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Abstract

During the 1970s Brezis and Browder presented a now classical characterization of maximal
monotonicity of monotone linear relations in reflexive spaces. In this paper, we extend (and
refine) their result to a general Banach space. We also provide an affirmative answer to a
problem posed by Phelps and Simons.
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1 Introduction

Throughout this paper, we assume that

X is a real Banach space with norm ‖ · ‖,

that X∗ is the continuous dual of X, and that X and X∗ are paired by 〈·, ·〉. The closed unit ball
in X is denoted by BX =

{
x ∈ X | ‖x‖ ≤ 1

}
, and N = {1, 2, 3, . . .}.
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We identify X with its canonical image in the bidual space X∗∗. As always, X × X∗ and
(X ×X∗)∗ = X∗ ×X∗∗ are paired via

〈(x, x∗), (y∗, y∗∗)〉 = 〈x, y∗〉+ 〈x∗, y∗∗〉,

where (x, x∗) ∈ X×X∗ and (y∗, y∗∗) ∈ X∗×X∗∗. The norm on X×X∗, written as ‖ ·‖1, is defined
by ‖(x, x∗)‖1 = ‖x‖+ ‖x∗‖ for every (x, x∗) ∈ X ×X∗.

Let A : X ⇒ X∗ be a set-valued operator (also known as multifunction) from X to X∗, i.e., for
every x ∈ X, Ax ⊆ X∗, and let graA =

{
(x, x∗) ∈ X ×X∗ | x∗ ∈ Ax

}
be the graph of A. The

domain of A, written as domA, is domA =
{
x ∈ X | Ax 6= ∅

}
and ranA = A(X) is the range of A.

We say A is a linear relation if graA is a linear subspace. By saying A : X ⇒ X∗ is at most single-
valued, we mean that for every x ∈ X, Ax is either a singleton or empty. In this case, we follow a
slight but common abuse of notation and write A : domA → X∗. Conversely, if T : D → X∗, we
may identify T with A : X ⇒ X∗, where A is at most single-valued with domA = D.

Now let U × V ⊆ X × X∗. We say that A is monotone with respect to U × V , if for every
(x, x∗) ∈ (graA) ∩ (U × V ) and (y, y∗) ∈ (graA) ∩ (U × V ), we have

(1) 〈x− y, x∗ − y∗〉 ≥ 0.

Of course, by (classical) monotonicity we mean monotonicity with respect to X×X∗. Furthermore,
we say that A is maximally monotone with respect to U × V if A is monotone with respect to
U × V and for every operator B : X ⇒ X∗ that is monotone with respect to U × V and such that
(graA)∩(U×V ) ⊆ (graB)∩(U×V ), we necessarily have (graA)∩(U×V ) = (graB)∩(U×V ). Thus,
(classical) maximal monotonicity corresponds to maximal monotonicity with respect to X × X∗.
This slightly unusual presentation is required to state our main results; moreover, it yields a more
concise formulation of monotone operators of type (FP).

Now let A : X ⇒ X∗ be monotone and (x, x∗) ∈ X×X∗. We say (x, x∗) is monotonically related
to graA if

〈x− y, x∗ − y∗〉 ≥ 0, ∀(y, y∗) ∈ graA.

If Z is a real Banach space with continuous dual Z∗ and a subset S of Z, we denote S⊥ by
S⊥ =

{
z∗ ∈ Z∗ | 〈z∗, s〉 = 0, ∀s ∈ S

}
. Given a subset D of Z∗, we define D⊥ by D⊥ =

{
z ∈ Z |

〈z, d∗〉 = 0, ∀d∗ ∈ D
}

= D⊥ ∩ Z.

The operator adjoint of A, written as A∗, is defined by

graA∗ =
{

(x∗∗, x∗) ∈ X∗∗ ×X∗ | (x∗,−x∗∗) ∈ (graA)⊥
}
.

Note that the adjoint is always a linear relation with graA∗ ⊆ X∗∗ × X∗ ⊆ X∗∗ × X∗∗∗. These
inclusions make it possible to consider monotonicity properties of A∗; however, care is required:
as a linear relation, graA∗ ⊆ X∗∗ × X∗ while as a potential monotone operator we are led to
consider graA∗ ⊆ X∗∗ ×X∗∗∗. Now let A : X ⇒ X∗ be a linear relation. We say that A is skew
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if graA ⊆ gra(−A∗); equivalently, if 〈x, x∗〉 = 0, ∀(x, x∗) ∈ graA. Furthermore, A is symmetric if
graA ⊆ graA∗; equivalently, if 〈x, y∗〉 = 〈y, x∗〉, ∀(x, x∗), (y, y∗) ∈ graA.

We now recall three fundamental subclasses of maximally monotone operators.

Definition 1.1 Let A : X ⇒ X∗ be maximally monotone. The three key types of monotone
operators are defined as follows.

(i) A is of dense type or type (D) (1971, [23], [29] and [39, Theorem 9.5]) if for every (x∗∗, x∗) ∈
X∗∗ ×X∗ with

inf
(a,a∗)∈graA

〈a− x∗∗, a∗ − x∗〉 ≥ 0,

there exist a bounded net (aα, a
∗
α)α∈Γ in graA such that (aα, a

∗
α)α∈Γ weak*×strong converges

to (x∗∗, x∗).

(ii) A is of type negative infimum (NI) (1996, [35]) if

sup
(a,a∗)∈graA

(
〈a, x∗〉+ 〈a∗, x∗∗〉 − 〈a, a∗〉

)
≥ 〈x∗∗, x∗〉, ∀(x∗∗, x∗) ∈ X∗∗ ×X∗.

(iii) A is of type Fitzpatrick-Phelps (FP) (1992, [22]) if whenever V is an open convex subset of
X∗ such that V ∩ ranA 6= ∅, it must follow that A is maximally monotone with respect to
X × V .

Fact 1.2 (See [36, 38, 16].) The following are maximally monotone of type (D), (NI), and (FP).

(i) ∂f , where f : X → ]−∞,+∞] is convex, lower semicontinuous, and proper;

(ii) A : X ⇒ X∗, where A is maximally monotone and X is reflexive.

These and other relationships known amongst these and other monotonicity notions are described
in [16, Chapter 9]. As we see in the following result, it is a consequence of recent work that the
three classes of Definition 1.1 coincide.

Fact 1.3 (See [4, Corollary 3.2] and [37, 35, 26].) Let A : X ⇒ X∗ be maximally monotone. Then
the following are equivalent.

(i) A is of type (D).

(ii) A is of type (NI).

(iii) A is of type (FP).
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This is a powerful result because it is often easier to establish (ii) or (iii) than (i).

Monotone operators have proven to be a key class of objects in both modern Optimization and
Analysis; see, e.g., [13, 14, 15], the books [7, 16, 20, 30, 36, 38, 33, 44, 45, 46] and the references
therein.

Let us now precisely state the aforementioned Brezis-Browder Theorem:

Theorem 1.4 (Brezis-Browder in reflexive Banach space [18, 19]) Suppose that X is re-
flexive. Let A : X ⇒ X∗ be a monotone linear relation such that graA is closed. Then A is
maximally monotone if and only if the adjoint A∗ is monotone.

In this paper, we generalize the Brezis-Browder Theorem to an arbitrary Banach space. (See
also [40] and [41] for Simons’ recent extensions in the context of symmetrically self-dual Banach
(SSDB) spaces as defined in [38, §21] and of Banach SNL spaces.)

Our main result is the following.

Theorem 1.5 (Brezis-Browder in general Banach space) Let A : X ⇒ X∗ be a monotone
linear relation such that graA is closed. Then A is maximally monotone of type (D) if and only if
A∗ is monotone.

This result will also give an affirmative answer to a question posed by Phelps and Simons in [31,
Section 9, item 2]:

Let A : domA→ X∗ be linear and maximally monotone. Assume that A∗ is monotone.
Is A necessarily of type (D)?

The paper is organized as follows. In Section 2, we collect auxiliary results for future reference
and for the reader’s convenience. In Section 3, we provide the key technical step leading us to show
that when A∗ is monotone then A is of type (D). Our central result, the generalized Brezis-Browder
Theorem (Theorem 1.5), is then proved in Section 4. Finally, in Section 5 with the necessary proviso
that the domain be closed, we establish further results such as Theorem 5.5 relating to the skew
part of the operator. This was motivated by and extends [2, Theorem 4.1] which studied the case
of a bounded linear operator.

Finally, let us mention that we adopt standard convex analysis notation. Given a subset C of

X, intC is the interior of C, C is the norm closure of C. For the set D ⊆ X∗, D
w*

is the weak∗

closure of D. If E ⊆ X∗∗, Ew*
is the weak∗ closure of E in X∗∗ with the topology induced by X∗.

The indicator function of C, written as ιC , is defined at x ∈ X by

ιC(x) =

{
0, if x ∈ C;

+∞, otherwise.
(2)
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For every x ∈ X, the normal cone operator of C at x is defined by NC(x) =
{
x∗ ∈ X∗ |

supc∈C〈c− x, x∗〉 ≤ 0
}

, if x ∈ C; and NC(x) = ∅, if x /∈ C.

Let f : X → ]−∞,+∞]. Then dom f = f−1(R) is the domain of f , and f∗ : X∗ →
[−∞,+∞] : x∗ 7→ supx∈X(〈x, x∗〉 − f(x)) is the Fenchel conjugate of f . The lower semicontinuous
hull of f is denoted by f . We say f is proper if dom f 6= ∅. Let f be proper. The subdifferential
of f is defined by

∂f : X ⇒ X∗ : x 7→ {x∗ ∈ X∗ | (∀y ∈ X) 〈y − x, x∗〉+ f(x) ≤ f(y)}.

For ε ≥ 0, the ε–subdifferential of f is defined by ∂εf : X ⇒ X∗ : x 7→
{
x∗ ∈ X∗ |

(∀y ∈ X) 〈y − x, x∗〉+ f(x) ≤ f(y) + ε
}

. Note that ∂f = ∂0f .

Let F : X ×X∗ → ]−∞,+∞]. We say F is a representative of the monotone operator A : X ⇒
X∗ if F is proper, lower semicontinuous and convex with F ≥ 〈·, ·〉 on X ×X∗ and

graA = {(x, x∗) ∈ X ×X∗ | F (x, x∗) = 〈x, x∗〉}.

Let (z, z∗) ∈ X ×X∗ and F : X ×X∗ → ]−∞,+∞]. Then F(z,z∗) : X ×X∗ → ]−∞,+∞] [27, 38]
is defined by

F(z,z∗)(x, x
∗) = F (z + x, z∗ + x∗)−

(
〈x, z∗〉+ 〈z, x∗〉+ 〈z, z∗〉

)
= F (z + x, z∗ + x∗)− 〈z + x, z∗ + x∗〉+ 〈x, x∗〉, ∀(x, x∗) ∈ X ×X∗.(3)

Let now Y be another real Banach space. We set PX : X×Y → X : (x, y) 7→ x. Let F1, F2 : X×Y →
]−∞,+∞]. Then the partial inf-convolution F1�2F2 is the function defined on X × Y by

F1�2F2 : (x, y) 7→ inf
v∈Y

[F1(x, y − v) + F2(x, v)] .

2 Prerequisite results

In this section, we gather some facts and auxiliary results used in the sequel.

Fact 2.1 (See [28, Proposition 2.6.6(c)] or [34, Theorem 4.7 and Theorem 3.12].) Let C be a
subspace of X, and D be a subspace of X∗. Then

(C⊥)⊥ = C and (D⊥)⊥ = D
w*
.

Fact 2.2 (Rockafellar) (See [32, Theorem 3)], [38, Corollary 10.3 and Theorem 18.1] or [44,
Theorem 2.8.7(iii)].) Let f, g : X → ]−∞,+∞] be proper convex functions. Assume that there
exists a point x0 ∈ dom f ∩ dom g such that g is continuous at x0. Then

(f + g)∗(x∗) = min
y∗∈X∗

[f∗(y∗) + g∗(x∗ − y∗)] , ∀x∗ ∈ X∗

∂(f + g) = ∂f + ∂g.
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Fact 2.3 (Borwein) (See [11, Theorem 1] or [44, Theorem 3.1.1].) Let f : X → ]−∞,+∞] be a
proper lower semicontinuous and convex function. Let ε > 0 and β ≥ 0 (where 1

0 = ∞). Assume
that x0 ∈ dom f and x∗0 ∈ ∂εf(x0). There exist xε ∈ X,x∗ε ∈ X∗ such that

‖xε − x0‖+ β |〈xε − x0, x
∗
0〉| ≤

√
ε, x∗ε ∈ ∂f(xε),

‖x∗ε − x∗0‖ ≤
√
ε(1 + β‖x∗0‖), |〈xε − x0, x

∗
ε〉| ≤ ε+

√
ε

β
.

Fact 2.4 (Attouch-Brezis) (See [1, Theorem 1.1] or [38, Remark 15.2].) Let f, g : X →
]−∞,+∞] be proper lower semicontinuous and convex. Assume that

⋃
λ>0 λ [dom f − dom g] is

a closed subspace of X. Then

(f + g)∗(z∗) = min
y∗∈X∗

[f∗(y∗) + g∗(z∗ − y∗)] , ∀z∗ ∈ X∗.

Fact 2.5 (Simons and Zălinescu) (See [42, Theorem 4.2] or [38, Theorem 16.4(a)].) Let Y be a
real Banach space and F1, F2 : X × Y → ]−∞,+∞] be proper, lower semicontinuous, and convex.
Assume that for every (x, y) ∈ X × Y ,

(F1�2F2)(x, y) > −∞

and that
⋃
λ>0 λ [PX domF1 − PX domF2] is a closed subspace of X. Then for every (x∗, y∗) ∈

X∗ × Y ∗,
(F1�2F2)∗(x∗, y∗) = min

u∗∈X∗
[F ∗1 (x∗ − u∗, y∗) + F ∗2 (u∗, y∗)] .

The following result was first established in [12, Theorem 7.4]. We next provide a new proof.

Fact 2.6 (Borwein) Let A,B : X ⇒ X∗ be linear relations such that graA and graB are closed.
Assume that domA− domB is closed. Then

(A+B)∗ = A∗ +B∗.

Proof. We have

ιgra(A+B) = ιgraA�2ιgraB.(4)

Let (x∗∗, x∗) ∈ X∗∗ × X∗. Since graA and graB are closed convex, ιgraA and ιgraB are proper
lower semicontinuous and convex. Then by Fact 2.5 and (4), there exists y∗ ∈ X∗ such that

ιgra(A+B)∗(x
∗∗, x∗) = ι(

gra(A+B)
)⊥(−x∗, x∗∗)

= ι∗gra(A+B)(−x
∗, x∗∗) (since gra(A+B) is a subspace)

= ι∗graA(y∗, x∗∗) + ι∗graB(−x∗ − y∗, x∗∗)
= ι(graA)⊥(y∗, x∗∗) + ι(graB)⊥(−x∗ − y∗, x∗∗)
= ιgraA∗(x

∗∗,−y∗) + ιgraB∗(x
∗∗, x∗ + y∗)

= ιgra(A∗+B∗)(x
∗∗, x∗).(5)

Then we have gra(A+B)∗ = gra(A∗ +B∗) and hence (A+B)∗ = A∗ +B∗. �
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Fact 2.7 (Simons) (See [38, Lemma 19.7 and Section 22].) Let A : X ⇒ X∗ be a monotone
operator such that graA is convex with graA 6= ∅. Then the function

(6) g : X ×X∗ → ]−∞,+∞] : (x, x∗) 7→ 〈x, x∗〉+ ιgraA(x, x∗)

is proper and convex.

Fact 2.8 (Marques Alves and Svaiter) (See [26, Theorem 4.4].) Let A : X ⇒ X∗ be maximally
monotone, and let F : X → ]−∞,+∞] be a representative of A. Then A is of type (D) if and only
if for every (x0, x

∗
0) ∈ X ×X∗,

inf
(x,x∗)∈X×X∗

[
F(x0,x∗0)(x, x

∗) + 1
2‖x‖

2 + 1
2‖x

∗‖2
]

= 0.

We also recall the following somewhat more precise version of Theorem 1.4.

Fact 2.9 (Brezis and Browder) (See [19, Theorem 2], or [17, 18, 40, 43].) Suppose that X is
reflexive. Let A : X ⇒ X∗ be a monotone linear relation such that graA is closed. Then the
following are equivalent.

(i) A is maximally monotone.

(ii) A∗ is maximally monotone.

(iii) A∗ is monotone.

Now let us cite some basic properties of linear relations.

The following result appeared in Cross’ book [21]. We give new proofs of items (iv)–(vi). The
proof of item (vi) below was adapted from [10, Remark 2.2].

Fact 2.10 Let A : X ⇒ X∗ be a linear relation. Then the following hold.

(i) Ax = x∗ +A0, ∀x∗ ∈ Ax.

(ii) A(αx+ βy) = αAx+ βAy,∀(α, β) ∈ R2 r {(0, 0)}, ∀x, y ∈ domA.

(iii) 〈A∗x, y〉 = 〈x,Ay〉 is a singleton, ∀x ∈ domA∗, ∀y ∈ domA.

(iv) (domA)⊥ = A∗0 is (weak∗) closed and domA = (A∗0)⊥.

(v) If graA is closed, then (domA∗)⊥ = A0 and domA∗
w*

= (A0)⊥.

(vi) If domA is closed, then domA∗ = (Ā0)⊥ and thus domA∗ is (weak∗) closed, where Ā is the
linear relation whose graph is the closure of the graph of A.

7



Proof. (i): See [21, Proposition I.2.8(a)]. (ii): See [21, Corollary I.2.5]. (iii): See [21, Proposition
III.1.2].

(iv): We have

x∗ ∈ A∗0⇔ (x∗, 0) ∈ (graA)⊥ ⇔ x∗ ∈ (domA)⊥.

Hence (domA)⊥ = A∗0 and thus A∗0 is weak∗ closed. By Fact 2.1, domA = (A∗0)⊥.

(v): Using Fact 2.1,

x∗ ∈ A0⇔ (0, x∗) ∈ graA =
[
(graA)⊥

]
⊥

=
[
gra−(A∗)−1

]
⊥ ⇔ x∗ ∈ (domA∗)⊥.

Hence (domA∗)⊥ = A0 and thus, by Fact 2.1, domA∗
w*

= (A0)⊥.

(vi): Let Ā be the linear relation whose graph is the closure of the graph of A. Then domA =
dom Ā and A∗ = Ā∗. Then by Fact 2.4,

ιX∗×(Ā0)⊥ = ι∗{0}×Ā0 =
(
ιgra Ā + ι{0}×X∗

)∗
= ιgra(−Ā∗)−1 � ιX∗×{0} = ιX∗×dom Ā∗ .

It is clear that domA∗ = dom Ā∗ = (Ā0)⊥ is weak∗ closed, hence closed. �

3 A key result

The proof of Proposition 3.1 was in part inspired by that of [46, Theorem 32.L] and by that of [25,
Theorem 2.1].

Proposition 3.1 Let A : X ⇒ X∗ be a monotone linear relation such that graA is closed and A∗

is monotone. Define

F : X ×X∗ → ]−∞,+∞] : (x, x∗) 7→ ιgraA(x, x∗) + 〈x, x∗〉.

Then F is a representative of A, and

inf
(x,x∗)∈X×X∗

[
F(v0,v∗0)(x, x

∗) + 1
2‖x‖

2 + 1
2‖x

∗‖2
]

= 0, ∀(v0, v
∗
0) ∈ X ×X∗.

Proof. Since A is monotone and graA is closed, Fact 2.7 implies that F is proper lower semi-
continuous and convex, and a representative of A. Let (v0, v

∗
0) ∈ X × X∗. Recalling (3), note

that

F(v0,v∗0) : (x, x∗) 7→ ιgraA(v0 + x, v∗0 + x∗) + 〈x, x∗〉(7)
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is proper lower semicontinuous and convex. By Fact 2.2, there exists (y∗∗, y∗) ∈ X∗∗ × X∗ such
that

K := inf
(x,x∗)∈X×X∗

[
F(v0,v∗0)(x, x

∗) + 1
2‖x‖

2 + 1
2‖x

∗‖2
]

= −
(
F(v0,v∗0) + 1

2‖ · ‖
2 + 1

2‖ · ‖
2
)∗

(0, 0)

= −F ∗(v0,v∗0)(y
∗, y∗∗)− 1

2‖y
∗∗‖2 − 1

2‖y
∗‖2.(8)

Since (x, x∗) 7→ F(v0,v∗0)(x, x
∗) + 1

2‖x‖
2 + 1

2‖x
∗‖2 is coercive, there exist M > 0 and a sequence

(an, a
∗
n)n∈N in X ×X∗ such that

‖an‖+ ‖a∗n‖ ≤M(9)

and

F(v0,v∗0)(an, a
∗
n) + 1

2‖an‖
2 + 1

2‖a
∗
n‖2

< K + 1
n2 = −F ∗(v0,v∗0)(y

∗, y∗∗)− 1
2‖y
∗∗‖2 − 1

2‖y
∗‖2 + 1

n2 (by (8))

⇒ F(v0,v∗0)(an, a
∗
n) + 1

2‖an‖
2 + 1

2‖a
∗
n‖2 + F ∗(v0,v∗0)(y

∗, y∗∗) + 1
2‖y
∗∗‖2 + 1

2‖y
∗‖2 < 1

n2(10)

⇒ F(v0,v∗0)(an, a
∗
n) + F ∗(v0,v∗0)(y

∗, y∗∗) + 〈an,−y∗〉+ 〈a∗n,−y∗∗〉 < 1
n2(11)

⇒ (y∗, y∗∗) ∈ ∂ 1
n2
F(v0,v∗0)(an, a

∗
n) (by [44, Theorem 2.4.2(ii)]).(12)

Set β = 1
max{‖y∗‖,‖y∗∗‖}+1 . Then by Fact 2.3, there exist sequences (ãn, ã∗n)n∈N in X × X∗ and

(y∗n, y
∗∗
n )n∈N in X∗ ×X∗∗ such that

‖an − ãn‖+ ‖a∗n − ã∗n‖+ β
∣∣∣〈ãn − an, y∗〉+ 〈ã∗n − a∗n, y∗∗〉

∣∣∣ ≤ 1
n(13)

max{‖y∗n − y∗‖, ‖y∗∗n − y∗∗‖} ≤ 2
n(14) ∣∣∣〈ãn − an, y∗n〉+ 〈ã∗n − a∗n, y∗∗n 〉

∣∣∣ ≤ 1
n2 + 1

nβ(15)

(y∗n, y
∗∗
n ) ∈ ∂F(v0,v∗0)(ãn, ã∗n), ∀n ∈ N.(16)

Then we have

〈ãn, y∗n〉+ 〈ã∗n, y∗∗n 〉 − 〈an, y∗〉 − 〈a∗n, y∗∗〉
= 〈ãn − an, y∗n〉+ 〈an, y∗n − y∗〉+ 〈ã∗n − a∗n, y∗∗n 〉+ 〈a∗n, y∗∗n − y∗∗〉

≤
∣∣∣〈ãn − an, y∗n〉+ 〈ã∗n − a∗n, y∗∗n 〉

∣∣∣+ |〈an, y∗n − y∗〉|+ |〈a∗n, y∗∗n − y∗∗〉|

≤ 1
n2 + 1

nβ + ‖an‖ · ‖y∗n − y∗‖+ ‖a∗n‖ · ‖y∗∗n − y∗∗‖ (by (15))

≤ 1
n2 + 1

nβ + (‖an‖+ ‖a∗n‖) ·max{‖y∗n − y∗‖, ‖y∗∗n − y∗∗‖}

≤ 1
n2 + 1

nβ + 2
nM (by (9) and (14)), ∀n ∈ N.(17)

By (13), we have ∣∣‖an‖ − ‖ãn‖∣∣+
∣∣‖a∗n‖ − ‖ã∗n‖∣∣ ≤ 1

n .(18)
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Thus by (9), we have∣∣‖an‖2 − ‖ãn‖2∣∣+
∣∣∣‖a∗n‖2 − ‖ã∗n‖2∣∣∣

=
∣∣‖an‖ − ‖ãn‖∣∣(‖an‖+ ‖ãn‖

)
+
∣∣∣‖a∗n‖ − ‖ã∗n‖∣∣∣ (‖a∗n‖+ ‖ã∗n‖

)
≤ 1

n

(
2‖an‖+ 1

n

)
+ 1

n

(
2‖a∗n‖+ 1

n

)
(by (18))

≤ 1
n(2M + 2

n) = 2
nM + 2

n2 , ∀n ∈ N.(19)

Similarly, by (14), for all n ∈ N, we have∣∣‖y∗n‖2 − ‖y∗‖2∣∣ ≤ 4
n‖y

∗‖+ 4
n2 ≤ 4

nβ + 4
n2 ,

∣∣‖y∗∗n ‖2 − ‖y∗∗‖2∣∣ ≤ 4
n‖y

∗∗‖+ 4
n2 ≤ 4

nβ + 4
n2 .(20)

Thus

F(v0,v∗0)(ãn, ã∗n) + F ∗(v0,v∗0)(y
∗
n, y
∗∗
n ) + 1

2‖ãn‖
2 + 1

2‖ã∗n‖
2 + 1

2‖y
∗
n‖2 + 1

2‖y
∗∗
n ‖2

=
[
F(v0,v∗0)(ãn, ã∗n) + F ∗(v0,v∗0)(y

∗
n, y
∗∗
n ) + 1

2‖ãn‖
2 + 1

2‖ã∗n‖
2 + 1

2‖y
∗
n‖2 + 1

2‖y
∗∗
n ‖2

]
−
[
F(v0,v∗0)(an, a

∗
n) + 1

2‖an‖
2 + 1

2‖a
∗
n‖2 + F ∗(v0,v∗0)(y

∗, y∗∗) + 1
2‖y
∗∗‖2 + 1

2‖y
∗‖2
]

+
[
F(v0,v∗0)(an, a

∗
n) + 1

2‖an‖
2 + 1

2‖a
∗
n‖2 + F ∗(v0,v∗0)(y

∗, y∗∗) + 1
2‖y
∗∗‖2 + 1

2‖y
∗‖2
]

<
[
F(v0,v∗0)(ãn, ã∗n) + F ∗(v0,v∗0)(y

∗
n, y
∗∗
n )− F(v0,v∗0)(an, a

∗
n)− F ∗(v0,v∗0)(y

∗, y∗∗)
]

+ 1
2

[
‖ãn‖2 + ‖ã∗n‖2 − ‖an‖2 − ‖a∗n‖2

]
+ 1

2

[
‖y∗n‖2 + ‖y∗∗n ‖2 − ‖y∗∗‖2 − ‖y∗‖2

]
+ 1

n2 (by (10))

≤
[
〈ãn, y∗n〉+ 〈ã∗n, y∗∗n 〉 − 〈an, y∗〉 − 〈a∗n, y∗∗〉

]
(by (16))

+ 1
2

(∣∣‖ãn‖2 − ‖an‖2∣∣+
∣∣∣‖ã∗n‖2 − ‖a∗n‖2∣∣∣)

+ 1
2

(∣∣‖y∗n‖2 − ‖y∗‖2∣∣+
∣∣‖y∗∗n ‖2 − ‖y∗∗‖2∣∣)+ 1

n2

≤ 1
n2 + 1

nβ + 2
nM + 1

nM + 1
n2 + 4

nβ + 4
n2 + 1

n2 (by (17), (19) and (20))

= 7
n2 + 5

nβ + 3
nM, ∀n ∈ N.(21)

By (16), (7), and [44, Theorem 3.2.4(vi)&(ii)], there exists a sequence (z∗n, z
∗∗
n )n∈N in (graA)⊥ such

that

(y∗n, y
∗∗
n ) = (ã∗n, ãn) + (z∗n, z

∗∗
n ), ∀n ∈ N.(22)

Since A∗ is monotone and (z∗∗n , z
∗
n) ∈ gra(−A∗), it follows from (22) that

〈y∗n, y∗∗n 〉 − 〈y∗n, ãn〉 − 〈y∗∗n , ã∗n〉+ 〈ã∗n, ãn〉 = 〈y∗n − ã∗n, y∗∗n − ãn〉 = 〈z∗n, z∗∗n 〉 ≤ 0

⇒ 〈y∗n, y∗∗n 〉 ≤ 〈y∗n, ãn〉+ 〈y∗∗n , ã∗n〉 − 〈ã∗n, ãn〉, ∀n ∈ N.

Then by (7) and (16), we have 〈ã∗n, ãn〉 = F(v0,v∗0)(ãn, ã∗n) and

〈y∗n, y∗∗n 〉 ≤ 〈y∗n, ãn〉+ 〈y∗∗n , ã∗n〉 − F(v0,v∗0)(ãn, ã∗n) = F ∗(v0,v∗0)(y
∗
n, y
∗∗
n ), ∀n ∈ N.(23)
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By (21) and (23), we have

F(v0,v∗0)(ãn, ã∗n) + 〈y∗n, y∗∗n 〉+ 1
2‖ãn‖

2 + 1
2‖ã∗n‖

2 + 1
2‖y
∗
n‖2 + 1

2‖y
∗∗
n ‖2 < 7

n2 + 5
nβ + 3

nM

⇒ F(v0,v∗0)(ãn, ã∗n) + 1
2‖ãn‖

2 + 1
2‖ã∗n‖

2 < 7
n2 + 5

nβ + 3
nM, ∀n ∈ N.(24)

Thus by (24),

inf
(x,x∗)∈X×X∗

[
F(v0,v∗0)(x, x

∗) + 1
2‖x‖

2 + 1
2‖x

∗‖2
]
≤ 0.(25)

By (7),

inf
(x,x∗)∈X×X∗

[
F(v0,v∗0)(x, x

∗) + 1
2‖x‖

2 + 1
2‖x

∗‖2
]
≥ 0.(26)

Combining (25) with (26), we obtain

inf
(x,x∗)∈X×X∗

[
F(v0,v∗0)(x, x

∗) + 1
2‖x‖

2 + 1
2‖x

∗‖2
]

= 0.(27)

�

Proposition 3.2 Let A : X ⇒ X∗ be a monotone linear relation such that graA is closed and A∗

is monotone. Then A is maximally monotone of type (D).

Proof. By Fact 2.8 and Proposition 3.1, it suffices to show that A is maximally monotone. Let
(z, z∗) ∈ X ×X∗. Assume that

(z, z∗) is monotonically related to graA.(28)

Define

F : X ×X∗ → ]−∞,+∞] : (x, x∗) 7→ ιgraA(x, x∗) + 〈x, x∗〉.

We have

F(z,z∗) : (x, x∗) 7→ ιgraA(z + x, z∗ + x∗) + 〈x, x∗〉.(29)

Proposition 3.1 implies that there exists a sequence (xn, x
∗
n)n∈N in domF(z,z∗) such that

F(z,z∗)(xn, x
∗
n) + 1

2‖xn‖
2 + 1

2‖x
∗
n‖2 → 0.(30)

Set (an, a
∗
n) := (z + xn, z

∗ + x∗n), ∀n ∈ N. Then by (29), we have

F(z,z∗)(xn, x
∗
n) = ιgraA(z + xn, z

∗ + x∗n) + 〈xn, x∗n〉(31)

= ιgraA(an, a
∗
n) + 〈an − z, a∗n − z∗〉.(32)

11



By (30) and (32),

(an, a
∗
n) ∈ graA, ∀n ∈ N.(33)

Then by (33) and (28), we have

〈xn, x∗n〉 = 〈an − z, a∗n − z∗〉 ≥ 0, ∀n ∈ N.(34)

Combining (32) and (34),

F(z,z∗)(xn, x
∗
n) ≥ 0, ∀n ∈ N.(35)

In view of (35) and (30),

‖xn‖2 + ‖x∗n‖2 → 0.(36)

Thus (xn, x
∗
n) → (0, 0) and hence (an, a

∗
n) → (z, z∗). Finally, by (33) and since graA is closed, we

see (z, z∗) ∈ graA. Therefore, A is maximally monotone. �

Remark 3.3 Proposition 3.2 provides an affirmative answer to a problem posed by Phelps and
Simons in [31, Section 9, item 2] on the converse of [31, Theorem 6.7(c)⇒(f)]. In [6, Proposition 3.1],
we present an alternative proof for Proposition 3.2.

Example 3.4 Let A : X ⇒ X∗ be a monotone linear relation such that graA is closed. We note
that we cannot guarantee the maximal monotonicity of A even if A is at most single-valued and
densely defined. To see this, suppose that X = `2, and that A : `2 ⇒ `2 is given by

Ax :=

(∑
i<n xi −

∑
i>n xi

)
n∈N

2
=

(∑
i<n

xi + 1
2xn

)
n∈N

, ∀x = (xn)n∈N ∈ domA,(37)

where domA :=
{
x := (xn)n∈N ∈ `2 |

∑
i≥1 xi = 0,

(∑
i≤n xi

)
n∈N
∈ `2

}
. Then A is an at most

single-valued linear relation. Now [9, Propositions 3.6] states that

A∗x =

(
1
2xn +

∑
i>n

xi

)
n∈N

,(38)

where

x = (xn)n∈N ∈ domA∗ =

{
x = (xn)n∈N ∈ `2

∣∣∣∣ (∑
i>n

xi

)
n∈N
∈ `2

}
.

Moreover, [9, Propositions 3.2, 3.5, 3.6 and 3.8], [31, Theorem 2.5] and Fact 2.9 show that:

(i) A is maximally monotone and skew;

(ii) domA is dense and domA $ domA∗;
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(iii) A∗ is maximally monotone, but not skew;

(iv) −A is not maximally monotone.

Hence, −A is monotone with dense domain and gra(−A) is closed, but nonetheless −A is not
maximally monotone. �

4 The general Brezis-Browder theorem

We may now pack everything together to establish our central result. For the reader’s convenience
we repeat Theorem 1.5:

Theorem 4.1 (Brezis-Browder in general Banach space) Let A : X ⇒ X∗ be a monotone
linear relation such that graA is closed. Then A is maximally monotone of type (D) if and only if
A∗ is monotone.

Proof. “⇒”: By Fact 1.3, A is of type (NI). Suppose to the contrary that there exists (a∗∗0 , a
∗
0) ∈

graA∗ such that 〈a∗∗0 , a∗0〉 < 0. Then we have

sup
(a,a∗)∈graA

(
〈a,−a∗0〉+ 〈a∗∗0 , a∗〉 − 〈a, a∗〉

)
= sup

(a,a∗)∈graA
{−〈a, a∗〉} = 0 < 〈−a∗∗0 , a∗0〉,

which contradicts that A is type of (NI). Hence A∗ is monotone.

“⇐”: Apply Proposition 3.2 directly. �

Remark 4.2 The proof of the necessary part in Theorem 4.1 follows closely that of [19, Theorem 2].

The original Brezis and Browder result follows.

Corollary 4.3 (Brezis and Browder) Suppose that X is reflexive. Let A : X ⇒ X∗ be a mono-
tone linear relation such that graA is closed. Then the following are equivalent.

(i) A is maximally monotone.

(ii) A∗ is maximally monotone.

(iii) A∗ is monotone.

Proof. “(i)⇔(iii)”: Apply Theorem 4.1 and Fact 1.2 directly.

“(ii)⇒(iii)”: Clear.

“(iii)⇒(ii)”: Since graA is closed, (A∗)∗ = A. Apply Theorem 4.1 to A∗. �
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In the case of a skew operator we can add maximality of the adjoint and so we prefigure results
of the next section:

Corollary 4.4 (The skew case) Let A : X ⇒ X∗ be a skew operator such that graA is closed.
Then the following are equivalent.

(i) A is maximally monotone of type (D).

(ii) A∗ is monotone.

(iii) A∗ is maximally monotone with respect to X∗∗ ×X∗.

Proof. By Theorem 4.1, it only remains to show

“(ii)⇒(iii)”: Let (z∗∗, z∗) ∈ X∗∗ × X∗ be monotonically related to graA∗. Since gra(−A) ⊆
graA∗, (z∗∗, z∗) is monotonically related to gra(−A). Thus (z∗, z∗∗) ∈ [gra(−A)]⊥ since graA is
linear. Hence (z∗∗, z∗) ∈ graA∗. Hence A∗ is maximally monotone. �

Remark 4.5 We cannot say A∗ is maximally monotone with respect to X∗∗ × X∗∗∗ in Corol-
lary 4.4(iii): indeed, let A be defined by

graA = {0} ×X∗.

Then graA∗ = {0} ×X∗. If X is not reflexive, then X∗ $ X∗∗∗ and so graA∗ is a proper subset
of {0} × X∗∗∗. Hence A∗ is not maximally monotone with respect to X∗∗ × X∗∗∗ although A is
maximally monotone of type (D) (since A = N{0} by Fact 1.2).

We conclude with an application of Theorem 4.1 to an operator studied previously by Phelps
and Simons [31].

Example 4.6 Suppose that X = L1[0, 1] so that X∗ = L∞[0, 1], let

D =
{
x ∈ X | x is absolutely continuous, x(0) = 0, x′ ∈ X∗

}
,

and set

A : X ⇒ X∗ : x 7→

{
{x′}, if x ∈ D;

∅, otherwise.

By [31, Example 4.3], A is an at most single-valued maximally monotone linear relation with proper
dense domain, and A is neither symmetric nor skew. Moreover,

domA∗ = {z ∈ X∗∗ | z is absolutely continuous, z(1) = 0, z′ ∈ X∗} ⊆ X

A∗z = −z′, ∀z ∈ domA∗, and A∗ is monotone. Therefore, Theorem 4.1 implies that A is of type
(D).

In the next section, we turn to the question of how the skew part of the adjoint behaves.
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5 Decomposition of monotone linear relations

In this section, our main result states that A is maximally monotone of type (D) if and only if its
skew part A◦ is maximally monotone of type (D) and A∗0 = A0. When domA is closed, we also
obtained a refined version of the Brezis-Browder Theorem.

Let us first gather some basic properties about monotone linear relations, and conditions for
them to be maximally monotone.

The next three propositions were proven in reflexive spaces in [8, Proposition 2.2]. We adjust
the proofs to a general Banach space setting.

Proposition 5.1 (Monotone linear relations) Let A : X ⇒ X∗ be a linear relation. Then the
following hold.

(i) Suppose A is monotone. Then domA ⊆ (A0)⊥ and A0 ⊆ (domA)⊥; consequently, if graA is

closed, then domA ⊆ domA∗
w* ∩X and A0 ⊆ A∗0.

(ii) (∀x ∈ domA)(∀z ∈ (A0)⊥) 〈z,Ax〉 is single-valued.

(iii) (∀z ∈ (A0)⊥) domA→ R : y 7→ 〈z,Ay〉 is linear.

(iv) If A is monotone, then (∀x ∈ domA) 〈x,Ax〉 is single-valued.

(v) A is monotone ⇔ (∀x ∈ domA) inf〈x,Ax〉 ≥ 0.

(vi) If (x, x∗) ∈ (domA) × X∗ is monotonically related to graA and x∗0 ∈ Ax, then x∗ − x∗0 ∈
(domA)⊥.

Proof. (i): Pick x ∈ domA. Then there exists x∗ ∈ X∗ such that (x, x∗) ∈ graA. By monotonicity
of A and since {0} × A0 ⊆ graA, we have 〈x, x∗〉 ≥ sup〈x,A0〉. Since A0 is a linear subspace,
we obtain x⊥A0. This implies domA ⊆ (A0)⊥ and A0 ⊆ (domA)⊥. If graA is closed, then

Fact 2.10(v)&(iv) yields domA ⊆ (A0)⊥ ⊆ (A0)⊥ = domA∗
w*

and A0 ⊆ A∗0.

(ii): Take x ∈ domA, x∗ ∈ Ax, and z ∈ (A0)⊥. By Fact 2.10(i), 〈z,Ax〉 = 〈z, x∗+A0〉 = 〈z, x∗〉.

(iii): Take z ∈ (A0)⊥. By (ii), (∀y ∈ domA) 〈z,Ay〉 is single-valued. Now let x, y be in domA,
and let α, β be in R. If (α, β) = (0, 0), then 〈z,A(αx+ βy)〉 = 〈z,A0〉 = 0 = α〈z,Ax〉+ β〈z,Ay〉.
And if (α, β) 6= (0, 0), then Fact 2.10(ii) yields 〈z,A(αx + βy)〉 = 〈z, αAx + βAy〉 = α〈z,Ax〉 +
β〈z,Ay〉. This verifies linearity.

(iv): Apply (i)&(ii).

(v): “⇒”: This follows from the fact that (0, 0) ∈ graA. “⇐”: If x and y belong to domA, then
Fact 2.10(ii) yields 〈x− y,Ax−Ay〉 = 〈x− y,A(x− y)〉 ≥ 0.
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(vi): Let (x, x∗) ∈ domA×X∗ be monotonically related to graA, and take x∗0 ∈ Ax. For every
(v, v∗) ∈ graA, we have x∗0 +v∗ ∈ A(x+v) (by Fact 2.10(ii)); hence, 〈x− (x+v), x∗− (x∗0 +v∗)〉 ≥ 0
and thus 〈v, v∗〉 ≥ 〈v, x∗ − x∗0〉. Now take λ > 0 and replace (v, v∗) in the last inequality by
(λv, λv∗). Then divide by λ and let λ→ 0+ to see that 0 ≥ sup〈domA, x∗ − x∗0〉. Since domA is
linear, it follows that x∗ − x∗0 ∈ (domA)⊥. �

We define the symmetric part and the skew part of A via

(39) A+ := 1
2A+ 1

2A
∗ and A◦ := 1

2A−
1
2A
∗,

respectively. It is easy to check that A+ is symmetric and that A◦ is skew.

Proposition 5.2 (Maximally monotone linear relations) Let A : X ⇒ X∗ be a monotone
linear relation. Then the following hold.

(i) If A is maximally monotone, then (domA)⊥ = A0 and hence domA = (A0)⊥.

(ii) If domA is closed, then: A is maximally monotone ⇔ (domA)⊥ = A0.

(iii) If A is maximally monotone, then domA∗
w*∩X = domA = (A0)⊥, and A0 = A∗0 = A+0 =

A◦0 = (domA)⊥ is (weak∗) closed.

(iv) If A is maximally monotone and domA is closed, then domA∗ ∩X = domA.

(v) If A is maximally monotone and domA ⊆ domA∗, then A = A+ + A◦, A+ = A − A◦, and
A◦ = A−A+.

(vi) If A is maximally monotone and domA is closed, then both A+ and A◦ are maximally mono-
tone.

(vii) If A is maximally monotone and domA is closed, then A∗ = (A+)∗ + (A◦)∗.

Proof. (i): Since A + NdomA = A + (domA)⊥ is a monotone extension of A and A is maximally
monotone, we must have A+ (domA)⊥ = A. Then A0 + (domA)⊥ = A0. As 0 ∈ A0, (domA)⊥ ⊆
A0. Combining with Proposition 5.1(i), we have (domA)⊥ = A0. By Fact 2.1, domA = (A0)⊥.

(ii): “⇒”: Clear from (i). “⇐”: The assumptions and Fact 2.1 imply that domA = domA =[
(domA)⊥

]
⊥ = (A0)⊥. Let (x, x∗) be monotonically related to graA. We have inf〈x−0, x∗−A0〉 ≥

0. Then we have x ∈ (A0)⊥ and hence x ∈ domA. Then by Proposition 5.1(vi) and Fact 2.10(i),
x∗ ∈ Ax. Hence A is maximally monotone.

(iii): By (i) and Fact 2.10(iv), A0 = (domA)⊥ = A∗0 is weak∗ closed and thus A+0 = A◦0 =

A0 = (domA)⊥. Then by Fact 2.10(v) and (i), domA∗
w* ∩X = (A0)⊥ = domA.

(iv): Combine (iii) with Fact 2.10(vi).

(v): We show only the proof of A = A+ + A◦ as the other two proofs are analogous. Clearly,
domA+ = domA◦ = domA ∩ domA∗ = domA. Let x ∈ domA, and x∗ ∈ Ax and y∗ ∈ A∗x.
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We write x∗ = x∗+y∗

2 + x∗−y∗
2 ∈ (A+ + A◦)x. Then, by (iii) and Fact 2.10(i), Ax = x∗ + A0 =

x∗ + (A+ +A◦)0 = (A+ +A◦)x. Therefore, A = A+ +A◦.

(vi): By (iv),

domA+ = domA◦ = domA is closed.(40)

Hence, by (iii),

A◦0 = A+0 = A0 = (domA)⊥ = (domA+)⊥ = (domA◦)⊥.(41)

Since A is monotone, so are A+ and A◦. Combining (40), (41), and (ii), we deduce that A+ and
A◦ are maximally monotone.

(vii): By (iv)&(v),

A = A+ +A◦.(42)

Then by (vi), (iv), and Fact 2.6, A∗ = (A+)∗ + (A◦)∗. �

For a monotone linear relation A : X ⇒ X∗ it will be convenient to define — as in, e.g., [3] — a
generalized quadratic form

(∀x ∈ X) qA(x) =

{
1
2〈x,Ax〉, if x ∈ domA;

+∞, otherwise.

We write qA for the lower semicontinuous hull of qA.

Proposition 5.3 Let A : X ⇒ X∗ be a monotone linear relation, let x and y be in domA, and let
λ ∈ R. Then qA is single-valued, qA ≥ 0 and

λqA(x) + (1− λ)qA(y)− qA(λx+ (1− λ)y) = λ(1− λ)qA(x− y)

= 1
2λ(1− λ)〈x− y,Ax−Ay〉.(43)

Consequently, qA is convex.

Proof. Proposition 5.1(iv)&(v) show that qA is single-valued and that qA ≥ 0. Combining with
Proposition 5.1(i)&(iii), we obtain (43). Therefore, qA is convex. �

As in the classical case, qA allows us to connect properties of A+ to those of A and A∗.

Proposition 5.4 (Properties of the symmetric part and the adjoint) Let A : X ⇒ X∗ be
a monotone linear relation. Then the following hold.

(i) qA + ιdomA+ = qA+ and thus qA+ is convex.

(ii) graA+ ⊆ gra ∂qA. If A+ is maximally monotone, then A+ = ∂qA.
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(iii) If A is maximally monotone and domA is closed, then A+ = ∂qA.

(iv) If A is maximally monotone, then A∗|X is monotone.

(v) If A is maximally monotone and domA is closed, then A∗|X is maximally monotone.

Proof. Let x ∈ domA+.

(i): By Fact 2.10(iii) and Proposition 5.1(iv), qA+ = qA|domA+ . Then by Proposition 5.3, qA+ is
convex. Let y ∈ domA. Then by Fact 2.10(iii),

0 ≤ 1
2〈Ax−Ay, x− y〉 = 1

2〈Ay, y〉+ 1
2〈Ax, x〉 − 〈A+x, y〉,(44)

we have qA(y) ≥ 〈A+x, y〉 − qA(x). Take the lower semicontinuous hull of qA at y to deduce that
qA(y) ≥ 〈A+x, y〉 − qA(x). For y = x, we have qA(x) ≥ qA(x). On the other hand, qA ≤ qA.
Altogether, qA(x) = qA(x) = qA+(x). Thus (i) holds.

(ii): Let y ∈ domA. By (44) and (i),

qA(y) ≥ qA(x) + 〈A+x, y − x〉 = qA(x) + 〈A+x, y − x〉.(45)

Since dom qA ⊆ dom qA = domA, by (45), qA(z) ≥ qA(x) + 〈A+x, z − x〉, ∀z ∈ dom qA. Hence
A+x ⊆ ∂qA(x). If A+ is maximally monotone, then A+ = ∂qA. Thus (ii) holds.

(iii): Combine Proposition 5.2(vi) with (ii).

(iv): Suppose to the contrary that A∗|X is not monotone. By Proposition 5.1(v), there exists
(x0, x

∗
0) ∈ graA∗ with x0 ∈ X such that 〈x0, x

∗
0〉 < 0. Now we have

〈−x0 − y, x∗0 − y∗〉 = −〈x0, x
∗
0〉+ 〈y, y∗〉+ 〈x0, y

∗〉 − 〈y, x∗0〉
= −〈x0, x

∗
0〉+ 〈y, y∗〉 > 0, ∀(y, y∗) ∈ graA.(46)

Thus, (−x0, x
∗
0) is monotonically related to graA. By maximal monotonicity of A, (−x0, x

∗
0) ∈

graA. Then 〈−x0 − (−x0), x∗0 − x∗0〉 = 0, which contradicts (46). Hence A∗|X is monotone.

(v): By Fact 2.10(vi), domA∗|X = (A0)⊥ and thus domA∗|X is closed. By Fact 2.1 and

Proposition 5.2(i), (domA∗|X)⊥ = ((A0)⊥)⊥ = A0
w*

= A0. Then by Proposition 5.2(iii),
(domA∗|X)⊥ = A∗0 = A∗|X0. Applying (iv) and Proposition 5.2(ii), we see that A∗|X is maximally
monotone. �

The proof of Proposition 5.4(iv) was borrowed from [19, Theorem 2]. Results very similar to
Proposition 5.4(i)&(ii) are verified in [43, Proposition 18.9].

The proof of the next Theorem 5.5(i)⇒(ii) was partially inspired by that of [2, Theo-
rem 4.1(v)⇒(vi)]. In it we present our main findings relating monotonicity and adjoint properties
of A and those of its skew part A◦.
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Theorem 5.5 (Monotone linear relations with closed graph and domain) Let A : X ⇒
X∗ be a monotone linear relation such that graA is closed and domA is closed. Then the following
are equivalent.

(i) A is maximally monotone of type (D).

(ii) A◦ is maximally monotone of type (D) with respect to X ×X∗ and A∗0 = A0.

(iii) (A◦)∗ is maximally monotone with respect to X∗∗ ×X∗ and A∗0 = A0.

(iv) (A◦)∗ is monotone and A∗0 = A0.

(v) A∗ is monotone.

(vi) A∗ is maximally monotone with respect to X∗∗ ×X∗.

Proof. “(i)⇒(ii)”: By Theorem 4.1,

A∗ is monotone.(47)

By Proposition 5.4(iii) and Fact 1.2,

A+ is maximally monotone of type (D).(48)

By Theorem 4.1,

(A+)∗ is monotone.(49)

Now we show that

(A◦)∗ is monotone.(50)

Proposition 5.2(vii) implies

A∗ = (A+)∗ + (A◦)∗.(51)

Since A is maximally monotone and domA is closed, Proposition 5.2(vi) implies that A◦ is maxi-
mally monotone. Hence gra(A◦) is closed. On the other hand, again since A is maximally monotone
and domA is closed, Proposition 5.2(iv) yields dom(A◦) = domA is closed. Altogether, and com-
bining with Fact 2.10(vi) applied to A◦, we obtain dom(A◦)∗ = (A◦0)⊥. Furthermore, since
A0 = A◦0 by Proposition 5.2(iii), we have (A0)⊥ = (A◦0)⊥. Moreover, applying Fact 2.10(vi) to
A, we deduce that domA∗ = (A0)⊥. Therefore,

dom(A◦)∗ = (A◦0)⊥ = (A0)⊥ = domA∗.(52)

Similarly, we have

dom(A+)∗ = domA∗.(53)
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Take (x∗∗, x∗) ∈ gra(A◦)∗. By (51) and (52), there exist a∗, b∗ ∈ X∗ such that

(x∗∗, a∗) ∈ graA∗, (x∗∗, b∗) ∈ gra(A+)∗(54)

and

a∗ = b∗ + x∗.(55)

Since A+ is symmetric, graA+ ⊆ gra(A+)∗. Thus, by (49), (x∗∗, b∗) is monotonically related
to graA+. By (48), there exist a bounded net (aα, b

∗
α)α∈Γ in graA+ such that (aα, b

∗
α)α∈Γ

weak*×strong converges to (x∗∗, b∗). Thus (aα, b
∗
α) ∈ gra(A+)∗. By (53) and (51), there exist

a∗α ∈ A∗aα, c∗α ∈ (A◦)∗aα such that

a∗α = b∗α + c∗α, ∀α ∈ Γ.(56)

Thus by Fact 2.10(iii),

〈aα, c∗α〉 = 〈A◦aα, aα〉 = 0, ∀α ∈ Γ.(57)

Hence for every α ∈ Γ, (−aα, c∗α) is monotonically related to graA◦. By Proposition 5.2(vi),

(−aα, c∗α) ∈ graA◦, ∀α ∈ Γ.(58)

By (47) and (54), we have

0 ≤ 〈x∗∗ − aα, a∗ − a∗α〉 = 〈x∗∗ − aα, a∗ − b∗α − c∗α〉 (by (56))

= 〈x∗∗ − aα, a∗ − b∗α〉 − 〈x∗∗, c∗α〉+ 〈aα, c∗α〉
= 〈x∗∗ − aα, a∗ − b∗α〉 − 〈x∗∗, c∗α〉 (by (57))

= 〈x∗∗ − aα, a∗ − b∗α〉+ 〈x∗, aα〉 (by (58) and (x∗∗, x∗) ∈ gra(A◦)∗).(59)

Taking the limit in (59) along with aα
w*
⇁x∗∗ and b∗α → b∗, we have

〈x∗∗, x∗〉 ≥ 0.

Hence (A◦)∗ is monotone and thus (50) holds. Combining (50), Proposition 5.2(vi) and Theo-
rem 4.1, we see that A◦ is of type (D).

“(ii)⇒(iii)⇒(iv)”: Apply Corollary 4.4 to A◦.

“(iv)⇒(v)”: By Fact 2.10(iv) and Proposition 5.2(ii), A is maximally monotone. Then by
Proposition 5.2(vii) and Proposition 5.4(iii), we have

A∗ = (A+)∗ + (A◦)∗ and A+ = ∂qA.(60)

Then A+ is of type (D) by Fact 1.2, and hence (A+)∗ is monotone by Theorem 4.1. Thus, by the
assumption and (60), we have A∗ is monotone.
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“(v)⇒(vi)”: By Proposition 3.2, A is maximally monotone. Then by Fact 2.10(vi) and Proposi-
tion 5.2(iii),

domA∗ = (A∗0)⊥.(61)

Then by Fact 2.1 and Fact 2.10(iv),

[domA∗]⊥ = A∗0.(62)

Let (x∗∗, x∗) ∈ X∗∗×X∗ be monotonically related to graA∗. Because {0}×A∗0 ⊆ graA∗, we have
inf〈x∗∗, x∗ −A∗0〉 ≥ 0. Since A∗0 is a subspace, x∗∗ ∈ (A∗0)⊥. Then by (61),

x∗∗ ∈ domA∗.(63)

Take (x∗∗, x∗∗0 ) ∈ graA∗ and λ > 0. For every (a∗∗, a∗) ∈ graA∗, we have (λa∗∗, λa∗) ∈ graA∗ and
hence (x∗∗ + λa∗∗, x∗0 + λa∗) ∈ graA∗ (since graA∗ is a subspace). Thus

λ〈a∗∗, x∗0 + λa∗ − x∗〉 = 〈x∗∗ + λa∗∗ − x∗∗, x∗0 + λa∗ − x∗〉 ≥ 0.

Now divide by λ to obtain λ〈a∗∗, a∗〉 ≥ 〈a∗∗, x∗ − x∗0〉. Then let λ → 0+ to see that 0 ≥
sup〈domA∗, x∗ − x∗0〉. Thus, x∗ − x∗0 ∈ (domA∗)⊥. By (62), x∗ ∈ x∗0 + A∗0 ⊆ A∗x∗∗ + A∗0.
Then there exists (0, z∗) ∈ graA∗ such that (x∗∗, x∗ − z∗) ∈ graA∗. Since graA∗ is s a subspace,
(x∗∗, x∗) = (0, z∗) + (x∗∗, x∗ − z∗) ∈ graA∗. Hence A∗ is maximally monotone with respect to
X∗∗ ×X∗.

“(vi)⇒(i)”: Apply Proposition 3.2 directly. �

The next three examples show the need for various of our auxiliary hypotheses.

Example 5.6 We cannot remove the condition that A∗0 = A0 in Theorem 5.5(iv). For example,
suppose that X = R2 and set e1 = (1, 0), e2 = (0, 1). We define A : X ⇒ X by

graA = span{e1} × {0} so that graA∗ = X × span{e2}.

Then A is monotone, domA is closed, and graA is closed. Thus

graA◦ = span{e1} × span{e2}(64)

and so

gra(A◦)∗ = span{e2} × span{e1}.

Hence (A◦)∗ is monotone, but A is not maximally monotone because graA $ graNX . �

Example 5.7 We cannot replace that “domA is closed” by that “domA is dense” in the statement
of Theorem 5.5. For example, let X,A be defined as in Example 3.4 and consider the operator
A∗. Example 3.4(iii)&(ii) state that A∗ is maximally monotone with dense domain; hence, graA∗

is closed. Moreover, by Example 3.4(i),

(A∗)◦ = −A.(65)
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Hence

[(A∗)◦]∗ = −A∗.(66)

Thus [(A∗)◦]∗ is not monotone by Example 3.4(iii); even though A∗ is a classically maximally
monotone and densely defined linear operator. �

Example 5.8 We cannot remove the condition that (A◦)∗ is monotone in Theorem 5.5(iv). For
example, consider the Gossez operator A (see [24] and [2]). It satisfies X = `1, domA = X,
A◦ = A, A0 = {0} = A∗0, yet A∗ is not monotone. �

Remark 5.9 Let A : X ⇒ X∗ be a maximally monotone linear relation.

(i) In general, (A∗)◦ 6= (A◦)∗. To see that, let X,A be as in Example 3.4 again. By Exam-
ple 3.4(i), we have

(A∗)◦ = −A and (A◦)∗ = A∗.

Hence (A∗)◦ 6= (A◦)∗ by Example 3.4(ii). Moreover, even when A is a linear and continuous
operator, one cannot deduce that (A∗)◦ = (A◦)∗. Indeed, assume that X and A are as in
Example 5.8. Then (A∗)◦ is skew and hence monotone; however, (A◦)∗ = A∗ is not monotone.

(ii) However, if X is finite-dimensional, we do have (A∗)◦ = (A◦)∗. Indeed, by Fact 2.6,

(A◦)∗ =

(
A−A∗

2

)∗
=
A∗ −A∗∗

2
= (A∗)◦.

We expect that (A∗)◦ = (A◦)∗ for all maximally monotone linear relations if and only if X
is finite-dimensional.

The work in [5] suggests that in every nonreflexive Banach space there is a maximally monotone
linear relation which is not of type (D).

When A is linear and continuous, Theorem 5.5 can also be deduced from [2, Theorem 4.1]. When
X is reflexive and domA is closed, Theorem 5.5 turns into the following refined version of Fact 2.9:

Corollary 5.10 (Monotonicity of the adjoint in reflexive space) Suppose that X is reflex-
ive and let A : X ⇒ X∗ be a monotone linear relation such that graA is closed and domA is closed.
Then the following are equivalent.

(i) A is maximally monotone.

(ii) A∗ is monotone.

(iii) A∗ is maximally monotone.

(iv) A0 = A∗0.
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Proof. “(i)⇔(ii)⇔(iii)⇒(iv)”: This follows from Theorem 5.5 and Fact 1.2(ii).

“(iv)⇒(i)”: Fact 2.10(iv) implies that (domA)⊥ = A∗0 = A0. By Proposition 5.2(ii), A is
maximally monotone. �

When X is finite-dimensional, the closure assumptions in the previous result are automatically
satisfied and we thus obtain the following:

Corollary 5.11 (Monotonicity of the adjoint in finite-dimensional space) Suppose that X
is finite-dimensional. Let A : X ⇒ X∗ be a monotone linear relation. Then the following are equiv-
alent.

(i) A is maximally monotone.

(ii) A∗ is monotone.

(iii) A∗ is maximally monotone.

(iv) A0 = A∗0.
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general Banach space”; http://arxiv.org/abs/1110.5706v1, October 2011.

[7] H.H. Bauschke and P.L. Combettes, Convex Analysis and Monotone Operator Theory in
Hilbert Spaces, Springer, 2011.

[8] H.H. Bauschke, X. Wang, and L. Yao, “Monotone linear relations: maximality and Fitzpatrick
functions”, Journal of Convex Analysis, vol. 16, pp. 673–686, 2009.

[9] H.H. Bauschke, X. Wang, and L. Yao, “Examples of discontinuous maximal monotone linear
operators and the solution to a recent problem posed by B.F. Svaiter”, Journal of Mathematical
Analysis and Applications, vol. 370, pp. 224-241, 2010.

[10] H.H. Bauschke, X. Wang, and L. Yao, “On Borwein-Wiersma decompositions of monotone
linear relations”, SIAM Journal on Optimization, vol. 20, pp. 2636–2652, 2010.

[11] J.M. Borwein, “A note on ε-subgradients and maximal monotonicity”, Pacific Journal of
Mathematics, vol. 103, pp. 307–314, 1982.

[12] J.M. Borwein, “Adjoint process duality”, Mathematics of Operations Research, vol. 8, pp. 403–
434, 1983.

[13] J.M. Borwein, “Maximal monotonicity via convex analysis”, Journal of Convex Analysis,
vol. 13, pp. 561–586, 2006.

[14] J.M. Borwein, “Maximality of sums of two maximal monotone operators in general Banach
space”, Proceedings of the AMS, vol. 135, pp. 3917–3924, 2007.

[15] J.M. Borwein, “Fifty years of maximal monotonicity”, Optimization Letters, vol. 4, pp. 473–
490, 2010.

[16] J.M. Borwein and J.D. Vanderwerff, Convex Functions, Cambridge University Press, 2010.
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