x0 ∈ dom f , and

(b) (f − φ) attains its strong minimum at x0.

Proof. First, Theorem 1.2 shows ∇(f∗)(φ) = x0 ∈ X and then Lemma 2.1 shows f∗∗(x0) = f(x0),
and the Fenchel-Young equality ensures that f∗∗(x0) < +∞. This shows (a), and moreover implies
that f∗(φ) = φ(x0) − f(x0). Now suppose (f − φ)(xn) ≤ (f − φ)(x0) + εn where εn → 0+. This
implies xn ∈ ∂εnf∗(φ). Because f∗ is Fréchet differentiable at φ, Theorem 1.1 implies ‖xn − x0‖ → 0
as desired.
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Using differentiability properites of conjugate functions we obtain:

Corollary 2.3 (Fabian, see e.g. [9]). Suppose that X is a Banach space with the RNP and that
f : X → (−∞,+∞] is a lower semicontinuous function for which there exist a > 0 and b ∈ R such that
f(x) ≥ a‖x‖+ b for all x ∈ X. Then the set {x∗ ∈ aBX∗ : f − x∗ attains its strong minimum on X}
is residual in aBX∗.

Proof. The growth condition implies that f∗(φ) ≤ −b whenever ‖φ‖ ≤ a. Therefore, f∗ is continuous
on the interior of aBX∗ ; see e.g. [9, Proposition 3.3]. According to Collier’s theorem [4], f∗ is Fréchet
differentiable on a dense Gδ subset G of aBX∗ . By Proposition 2.2, f−x∗ attains its strong minimum
at ∇(f∗)(x∗) ∈ dom f for each x∗ ∈ G.

Corollary 2.4 (Stegall [11]). Suppose C ⊂ X is a nonempty closed bounded convex set with the RNP,
and suppose that f : C → R is a lower semicontinuous function on C that is bounded below. Then
the set S = {x∗ ∈ X∗ : f − x∗ attains its strong minimum on X} is residual in X∗.

Proof. According to a locallization of Collier’s theorem (see [3]), f∗ is Fréchet differentiable on a
dense Gδ subset of X∗. Hence, like the previous corollary, the result follows from Proposition 2.2.

The approach to derive variants of Stegall’s variational principle using differentiability was used in
[6] and then refined in [8] which used a perturbed function in the dual space rather than the conjugate
function. We next show the equivalence of Stegall’s variational principle with the locallized version
of Collier’s theorem just used. The key step is:

Proposition 2.5. Suppose f : X → (−∞,+∞] is a proper lower semicontinuous function with
bounded domain. Then f − φ0 attains its strong minimum at x0 ∈ dom f where φ0 ∈ X∗ if and only
if f∗ is Fréchet differentiable at φ0 with ∇f∗(φ0) = x0.

Proof. The previous variational principle showed the “if” implication. For the “only if” implication
let M > 0 be such that M ≥ diam dom f . Now let 0 < r ≤ M be given; because f − φ0 attains
its strong minimum at x0, we choose ε > 0 so that (f − φ0)(x0 + h) ≥ ε if ‖h‖ ≥ r/2. Define
g(·) = ε

M dC(·) + (f − φ0)(x0) where C = {x : ‖x − x0‖ ≤ r/2}. Then g is a continuous convex
function such that g ≤ f − φ0, and g(x0) = (f − φ0)(x0) and f∗∗− φ0 ≥ g; moreover g(x) ≥ rε/(2M)
whenever ‖x− x0‖ ≥ r, and so

(f∗∗ − φ0)(x) ≥ (f∗∗ − φ0)(x0) +
rε

2M
if ‖x− x0‖ ≥ r.

Because 0 < r ≤ M was arbitrary, this shows (f∗∗ − φ0)|X attains its strong minimum at x0.

Now, x0 ∈ ∂f∗(φ0) and we suppose xn ∈ ∂εnf∗(φ0) where ε → 0+. Then (f∗∗ − φ0)(xn) →
(f∗∗−φ0)(x0) and consequently ‖xn−x0‖ → 0. According to Theorem 1.2, f∗ is Fréchet differentiable
at φ0 with ∇f∗(φ0) = x0.

We are not aware that the preceding proposition has been noted in the literature, however, in the
case when f is a proper convex lower semicontinuous function with no restriction on its domain, it
is a well-known result of Asplund and Rockafellar [1]. Moreover, Propositon 2.5 may fail without
a boundedness condition on the domain of a lower semicontinuous function. Indeed, let f(x) =
min{|x|, 1}, and φ0 = 0. Then f − φ0 attains it strong minimum at 0, but its conjugate is the
indicator function of {0} which is not Fréchet differentiable at 0.
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Corollary 2.6 (Characterization of perturbed minimization principles). Let X be a Banach space,
and let C ⊂ X be a closed bounded convex set. Then the following are equivalent.

(a) Every weak∗-lower semicontinuous convex function f : X∗ → R such that f ≤ σC is Fréchet
differentiable on a dense Gδ subset of X∗.

(b) Given any proper lower semicontinuous bounded below function f : C → (−∞,+∞] and ε > 0,
there exist φ ∈ εBX∗, x0 ∈ C and k > 0 such that f − φ attains its strong minimum at x0.

Proof. (a) ⇒ (b): Suppose f : C → R is bounded below on C. Then there exists a ∈ R so that
f + a ≥ δC where δC is the indicator function of C. Consequently, f∗ − a = (f + a)∗ ≤ δ∗C ≤ σC .
Given ε > 0, there exists φ ∈ εBX∗ so that f∗ − a and hence f∗ is Fréchet differentiable at φ.
According to Proposition 2.2, f − φ attains its strong minimum at x0.

(b) ⇒ (a): Take any weak∗-lower semicontinuous convex g ≤ σC where σC(φ) = supC φ for φ ∈ X∗.
Let f = g∗|X . Then f ≥ δC , and f∗ = g. Now let Λ ∈ X∗ be arbitrary, then f + Λ is bounded below
on C, so f + Λ is strongly exposed by some φ ∈ εBX∗ . This implies (f + Λ)∗ is Fréchet differentiable
at φ. But (f + Λ)∗(·) = g∗(· − Λ), and so g∗ is Fréchet differentiable at Λ + φ. Consequently, the set
of points of differentiability of f is a dense (automatically) Gδ-set.

Concluding Remarks. We should mention that one can analogously study Hölder smooth or
Lipschitz smooth points as studied by Fabian in [5] as a dual condition to minimization principles
(naturally, these lead to a quantitative estimate in the convergence rate). A development of this will
appear in the authors’ forthcoming book [2]. Let us also mention that Lemma 2.1 can be used to
show that a proper lower semicontinuous function f is convex when f∗ is Fréchet differentiable at all
x∗ ∈ dom(∂f∗). Then, one can efficiently recapture the result that a weakly closed subset of a Hilbert
space is a Chebyshev set if and only if it is convex; see, for example, [12, Section 3.9]. Additionally, it
is not difficult to formulate bornological versions of many of the results given herein; see for example
[12, Section 3.9] and [2]. Finally, we should note that the paper [7] provides a unified approach to
several variational principles using the notion of fragmentability.
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