

Newcastle AMSI-AG Room

Convex functions: Characterizations, Constructions and Counterexamples

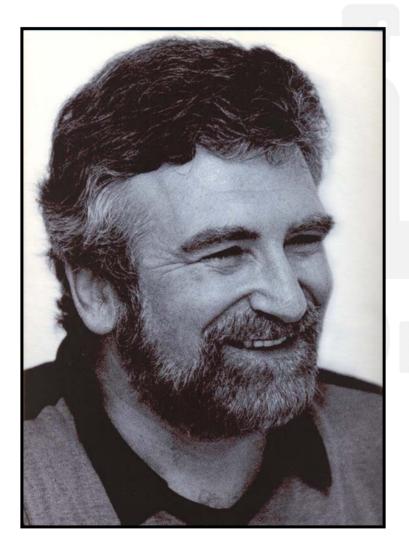
Jon Borwein, FRSC www.cs.dal.ca/~jborwein Canada Research Chair, Dalhousie Laureate Professor, Newcastle

A mathematician is a person who can find analogies between theorems; a better mathematician is one who can see analogies between proofs; and the best mathematician can notice analogies between theories.

(Stefan Banach, 1892-1945)

Abstract of CF:CCC Talk

In honour of my friend Boris Mordhukovich



We met in 1990. He said "How old are you?" I said "39 and you?" He replied "48." Fleft thinking he was 48 and he thinking I was 51. Some years later Terry **Rockafellar corrected our** cultural misconnect. What was it?

Convex functions, along with smooth functions, provide the wellspring for much of variational analysis

In this talk I shall look at four open problems in variational analysis, at the convex structure underlying them, and at the convex tools available to make progress with them

In each case, I think better understanding is fundamental to advancing nonsmooth analysis

Contents

1	Why Convex?	1
	1.1 Why 'Convex'?	2
	1.2 Basic Principles	3
	1.3 Some Mathematical Illustrations	9
	1.4 Some More Applied Examples	11
2	Convex Functions on Euclidean Spaces	19
	2.1 Continuity and Subdifferentials	20
	2.2 Differentiability	35
	2.3 Conjugate Functions and Duality	46
	2.4 Differentiability in Measure and Category	78
	2.5 Second-order Differentiability	84
	2.6 Support and Extremal Structure	92
3	Finer Structure of Euclidean Spaces	95
0	3.1 Polyhedral Convex Sets and Functions	96
	3.2 Functions of Eigenvalues	
	0	109
	3.4 Selections and Fixed Points	
	3.5 Into the Infinite	
4	Convex Functions on Banach Spaces 1	29
-540	4.1 Continuity and Subdifferentials	
	4.2 Differentiability of Convex Functions	
	4.3 Variational Principles	
	4.4 Conjugate Functions and Fenchel Duality	
	4.5 Chebyshev Sets and Proximality	
	4.6 Small Sets and Differentiability	
5	Duality Between Smoothness and Strict Convexity 2	15
0	5.1 Renorming: an Overview	
	5.2 Exposed Points of Convex Functions	
	5.3 Strictly Convex Functions	
	5.4 Moduli of Smoothness and Rotundity	

6	Furt	ther Analytic Topics	283		
	6.1	Multifunctions and Monotone Operators	284		
	6.2	Epigraphical Convergence: an Introduction	293		
	6.3	Convex Integral Functionals	311		
	6.4	Strongly Rotund Functions	316		
	6.5	Trace Class Convex Spectral Functions	321		
	6.6	Deeper Support Structure	327		
	6.7	Convex Functions on Normed Lattices	339		
$\overline{7}$	Bar	riers and Legendre Functions	349		
	7.1	Essential Smoothness and Essential Strict Convexity	350		
	7.2	Preliminary Local Boundedness Results	351		
	7.3	Legendre Functions	355		
	7.4	Constructions of Legendre Functions in Euclidean Space			
	7.5	Further Examples of Legendre Functions			
	7.6	Zone Consistency of Legendre Functions			
	7.7	Banach Space Constructions			
8	Con	vex Functions and Classifications of Banach Spaces	391		
-	8.1	Canonical Examples of Convex Functions			
	8.2	Characterizations of Various Classes of Spaces			
	8.3	Extensions of Convex Functions			
	8.4	Some Other Generalizations and Equivalences			
9	Mor	notone Operators and the Fitzpatrick Function	421		
	9.1	Monotone Operators and Convex Functions			
	9.2	Cyclic and Acyclic Monotone Operators			
	9.3	Maximality in Reflexive Banach Space			
	9.4	Further Applications			
	9.5	Limiting Examples and Constructions			
	9.6	The Sum Theorem in General Banach Space			
	9.7	More About Operators of Type (NI)			
10 Further Remarks and Notes					
		Back to the Finite	479 480		
		Notes on Earlier Chapters			
		List of Symbols			
Bi	Bibliography 505				

vi

Convex Functions

- H is (separable) Hilbert space in some renorm III
- C is a norm-closed subset and

$$d_C(x) \coloneqq \inf_{x \in C} \| x - c \|$$

 $P_C(x) \coloneqq \arg\min d_C(x)$

- In the Hilbert case $P_C(x)$ is at most singleton
- In a non-rotund renorm it may be multivalued
- If C is convex it is non-empty

Most of the questions that follow are no easier in arbitrary renorming of Hilbert space than in reflexive Banach space

The Chebyshev problem (Klee 1961) If every point in H has a unique nearest point in C is C convex?

Existence of nearest points (proximal boundary?) Do some (many) points in H have a nearest point in C in every renorm of H ?

Second-order expansions in separable Hilbert space If f is convex and continuous on H does f have a second order Taylor expansion at some (many) points?

Universal barrier functions in infinite dimensions Is there an analogue for H of the universal barrier function that is so important in Euclidean space?

The Chebyshev problem (Klee 1961) A set is Chebyshev if every point in H has a unique nearest point in C

Theorem If C is weakly closed and Chebyshev then C is convex. So in Euclidean space Chebyshev iff convex.

Four Euclidean variational proofs (BL 2005, Opt Letters 07, BV 2008)

- 1. Brouwer's theorem (Cheb. implies sun implies convex)
- 2. Ekeland's theorem (Cheb. implies approx. convex implies convex)
- **3. Fenchel duality** (Cheb. iff d_C^2 is Frechet) use f^{*} smooth implies f convex for

$$\left(\frac{\iota_{C} + \|\cdot\|^{2}}{2}\right)^{*} = \frac{\|\cdot\|^{2} + d_{C}^{2}}{2}$$

4. Inverse geometry also shows if there is a counterexample it can be a **Klee cavern** (Asplund) the closure of the complement of a convex body. **WEIRD**

- <u>Counterexamples</u> exist in incomplete inner product spaces. #2 seems most likely to work in Hilbert space.
- Euclidean case is due to Motzkin-Bunt

FIGURE 1. Suns and approximate convexity.

Existence of nearest points

Do some (many) points in H have a nearest point in C in every renorm of H?

Theorem (Lau-Konjagin, 76-86) A norm on a reflexive space is Kadec-Klee iff for every norm-closed C in X best approximations exist generically (densely) in $X \setminus C$.

Nicest proof is via dense existence of Frechet subderivatives $\varphi \in \partial_F d_C(x)$

The KK property forces approximate minimizers to line up.

- There are non KK norms with proximal points dense in bdry C
- If C is closed and bounded then there are some points with nearest points (RNP)
- So a counterexample has to be a weird unbounded set in a rotten renorm (BF89, BZ 2005)

A norm is **Kadec-Klee** norm if weak and norm topologies agree on the unit sphere. Hence all LUR norms are Kadec-Klee.

Second-order derivatives in separable Hilbert space

If f is continuous and convex on H does f have a (weak) second-order Taylor expansion at some (many) points?

Theorem (Alexandrov) In Euclidean space the points at which a continuous convex function admits a second-order Taylor expansion are full measure

• In Banach space, this is known to fail pretty completely unless one restricts the class of functions, say to nice integral functionals

• Is it possible in separable Hilbert space (BV 2009) that every such f has at least one point with a second-order Gateaux expansion?

• The goal is to build good jets and save as much as possible of extensions of lovely Euclidean results like $\partial \left[\frac{1}{2}\Delta_t^2 f(x)\right] = \Delta_t [\partial f](x).$

Universal barrier functions in infinite dimensions

 Is there an analogue for H of the universal barrier function that is so important in Euclidean space?

Theorem (Nesterov-Nemirovskii) For any open convex set A in n-space, the function

$$F(x) \coloneqq \lambda_N((A-x)^o)$$

is an essentially smooth, log-convex barrier function for A.

- This relies heavily on the existence of Haar measure (Lebesgue).
- Amazingly for A the semidefinite matrix cone we recover log det, etc

In Hilbert space the only really nice examples I know are similar to: $\phi(T) \coloneqq \operatorname{trace}(T) - \log(\det(I+T))$ is a strictly convex Frechet differentiable barrier function for the Hilbert-Schmidt operators with I+T > 0.

We (JB-JV) are able to build barriers in great generality but not "universally".

The Chebyshev problem (Klee 1961) If every point in H has a unique nearest point in C is C convex? I HAVE A SUGGESTION FOR THESE TWO: DISTORTION Existence of nearest points (proximal boundary?) Do some (many) points in H have a nearest point in C in every renorm of H

Second-order expansions in separable Hilbert space If f is convex continuous on H does f have a second order Taylor expansion at some (many) points? I THINK PROGRESS FOR THESE TWO WILL BE INCREMENTAL Universal barrier functions in infinite dimensions Is there an analogue for H of the universal barrier function that is so important in Euclidean space?

A Banach space X is **distortable** if there is a renorm and $\lambda > 1$ such that, for all infinite-dimensional subspaces $Y \subseteq X$,

 $\sup\{|y| / |x| x, y \in Y, \|x\| = \|y\| = 1\} > \lambda.$

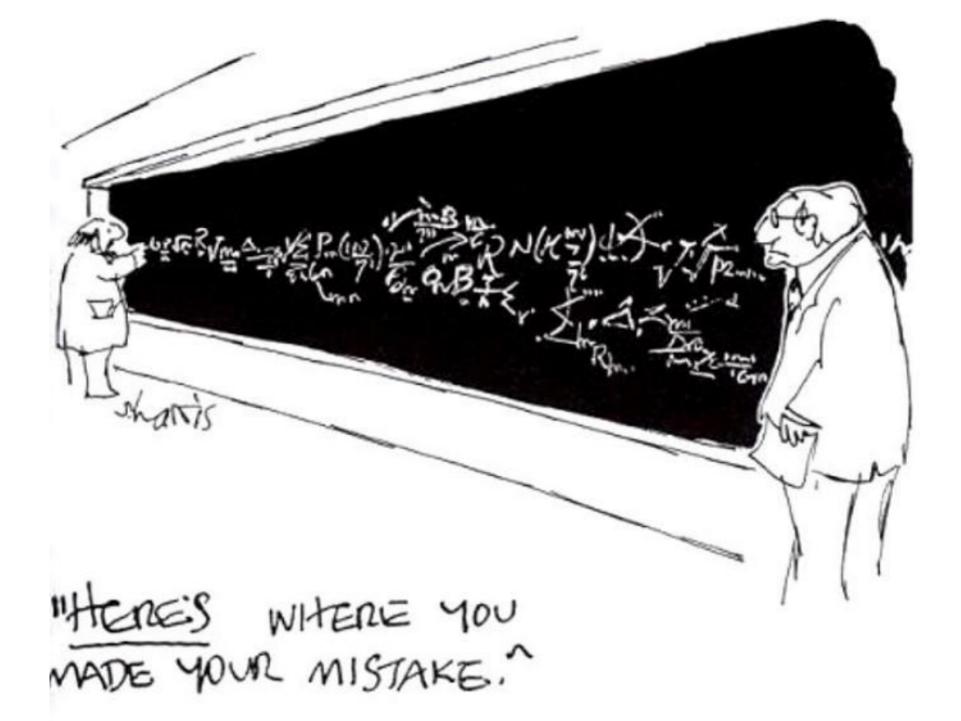
X is **arbitrarily distortable** if this can be done for all $\lambda > 1$.

Theorem (Odell and Schlumprecht 93,94) Separable infinite-dimensional Hilbert space is arbitrarily distortable

Distortability of $I_2(N)$ is equivalent to existence of two separated sets in the sphere both intersecting every infinitedimensional closed subspace of $I_2(N)$. Indeed, there is a sequence of (**asymptotically orthogonal**) subsets $(C_i)_{i=1}^{\infty}$ of the unit sphere such that (a) each set C_i intersects each infinite-dimensional closed subspace of and (b) as $i, j \rightarrow \infty$

 $\sup\{|\langle x, y\rangle| x \in C_i, y \in C_j\} \to 0$

These are such surprising sequences of sets that they should shed insight on the two proximality questions



Dalhousie Distributed Research Institute and Virtual Environment

Enigma

J.M. Borwein and Qiji Zhu, *Techniques of Variational Analysis,* CMS- Springer, 2005.

J.M. Borwein and A.S. Lewis, *Convex Analysis and Nonlinear Optimization. Theory and Examples*, CMS-Springer, Second extended edition, 2005.

J.M. Borwein and J.D. Vanderwerff, *Convex functions, constructions, characterizations and counterexamples*, Cambridge University Press, 2009.

"The object of mathematical rigor is to sanction and legitimize the conquests of intuition, and there was never any other object for it."

• J. Hadamard quoted at length in E. Borel, *Lecons sur la theorie des fonctions*, 1928.