Generalized Continued Logarithms and Related
Continued Fractions

Jonathan M. Borwein* Kevin G. Hare! Jason G. Lynch?
June 22, 2016

Abstract

We study continued logarithms as introduced by Bill Gosper and studied by J.
Borwein et. al.. After providing an overview of the type I and type II generalizations
of binary continued logarithms introduced by Borwein et. al., we focus on a new
generalization to an arbitrary integer base b. We show that all of our so-called type
IIT continued logarithms converge and all rational numbers have finite type III con-
tinued logarithms. As with simple continued fractions, we show that the continued
logarithm terms, for almost every real number, follow a specific distribution. We
also generalize Khinchine’s constant from simple continued fractions to continued
logarithms, and show that these logarithmic Khinchine constants have an elemen-
tary closed form. Finally, we show that simple continued fractions are the limiting
case of our continued logarithms, and briefly consider how we could generalize past
continued logarithms.

1 Introduction

Continued fractions, especially simple continued fractions, have been well studied through-
out history. Continued binary logarithms, however, appear to have first been introduced
by Bill Gosper in his appendix on Continued Fraction Arithmetic [4]. More recently in
[2], J. Borwein et. al. proved some basic results about binary continued logarithms and
applied experimental methods to determine the term distribution of binary continued
logarithms. They conjectured and indicated a proof that, like in the case of continued
fractions, almost every real number has continued logarithm terms that follow a spe-
cific distribution. They then introduced two different generalizations of binary continued
logarithms to arbitrary bases.

1.1 The Structure of This Paper

Section 1 introduces some basic definitions and results for continued fractions, briefly
describes binary continued logarithms as introduced by Gosper, and provides an overview
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of results relating to the Khinchine constant for continued fractions. Sections 2 and 3
then provide an overview of the type I and type II continued logarithms introduced by
Borwein et. al.. Further details on these can be found in [2].

Section 4 comprises the main body of the paper. In Section 4.1 we define type III
continued logarithms and extend to them the standard continued fraction recurrences.
Section 4.2 then proves that type III continued logarithms are guaranteed to converge to
the correct value, and that every rational number has a finite type III continued logarithm.
These are two desirable properties of continue fractions and binary continued logarithms
that a complete generalization should have. In Section 4.3 we describe how measure
theory can be used to investigate the distribution of continued logarithm terms. This is
then applied in Section 4.4 to determine the distribution, and Section 4.5 to determine
the logarithmic Khinchine constant. The main proofs of these sections are quite technical,
and are separated out into Appendices A and B, respectively. Finally, Section 4.6 derives
some relationships between simple continued fractions and the limiting case of type III
continued logarithms.

Finally, we close the paper in Section 5 by briefly introducing one way to generalize
past continued logarithms.

1.2 Continued Fractions
The material in this section can be found in many places including [3].
Definition 1. A continued fraction is an expression of the form
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For the sake of simplicity, we will sometimes denote the above as
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respectively. The terms «g, aq, ... are called denominator terms and the terms 3y, (s, . ..
are called numerator terms.

or

Definition 2. Two continued fractions
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are called equivalent if there is a sequence (d,)2, with dy = 1 such that o/, = d,«,, for
all n > 0 and 3], = d,d,—15, for all n > 1.

The ¢, terms can be thought of as constants that are multiplied by both numerators
and denominators of successive terms.

Definition 3. The nth convergent of the continued fraction
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Definition 4. The nth remainder term of the continued fraction
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is given by
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Tn = Qp +
The following results will be useful for generalizing to continued logarithms.

Fact 1. Suppose © = oy + ’—‘ ’—‘ -+, where a,, 8, > 0 for all n. Then the

convergents are given by

where

Pn = QnPn1 + BuPn—2 n>1,
Gn = QpQn-1 + ﬁnQn72 n > 1.

Fact 2. Suppose x = oy +’%‘+ 52 +- - where a,,, 8, > 0 for all n. Then the continued
1 2
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fraction for  converges to x if Y 7, s
- n

= OQ.

Remark 1. Throughout this paper, we will use M(A) or just M A to denote the Lebesgue
measure of a set A C R.

1.3 Binary Continued Logarithms

Let 1 < o € R. Let yo = « and recursively define a,, = [log, y,|. If y,, — 2% = 0, then
terminate. Otherwise, set
2
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and recurse. This produces the binary (base 2) continued logarithm for yo:

gu | gu| g
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These binary continued logarithms were introduced explicitly by Gosper in his appendix
on Continued Fraction Arithmetic [4]. Borwein et. al. studied binary continued loga-
rithms further in [2], extending classical continued fraction recurrences for binary contin-
ued logs and investigating the distribution of aperiodic binary continued logarithm terms
for quadratic irrationalities — such as can not occur for simple continued fractions.

Remark 2. Jeffrey Shallit [7] proved some limits on the length of a finite binary continued
logarithm. Specifically, the binary continued logarithm for a rational number p/q > 1
has at most 2log, p + O(1) terms. Furthermore, this bound is tight, as can be seen by
considering the continued fraction for 2" — 1. Moreover, the sum of the terms of the
continued logarithm of p/q > 1 is bounded by (log, p)(2logy p + 2).

1.4 Khinchine’s Constant

In [5], Khinchine proved that for almost every a € (0, 1), where

L, 1) 1]
= —|— —I— + SRR
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the denominator terms aq, as, as, ... follow a specific limiting distribution. That is, let

P,(k) = limyooo v [{n < N : a, = k}|. This is the limiting ratio of the denominator
terms that equal k, if this limit exists. Then for almost every a € (0, 1),

Pulk) = log (1 + m)

log 2

for every k € N. It then follows for almost every a € (0,1) that the limiting geometric
average of the denominator terms is given by

e’} 1 log2r
lim ayay---a, = H (1 + —2>> ~ 2.685452.
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This constant is now known as Khinchine’s constant, .

2 Type I Continued Logarithms

2.1 Type I Definition and Preliminaries

Fix an integer base b > 2. We define type I continued logarithms as follows.

Definition 5. Let a € (1,00). The base b continued logarithm of type I for « is

(b—1bo ], (b—bpm |, (b1
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where the terms ag, a;,as ... are determined by the recursive process below, terminating
at the term b if at any point y, = b*".

Yo = &
an = |logy, yn | n>0
(b — 1)ban

Ynt1 = n > 0.
Yn — bon
The numerator terms (b — 1)b* are defined as such to ensure that y, € (1, 00) for all
n. Indeed, notice that for each n, we must have b <y, < b*+!. Thus 0 < y, — b* <
(b—1)b. If y,, — b* = 0, then we terminate, otherwise we get 0 < y,, — b* < (b — 1)b*",
_ (b1
SO Ypt1 = Un—bon € (1,00)
Borwein et al. proved that the type I continued fraction of o € (1,00) will converge
to a [2, Theorem 15]. Additionally, numbers with finite type I continued logarithms must
be rational. However for b > 3, rationals need not have finite continued logarithms. For

example, the type I ternary continued logarithm for 2 is [3",3°,3%, .. ], 3).

2.2 Distribution of Type I Continued Logarithm Terms and
Type I Logarithmic Khinchine Constant

We now look at the limiting distribution of the type I continued logarithm terms. Con-
sider av = [b%,0™,b%, ... ]a, (). Assume that the continued logarithm for « is infinite.
Furthermore, assume (without loss of generality) that ag = 0, so that o € (1,0).

Definition 6. For n € N, let
D, (k) ={a € (1,b) : a, =k}
denote the set of a € (1,b) for which the nth continued logarithm term is b*.

Definition 7. Let x = [1,0™,b0%,...]a, € (1,0). The nth remainder term of z is
Ty = 1rp(x) = [b*, 0%+, ... |a, ), as in Definition 4. Define
T'n

o

Zn = 2p () = [1, 0%+, b%+2 e, ) € (1,0),

M,(z) ={a € (1,b) : z,(a) < x} C (1,0),
() = T MOM(2) € (0.1,
and

m(x) = lim m,(z),

wherever this limit exists.

Notice that since 1 < z,(«) < b for all n € N and a € (1,b), we must have m,(1) =0
and m,,(b) = 1 for all n € N. We can now derive a recursion for the functions m,.

Theorem 1. The sequence of functions m,, is given by the recursive relationship

mofr) = (1)
mp(z) = imnl(l + =)0 —mu L+ (b= 1)07F) n>1 (2)

for1 <ax <.



The proof of this is similar to that of Theorem 16.
We next derive a formula for D, (k) in terms of the function m,,.

Theorem 2.

T M(Dy (k) = (14 (b= 155 — (14 (b 1)),
The proof of this theorem is similar to that of Theorem 19.
Thus, if the limiting distribution m(x) exists, it immediately follows that

lim —/\/l( WK =m(14+ (b—1b7F) —m(1+ (b— 1)b~*+D). (3)

n—oo b — 1

2.3 Experimentally Determining the Type I Distribution

Now suppose b > 1 is an arbitrary integer. Let u;, denote the limiting distribution function
m for the base b, assuming it exists.

We may investigate the form of p,(x) by iterating the recurrence relation of Theorem
1 at points evenly spaced over the interval [1,b], starting with mg(z) = 1. At each
iteration, we fit a spline to these points, evaluating each “infinite” sum to 100 terms,
and breaking the interval [1,b] into 100 pieces. This is practicable since the continued
logarithm converges much more rapidly than the simple continued fraction.

We find good convergence of p,(x) after around 10 iterations. We use the 101 data

points from this process to seek the best fit to a function of the form

ar +

=1 )
Mb(x) O 0gp 737‘"5

We set v = 1 to eliminate any common factor between the numerator and denominator.
To meet the boundary condition p;(1) = 0, we must have 6 = o+ — 1, and to meet the

boundary condition j,(b) = 1, we must have C' = ————, leaving the functional form
to be fit as

logy, 1 5vo-1

log, fx:ﬁ

z+a+p8—1

pp(z) = og, _Potd " (4)
O8b o atb-1

We sought this superposition form when the simpler structure for simple continued
fractions failed.

Fitting our data to the model suggests candidate values of a = % and g = b_Tl, from
which we get

log

() = x—+b~ (5)
log 575 2—1

When we then apply (3), we get

log < + _k+—(1b Y )
lim —./\/lD (k) = O

A proof of this distribution and of the type I Khinchine constant for each integer base
b, using ergodic theory, can be found in [6]. Additionally, it is likely that the proofs in
Appendices A and B for the type III continued logarithm distribution and logarithmic
Khinchine constant could be appropriately adjusted to prove these results.
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If a type I base b Khinchine constant KL, exists (i.e., almost every a € (1, 00) has
the same limiting geometric mean of denominator terms), and if a limiting distribution
D(k) = lim,,_,o D, (k) of denominator terms exists, then

ke =] bk/\ZL(lk) _ i kT

k=0

This is because the limiting distribution of denominator terms (if it exists) is essentially
the “average” distribution over all numbers o € (1,b). If we then assume that almost
every a € (1,b) has the same limiting geometric mean of denominator terms, then this
limiting geometric mean (the logarithmic type I Khinchine constant) must equal the
limiting geometric mean of the “average” distribution.

Thus, if we assume KL, exists and that the distribution in (3) is correct, then we
must have KL, = b4, where

log b
b2
2—1

A=

R0 S K14 (= 1057) — 1+ b 1) =

<" b1 log

_]_7

0
k=

by Theorem 2 and a lengthy but straightforward algebraic manipulation. These conjec-
tured type I logarithmic Khinchine constants for 2 < b < 10 are given in Figure 1.

KLy
2.656305058
2.598065150
2.556003239
2.524285360
2.499311827
2.478977440
2.461986788
2.447498976
2.434942582
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Figure 1: Type I logarithmic Khinchine constants for 2 < b < 10

These conjectured values of the type I logarithmic Khinchine constants were sup-
ported by empirical evidence, as the numerically computed limiting geometric means of
denominator terms for various irrational constants give the expected values.

Notice that the type I logarithmic Khinchine constants have a simple closed form,
which is noteworthy as no simple closed form has been found for the Khinchine constant
for simple continued fractions.

3 Type II Continued Logarithms

3.1 Type II Definition and Preliminaries

Fix an integer base b > 2. We define type II continued logarithms as follows.



Definition 8. Let ao € R>;. The base b continued logarithm for « is

“ cob® c1b™ cob®? a a a
Wt +’ c[l)bal ‘ﬂ C;b% ‘ﬂ czbag ‘+ cee= e, eb™, eb™, L ey,
where the terms ag,ai,as... and ¢y, cq,co, ... are determined by the recursive process

below, terminating at the term ¢,b* if at any point y,, = ¢,b*".

Yo = &
a, = |logy yn| n>0
| Yn
=[] nz0
b
Ynt+1 = ‘ n>0
yn - Cnba"

Remark 3. The numerator terms c,b% are defined to match the corresponding denom-
inator terms. Recall that in the type I case, the term y,,; could take any value in
(1, 00), regardless of the value of a,,. This is no longer true, since y,, — ¢, b € (0,b%), so
Ynt1 € (Cp,00). We will see later that this results in type II continued logarithms having
a more complicated distribution for which we could not find a closed form. This issue was
the inspiration for the definition of type III continued logarithms, where the numerator
terms are b%" instead of ¢, b*".

Borwein et. al. proved that the type IT continued fraction of « € (1, 00) will converge
to «, and that @ € (1,00) has a finite continued logarithm if and only if o € Q |2,
Theorems 19 and 20] — unlike the situation for type I.

3.2 Distribution of Type II Continued Logarithm Terms and
Type II Logarithmic Khinchine Constant

We now look at the limiting distribution of the type II continued logarithm terms. Con-
sider a = [cb®, c1b, cab?2, . . . |a,b)- Assume that a ¢ Q, so that the continued logarithm
for « is infinite. Furthermore, assume (without loss of generality) ap = 0 and ¢y = 1, so
that a € (1,2).

Definition 9. Let n € N. Let
Dy, (k,0) ={a € (1,2):a, =k,c, =}
denote the o € (1,2) for which the nth continued logarithm term is ¢b*.

Definition 10. Let z = [1,¢10™, 0%, .. |a,) € (1,2) with nth remainder term 7, =

() = [cnb™, Cry1 "1, . a1, @s in Definition 4. Define
Tn
Zn = Zn(x) - c. be = []-; Cn+1ban+1, Cn+2ban+27 N ]C12(b) € (]_, 2),

M,(z) ={a € (1,2) : z,(a) < 2} C (1,2),
mp(x) = M(M,(x)) € (0,1),

and

m(z) = nh_g)lo m(z),

wherever this limit exists.



Notice that since 1 < z,(a) <2 for all n € N and o € (1,2), we must have m,(1) =0
and m,(2) = 1 for all n € N.
We may now derive a recursion relation for the functions m,,.

Theorem 3. The sequence of functions m,, is given by the recursive relationship

mo(z) =x —1 (6)
oo b—1

mp(z) = M1 (1 4+ 07077 —my_y(max{1 + 0 2 L1+ (0+1)77F)) n>1
k=0 (=1

(7)
for1 <ax <2
We can now derive a formula for D, (k,¢) in terms of the function m,,.

Theorem 4.
M(Dypi1(k,0)) = mp(1 4+ £707%) — my (1 + (€4+1)7107F).
Thus, if the limiting distribution m(x) exists, it immediately follows that

lim M(D,(k, €)) = m(1+ TRy —m(T+ (C+ 1) R, (8)

3.3 Experimentally Determining the Type II Distribution

Again, suppose b is arbitrary. Let u;, denote the limiting distribution function m for the
base b, assuming it exists.

We may again investigate the form of p,(x) by iterating the recurrence relation of
Theorem 3 at points evenly spaced over the interval [1,2], starting with mg(z) = = — 1.
At each iteration, we fit a spline to these points, evaluating each “infinite” sum to 100
terms, and breaking the interval [1,2] into 100 pieces.

We find good convergence of uy(z) after around 10 iterations. However, we have
been unable to find a closed form for pu, for b > 2. It appears that pu, is a continuous
non-monotonic function that is smooth on (1,2) except at x = J]il forj=2,...,b—1.

If a logarithmic Khinchine constant KL, exists (i.e. almost every a € (1,00) has
the same limiting geometric mean of denominator terms), and if a limiting distribution
D(k,l) = lim,,_, D, (k, ) of denominator terms exists, then

oo b—1

ke =TT ] e mMD(k, 0).

k=0 (=1

This is because the limiting distribution of denominator terms (if it exists) is essentially
the “average” distribution over all numbers a € (1,2). If we then assume that almost
every a € (1,2) has the same limiting geometric mean of denominator terms, then this
limiting geometric mean (the logarithmic Khinchine constant) must equal the limiting
geometric mean of the “average” distribution.

However, since we do not know the limiting distribution, we can only approximate the
logarithmic Khinchine constants.

This conjectured values of the type II logarithmic Khinchine constants are supported
by empirical evidence, as the limiting geometric means of denominator terms for various
irrational constants give the conjectured values.



K,
2.656305048
3.415974174
4.064209949
4.636437895
5.152343739
5.624290253
6.060673548
6.467518102
6.849326402

© 00 1 O UL i W N

—_
(@)

Figure 2: Experimental type II logarithmic Khinchine constants for 2 < b < 10

4 Type III Continued Logarithms

Fix an integer base b > 2. In this section, we will introduce our third generalization of
base 2 continued logarithms. This appears to be the best of the three generalizations, as
we will show that type III continued logarithms have guaranteed convergence, rational
finiteness, and closed forms for the limiting distribution and logarithmic Khinchine con-
stant. Additionally, type III continued logarithms ‘converge’ to simple continued fractions
if one looks at limiting behaviour as b — oo.

4.1 Type III Definitions and Recurrences

We start with some definitions, notation, and lemmas related to continued logarithm
recurrences.

Definition 11. Let a € R>;. The type III base b continued logarithm for « is

po | b | b
Clbal +’02ba2 +’C3ba3

Cobao +’ + o= [C()bao, Clbal7 CQbaQ, c. ]Clg(b)'

where the terms ag, a1, as,... and cg,cq,co,... are determined by the recursive process
below, terminating at the term ¢, b* if at any point y,, = ¢, b*".

Yo =«
a, = |logy yn| n>0
_ | Yn
‘= | =t
b
= n>0
Yn+1 Yn — Cnba” sl
Remark 4. We can (and often will) think of the a, and ¢, as functions ag,ay,ag, - - :
(1,00) = Z>p and ¢, c1, €, -+ = (1,00) = {1,2,...,b—1}, since the terms ag, ¢, a1, ¢1, az, Ca, . . .
are uniquely determined by «a. Conversely, given the complete sequences ag, ay, as, ... and
Co, C1,Ca, . .., one can recover the value of a.

Remark 5. Let a = [cob™, c1b™, cb%%, .. . |a, ) € (1,00). Based on Definitions 3 and 4,
the nth convergent and nth remainder term of « are given by

o b b | e pen-1
xn(a)_00b0+’clb“1 Jr’@b‘” ﬂcsba‘* +”'+’W"

10




and
bon \ hon+1

rn(oz):cnb“"—l—’ 4+

+
cn+1ban+l ’ Cn+2ban+2

respectively.
Note that the terms r, are the same as the terms vy, from Definition 11.

Lemma 5. The nth convergent of o = [cob®, ¢10™, cob®, .. |y ) 15 given by
 pn
T, = —
dn
where
p-1=1, q-1 =0, po = ob™, g =1,
and forn > 1,

Pn = Cnbanpn—l + banilpn—%
dn = CnbanQn—l + ban71Qn—2-

Proof. This follows from Fact 1, where for continued logarithms we have a,, = ¢,b*" and
B = b1, O

Lemma 6. We have the following lower bounds on the denominators g :
o g, > 20 1/2 > %2"/2 forn >0,
o ¢, > btrtan forn > 0.

Proof. For the first bound, note that
Gn = CnbaTLanl + ban_IQn72 2 (Cnban + ban_l)qn72 2 2qn72-

A simple inductive argument then gives g, > 2%2¢, = 22 > 2=1/2 for even n and
¢ > 200D/2g, > 200=D/2 for 0dd n.

For the second bound, note that ¢, = ¢,b*"¢,—1 + b*'q,—2 > b**q,_1 from which
another simple inductive argument gives ¢,, > bnTan-1Fta1g, — parttan, O

Lemma 7. Forn >0,

PnQn—1 — GnPn—1 = (—1>n71ba0+"'+an71.

Proof. For n = 0, we have
Pog_1 — qop—1 = cob™(0) — 1(1) = —1 = (—=1)"1p°.
Now suppose that the statement is true for some n > 0. Then by Lemma 5,

pn+1Qn - qn+1pn - (Cn—l—lbawrlpn + banpn—l)Qn - (Cn+1ban+IQn + banQn—l)pn

= _ban<ann71 - annfl) = —ban(—l)nilba0+"'+a"’1
— (_1)nbao+-~+an'

so the result follows by induction. O

The following lemma is equivalent to Lemma 5, and will be used to prove Theorem 9.
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Lemma 8. Let a_y = 0. Then for alln > 0,

Pn Pn-1) _ - c;b% 1
(Qn qnl) Ho (baj_l 0) '
Proof. For n = 0, we have

12[ c;b% 1\  [ceb®™ 1\  [cob™ 1\  (po p-1
0 br-1 0)  \bv*-r 0) 1 0/ \a g1/
=

Now suppose for induction that
1:[ c;jb% 1 _ (P11 Pa-2
§=0 ba] ' -1 Gn-2)

Then by Lemma 5,

f[ Cjbaj 1 — Pn—1 Pn—2 Cnban 1 — Cnbanpnfl + banilpan Pn—1 _ Pn  Pn-1
j=0 b=t 0 dn—1 Qn-—2 b=t 0 Cnb" 1 + 0" 2 Q1 Gn Gn-1)’
as asserted. O

Theorem 9. For arbitrary 1 < k < n,

DPk—1Tk + Dr—2b™1
Qk—1T% + Qr—2b™—1

[Coba07 C1 bal Cnban] Cl3(b)

Proof. First notice that 7, = [cxb™, ..., c,b™]a,0) = , , where

(p;“)—(c’““ ) (o) ()
/ - aj :
i Jj=k+1 b
Ckbak 1 Ckbak 1
bak-1 () bak 1
by 1) (1\ T (b cpb™ 1 " by 1Y (1
v 0) \o) = 1L (s k-1 bt 0) \0
0 =0 Jj= k+1

J

Pk—1 DPk—2 1 0 b 1 f[ Cj b% 1 1
Q-1 Gr—2) \O b1 r 0/ e b=t 0/ \0
]:

Prr Pr-od™ N (DR _ pk1p2+pkzb“k—1q;)
Q-1 Q201 ) \ g, Qe—1Dy, + Q-2 q,

Also note that

Then

(i) -

::]:

J

|
7~ N 7 N

Thus
p' ap_
[cob™ Cnb™ el 0) = A 1Py, + Pr—20™ 1, p’“*l_ﬁ + Pr—2b™ _ Pr-1Tk + Pr—ob®1
) )’ n Cd( ) qn Qk: ka + Qk; 2b k— 1qk qk; 1 + Qh— 2bak 1 qk_l’]"k + qk‘—Qbak_l )
as required. O
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4.2 Convergence and Rational Finiteness of Type III Continued
Logarithms

Theorem 10. The type III continued logarithm for a number x > 1 converges to x.

Proof. Suppose that the continued logarithm for z = [cob™, 10", ..., ¢;,b* e,y is finite.
From the construction, we have x = yy where

Ak

Yr = cpb™ +
Yr+1
for 0 < k <n—1. From Definition 11, since the continued logarithm terminates, we have
Yn = cpb®, at which point we simply have
bao ‘ b(l1 ‘ ba2 banfl

c1b® +! b Cepm T e

T = coh™® —i—’

This shows convergence in the case of finite termination. If the continued logarithm for
x does not terminate, then convergence follows from Fact 2, since

> Q11 > Cnb®Cp i b >
_—— _— = CnCn 1ban+1 - OO,

R
while all terms are positive as required. O
Lemma 11. If

Bl WSl el

y==c ’ Clbal ’ Cgba2 ’ Cgba3 ’
lelbao—al ‘—i_ C;lcglb_GQ ‘_}_ C;lcglb_a?’ ‘_{_ .

— a0
then y and y; are equivalent. (The form y; is called the denominator-reduced continued
logarithm for y.)

Proof. Takedy =1landd, =c, Lp=an for n > 1 to satisfy the conditions of Definition 2. [

Theorem 12. The type I1I continued logarithm for a number x > 1 will terminate finitely
if and only if x € Q.

Proof. Clearly, if the continued logarithm for z terminates finitely, then x € Q. Con-
versely, suppose
b \ b

|
Clbal +’02ba2 + ..

T = cobh™® +’

is rational. By Lemma 11, we can write

-1 —11—ay -1 —17—a
xzcob(lo(l—f—’CO Cllb ‘_i_’Cl 6216 2‘4_...)'

Let y,, denote the nth tail of the continued logarithm, that is,

—-1 -1 b_an+1 -1 -1 b—an+2
o S

13



Notice that 1 o
Yn = 1+ m7
Yn+1

SO
Cglcghb_anﬂ

Yp — 1
Since each y, is rational, write y, = = for positive relatively prime integers u, and v,.
Hence

Yn+1 =

—-1,.,-1 71—a
Upy1 S Cpy b7 41 B Up,
= Ypt1 = Pr— =
Un

)
Un+1 Cncn—l-lbanJrl (un - Un)

or equivalently,
CrnCrna10U (U, — U )Upa 1 = VpUpyq.

Notice that since y,, > 1 for all n, u, — v, > 0, so each multiplicative term in the above
equation is a nonnegative integer. Since u,,; and v,,; are relatively prime, we must
have w11 | Un, 80 Upt1 < v, < w,. If at any point we have w,.; = v, = u,, then
Yn = 3> =1 and the continued logarithm terminates. Otherwise, u, 11 < Uy, so (u,) is a
strictly decreasing sequence of nonnegative integers, so the process must terminate, again
giving a finite continued logarithm. O

4.3 Using Measure Theory to Study the Type III Continued
Logarithm Terms

We now look at the relative frequency of the continued logarithm terms. Specifically, the
main theorem of this section places bounds on the measure of the set

{376(1,2): a1:k1, CL2:]€2, ceey a,n:kn7 an+1:k}

012617 02262, <oy Cn:€n7 Cn+1:€

in terms of the measure of the set

Glzkl, a2:k2, cey an—kn}

012617 622627 ceey anen

{x €(1,2):

and the value of k£ and ¢. From that, we can get preliminary bounds on the measure of
{zr€(1,2):a, =k,c, =L} in terms of k and /.

Consider o = [cgh™, c1b™, c2b, .. Jay).  Assume that o ¢ Q, so that the con-
tinued logarithm for « is infinite. Furthermore, assume ag = 1 and ¢y = 1, so that
a € (1,2). Notice that in order to have a; = k; and ¢; = ¢;, we must have 1 + ({1 +
b8 < o < 1+ £,b7%. Thus we can partition (1,2) into countably many intervals

Ji (g)wh (g),...,J1 (bgl)aﬁ (1>,J1 <;>, such that a; = k; and ¢, = ¢; for

all o € Jp (kl . This gives, in general,

b
k1 1 1
=(14+———,1 .
1 (&) ( * (01 + )bk’ i €1bk1]

We call these intervals the intervals of first rank.

14



Now fix some interval of first rank, J; (kl), and consider the values of as and ¢y for

b

a € J; (];1> One can show that we have a1 = ky, ¢1 = {1, as = ko, and ¢y = {5 on the

1
1 1
~ (l;h Il?) N [1+ k ol b ) |
1 2 glb 1 + £2bk2 Elb 1 + (E2+l)bk2
These are the intervals of second rank. We may repeat this process indefinitely to get

the intervals of nth rank, noting that each interval of rank n is just a subinterval of an
interval of rank n — 1.

interval

Definition 12. Let n € N. The intervals of nth rank are the intervals of the form
kl; k27 crty kn _ . a1:k17 a’2:k27 crty an:kn
Jn(gh EQ, RPN En)_{a€(1’2) 612617 CQ:KQ, RPN angn}’
where k?l,k?27...,]€n S ZZO and fl,fg,...,gn S {1,2,...,b— ]_}

Remark 6. The intervals of nth rank will be half-open intervals that are open on the
left if n is odd and open on the right if n is even. However, for simplicity, we will ignore
what happens at the endpoints and treat these intervals as open intervals. This will not
affect the main theorems of this paper, as the set of endpoints is a set of measure zero.

Definition 13. Suppose m,n € Nwithm > n. Let a,41,..., 0y € Z>pand ¢,41,...,¢p €
{1,...,b—1}. Let f be a function that maps intervals of rank m to real numbers. Then
we define
) a, a a Sl S a;, a a
1, 2y e m _ 1, 2y e m
IOV CA GG ) 5 99 DD 95 O CAY Gt
a1=1c1=1 an=1cp=1

and similarly we define
" a, a a o i ay, a a
1 2y e m\ _ 1 2y vy m
UJm(Cl, Cy, ... )_U U UJm(Cl, Co, ... )
Definition 14. Let n € N. Let
D, (k,0) ={a € (1,2):a, =k,c, =}

denote the set of points where the nth continued logarithm term is ¢b*.

Remark 7. D,(k,{) is a countable union of intervals of rank n, specifically,

(n—1)
Dn(l{?7€): U Jn <(11, az, ..., Qp-1, ]z)

i1, Coy, ..., Cp_1,
Lemma 13. Let J, (zl’ (22’ Y ﬁ”) be an interval of rank n. The endpoints of J,
1 ) Ce
are ) Y ? n )
DPn Dn + pn—lb "
— and _
qn dn + Qn—lban

15



Proof. Let a € J, (al, ag, ..., Qy

Ci, C2y, ..., Cpn
where 7,1 can take any real value in [1,00). From Theorem 9, we have

PnTn+1 + pnflban
o = .
GnTn+1 + Qn—lban

Notice that

o — & _ pnrn+1 +pnflban _ (Cannfl - annfl)ban
An GnTn+1 + QH—lba" Qn(Qnrn—l—l + QTL—lban) 7

aq a9 e a . .
and on J, ’ ’ "L all of pr, Gn, Prets Gu1, Gy, are fixed. Thus «is a monotonic
Ci, C2y ..., Cpn
f . ap, agz, ..., Qp .
unction of 7,1, so the extreme values of a on J, will occur at the
Cr, C2y ...y Cp
. . _1b%n . .
extreme values of r, ;. Taking r,,1 = 1 gives a = ’%, and letting r,.1 — 00 gives
n n—
. aq a9 e a
« = B2 Thus the endpoints of .J, ’ ’ ") are
n Ci, C2y ..., Cp
Pn DPn + pn—lban
— and —
dn qn + Qn—lb "
as claimed. O]

Theorem 14. Supposen € N, a1, as,...,an, k € Z>g, and ¢y, ¢, ..., cp, 0 € {1,...,b—1}.
Let a = (ay,...,a,) and c = (¢1,...,¢,). Then

1 a a, k 2 a
_— < ’ < — .
w0+ (c) S M (c, e) S (c)

Proof. From Lemma 13, we know that the endpoints of J, (2) are

Pn Pn + pn—lban
— and —_— 0,
dn qn + anlban

a,

Now in order to be in J,; <c ];), we must have a,.; = k and ¢, = £, so {bF <

a, k
c, ¢

I

Tni1 < (€ + 1)b*. Thus the endpoints of J, 41 ( > will be

PnlbF + p,_1b% and (04 1)0F + p,,_1 b .
¢ bk + g1 b9 ¢n (€ + 1)0F + ;1 b%n

i)

Thus

Pn Pnt paib®™ ’ _ | Pnn—1b" — pa1gnb™"

O Qo+ Quo1bon @n(gn + @n_1b%)
pattan part-tan

qn(qn + gn—1b% 2 qn—1b"n "\’
( ' ) qn <1 T qn )

16
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and

a, k PulbF 4+ pp_ 0% pu (€4 1VF 4 py_ b
M1 - ke - 3
Qngb + Qn—lba" QH(E + 1)b + Qn—lba"
Prn—1 00" 4+ P 1 (04 D)0 — prgr 1 (0 + )0 — p, g 0™ TF
(qnlb* + gn1b%)(qn (€ + 1)0F + g1 b%n
a1t tantk
000 4 1)b2kg2 (1 + —qf;;;l‘j:") (1 + —qj*ggff)’;k>
ba1+"'+an

n— ban n— ban ’
o+ 1)phgz (1+ ) (14 i)

SO

a, k
MJn+l (C K) 1 + qn—1b%7

) dn
n—lban n—lban .
M, (3> e np (1 B ) (1+ )

. n— ban n— ban
Now notice that ¢, = ¢, 0" @1 +b"1q_9 > b*"q,_1, 50 0 < qT <1,0< qqnéb’“ <1,
and 0 < 2=t < 1 and thus

Gn (£+1)bE
1 anlban
i = ba+ - pa =2
(1+2) (1+ 225
Therefore
1 a a, k 2 a

—MJ, < MJ, ’ < —MJ, ,

400+ )b () - ( 6) GG ()
and we are done. O

Corollary 15. Letn € N, k € Z>g, and £ € {1,...,b—1}. Then

1 2

m <M(Dpa(k,0)) < m

Proof. Note that any two distinct intervals of rank n are disjoint. Thus we can add up
the above inequality over all intervals of rank n, noting that

(n)
ai, ..., Qp .
UJ” (cl, e Cn) =(1,2),

SO

(n)
> M, ( “”)=M<1,2>=1,
C1, .. Cp,

*

and that

" a an, k
Ui (00 & ) = Dt

)

17



SO

(n)
a1y, ..., Gn, k
Foata (1 ) st
This gives
1 k 2
070 ANLL < Dn < —7
4000 + )bk = MDri (4) = (1)
as needed. O]

4.4 Distribution of Type III Continued Logarithm Terms

Definition 15. Let x = [1, c10™, ¢, .. . Ja,0) € (1,2) and 7y, = 7y (2) = [c,0%, crpn 0441, L

as per Remark 5. Define

Tn
Zn = Zn(.]j‘) = UTn —c, +1= [1 Cn+1b e +2b nt2. ']Clg(b) € (1,2),

M,(z) ={a € (1,2) : z,(a) < x} C (1,2),
mp(x) = MM, (z) € (0,1),
and

m(z) = nh_)rxgo m(z),

wherever this limit exists.
We now get a recursion relation for the sequence of functions m,,.

Theorem 16. The sequence of functions m,, is given by the recursive relationship

mo(z) = v — 1 ©)

o b—1

sznlwwb B —mp(l4+(z+—=1D""%"  n>1  (10)

=0 (=1
for1 <ax <2.

Proof. Notice that ro(a) = a, ap = 0, and ¢y = 1, so zp(a) = 7% — ¢p + 1 = o and thus

b
My(z) ={a e (1,2): z(a) <z} ={ae(1,2):a <z} =(1,2),
so mo(z) =z — 1. Now fix n > 1. Since a,, € Z>p and ¢, € {1,...,b— 1}, we have

oo b—1
mp(x) = M{a € (1,2):zn<x}:/\/lUU{oz€ (1,2) : 2, < z,a, = k,c, = (}.

k=0 (=1
Fix z € (1,2) and let
Apo={a e (1,2): 2, <z,a, = k,c,, = {}

for k € Z>g and ¢ € {1,...,b— 1}. By Definition 15, z, < x if and only if

"n +1<
— —Cp xT.
ban

18
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Notice that

1
Zn—1 = []-7 Cnban7 Cn+1ban+17 s ]Clg(b) = []-7 rn]clg(b) =1+ —,

Tn

so z, < x if and only if
1

4 l<u,
bl —1) TS

or equivalently
Zpa> 1+ (@ te, — D)0 =14+ (z+L—-1)"'07" (11)

Additionally, in order to have a,, = k and ¢, = ¢, we must have (b* < r, < (£ + 1)V*, or
equivalently,
I+ (+1D) 0 <z <1407 (12)

Now notice that since r < 2,
I+ (+1D)" " <14+ (@+0-1)7"F,

and thus the left hand inequality in (12) is implied by (11). Therefore z,, < z with a,, = k
and ¢, = ¢ if and only if

I+ @+l—1)"" <z <140k (13)

Thus
Ape={ac(1,2): 1+ @+l <z, <1+0F) (14)

Now suppose ki, ky € Z and 01,0y € {1,...,b— 1} with (ky,¢1) # (ks,ls). We claim that
A, o, and Ay, 4, are disjoint. Consider two cases:

Case 1: k1 # ko. Suppose (without loss of generality) that ky < ki, so ke — kp < —1.
Also note that 1 </ <b—1and £ <280 ly +x — 1 <b. Then we have

L+ = 17 R < 107 < 14070 < 1 (Gta—1) TR (15)

Case 2: ky = ko, {1 # {5. Suppose (without loss of generality) that ¢; > ¢, so indeed
{1 >0y + 1. Then since z — 1 < 1,

L+ =140 <1+ (+ D)0 <1+ U+ —1)" " (16)
Now suppose a; € Ay, ¢, and ag € Ay, 4,. By (14) and either (15) or (16),
ap ST+ <14 (g +2— 1) < ay,

so a1 # ay and thus Ay, », and Ay, », must be disjoint. Therefore

oo b—1 oo b—1
ZMUUAk,e—ZZM (Age). (17)
k=0 (=1 0 (=1
Finally, since m,,_1(z) = M{a € (1,2) : z,_1 < x}, by (14) and (17) we can conclude
oo b—1
=3 (M (L) =y (T (x4 L= 1))
k=0 (=1
which proves the recursion (10), and completes the proof of the theorem. O
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Theorem 17. There exist constants A, A\ > 0 such that

bz
lOg z+b—1

5 < Ae MV
log T

mu(x) —

for alln >0 and x € (1,2).

The proof of this theorem, which is based on the proof in Section 15 of [5], is lengthy
and somewhat technical. It is provided in appendix A, and the following corollary imme-
diately follows.

Corollary 18. We have

_ r+b—1

b+1
for all z € (1,2).

Theorem 19. We have
M(Dpia(k,0) = mp(L+ (0 +1)707F) —my, (1 + 07 17F).
Proof. Suppose that o € D, 41(k,¢). Then a,,1 = k and ¢,11 =¥, so

1
Zn = [17£bk7rn+2] =1+

bk +

k ?

rn+2

where 7,5 can take any value in (1,00). Clearly z, is a monotonic function of r, 5 for

fixed k, ¢, so the extreme values of z, on D, 1(k,¢) will occur at the extreme values of

Tni2. Letting r, — 1 gives z, = 1+ % =1+ (£ +1)"'7* and letting r, — oo gives

bk 4-bk
Zn =1+ m = (~'p=*. Thus

Doii(k,0) ={ae(1,2): 1+ (L+1)"F < 2,(a) <1+077%}
= M,(L+ 0% )\ M, (14 (£ +1)7 175,

SO
MD, (k) = mu(1+ 0707 —m, (14 (+ 1)1 75).

Theorem 20. There exist constants A, X > 0 such that

(6P +1) ((£+1)bFH141) B —
log Ty @ e Ae=rvn-l

M(Dn(k, 6)) = log ;2% 00+ 1)b*

for allk € Zso,0 € {1,2,...,0— 1} and n € Z>y.

We then immediately get the following limiting distribution. Notice that like with
type II continued fractions, the distribution is non-monotonic. This is due to the gaps in
possible denominator terms. For example, for base 4, the possible denominator terms are
1,2,3,4,8,12,.... The jump from 4 to 8 causes a spike in the limiting distribution.
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Corollary 21. We have

lo (6bF+1) ((L+1)bF+141)

lim M(D,(k,?))) = & @RI 1) (Db 11)
n—00 nAT log %
b+1

fork € Zso and ¢ € {1,2,...,b—1}.

4.5 Type III Logarithmic Khinchine Constant

We now extend the Khinchine constant to type III continued logarithms. Note that we
only gave an overview for type I and type II, but here we will be much more rigourous.

Definition 16. Let o € (1, 00) have type III continued logarithm [cob®, c10, c20%2, . . . |eiys)-
Let k € Zsg and £ € {1,2,...,b—1}. We define

ca, =k, ¢, =
Pa(k,ﬁ):]\}EI})O|{n€N anN ,Cn =}

to be the limiting proportion of continued logarithm terms of « that have a,, = k and
¢, = £, if this limit exists.

Note that for the theorems which follow, we will restrict our study to (1,2) instead
of (1,00). The results can be easily extended to (1,00) by noting that every o € (1, 00)
corresponds to an o € (1,2) in the sense that the continued logarithm of o is just the
continued logarithm of o with the first term replace by 1. Since we are looking at limiting
behaviour over all terms, changing the first term will have no impact.

The following two theorems are proved in Appendix B. The proofs are based on the
analogous proofs for simple continued fractions that are presented in Sections 15 and 16
of [5].

Theorem 22. For almost every o € (1,2) with continued logarithm [1,c1b™, cob®, ... ] oim)
we have
log (1+Z:11b::)(b+(£+1):1b::)
Po(k, () = (b+¢ Ii )(124£(£+1) bF)
og b+l
for allk € Zsy and £ € {1,2,...,b—1}.
Theorem 23. For almost every o € (1,2) with continued logarithm [1,c1b™, cob, ... ] oy
we have
N 1/N
3 an — -Ab
lim (I[l(cnb )) b,
where

Ay = ! b lo (1 1)1 <1+ 1)
——g —=]lo - .
* " logblog &L & 0) % 14

2b ¢=2

The values of the Khinchine constant given by the above formula for 2 < b < 10 are
shown in Figure 3.
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Ko,
2.656305058
2.666666667
2.671738848
2.674705520
2.676638451
2.677992355
2.678991102
2.679757051
2.680362475

© 00 1 O UL i W N

—_
(@)

Figure 3: Type III logarithmic Khinchine constants for 2 < b < 10

Remark 8. Notice that Theorem 22 is similar to Corollary 21. However, Corollary 21 is
about the limiting proportion of numbers « € (1, 2) that have a,, = k and ¢,, = ¢, whereas
Theorem 22 is about the limiting proportion of terms of a number « € (1,2) for which
a, = k and ¢,, = £. The fact that these two limits are the same is not a coincidence: one
can show that Corollary 21 is a consequence of Theorem 22.

Based on Theorem 23, we denote

IC,CIH[) _ bAb,

where A, is as in Theorem 23.

4.6 Type III Continued Logarithms and Simple Continued Frac-
tions

Now suppose b is no longer fixed. Let p;, denote the limiting distribution for a given base
b, as shown in Corollary 18. That is,

bx
r4+b—1

2b
lOg b+_1

log
pip(7) =

Furthermore, let K£™, denote the base b logarithmic Khinchine constant, as in Remark 8,
and let IC denote the Khinchine constant for simple continued fractions, as in Section 1.4.

We now have an interesting relationship between these logarithmic Khinchine con-
stants and the Khinchine constant for simple continued fractions, based on the following
lemma.

Lemma 24 ([1], Lemma 1(c)).

- 1 1
Zlog (1 — z) log (1 + Z) = —log Klog 2.
=2

Theorem 25.
lim ICD’H;, =K.

b—o0
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Proof. We will show that lim;_,. log Ko, = log KC, from which the desired limit imme-
diately follows.

lim log KL™, = lim log b = lim (log b).A,
b—o0 b—o0 b—o0

b
log b 1
= e blog BT 28 (1 - E) tog (1 * k>

2b k=2
1 1 1
= lim ——— log({1—~—=)log |1+
b—o0 log b;} ; g( k) g( k)
1 1 1
= log{1——=)log |1+
limy_, ., log (% ; & ( k) & ( k)

b+1

b
 — 1
— 1 1 =1 .
Z( p) s (14 ) =tosx

]

Furthermore, as b — oo, the distribution function u; approaches the appropriately
shifted continued fraction distribution . The continued fraction distribution function
is given by

pa () = logy(1 + x) z € (0,1).

(See Section 3.4 of [3].) Since the continued fraction for a number will be unchanged
(except for the first term) when adding an integer, we can shift this distribution to the
right and think of it as a distribution over (1,2) instead of (0,1), in order to compare it
to p,. We define the shifted continued fraction distribution

pa(z) = pa(r — 1) = logy @ z € (1,2).
We then have
log +=1 log (3 + 5 —3;) _log; _ —loga .
blggloﬂb( T) = blgilog—bﬂ = blggo log (%le) = log% T Tlog2 logy(2) = per().

This shows that, in some sense, as we let b — oo for type III continued logarithms,
we get in the limit simple continued fractions.

5 Generalizing Beyond Continued Logarithms

A natural question that arises is how one can define something more general than contin-
ued logarithms. Consider the following definition of generalized continued fractions.

Definition 17. Let (¢,)>2, be an increasing sequence of natural numbers with ¢y = 1.
Let a € (1,00). The generalized continued fraction for a determined by (¢,)5%, is

iyl

’az +’a3 +...:[a0,a1,a2,...]gcf,
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where the the terms ag,ay,... and by, by, ... are determined by the following recursive
process, terminating at the term a,, if y, = a,.

Yo =«
Jn =max{j : ¢; < y,} n>0
an = ¢j, n>0
by, = ¢j,41 — Cj, n =
Yos = b _ Cjat1 =G n>0.
Yn — Qn Yn = Cjn

Remark 9. This is a generalization of simple continued fractions, and of type I and type
[T continued logarithms. Indeed, for simple continued fractions, the term sequence (c,)2,
consists of the natural numbers. For type I continued logarithms, the term sequence
consists of the powers b°, b!, b2, .. .. For type III continued logarithms, the term sequence
consists of terms of the form £b*, where k € Z>o and £ € {1,...,b— 1}.

Recall from Remark 3 that type II continued logarithms did not have the property
that y,.1 could take any value in (1,00), regardless of the values of a,,c,. This is a
desirable property to have, since it uniquely determines the numerator terms based on
the corresponding denominator terms. We have defined generalized continued logarithms
so that they have this property, and for that reason they are not a generalization of type
IT continued logarithms.

Remark 10. As per Definitions 3 and 4, the nth convergent and nth remainder term are
given by

Ty = [a'07 ai, ... 7an]gcf and Tn = [a'na Ap+1; An4-25 - - - ]gcfa

respectively. Note that the remainder terms r, and the terms y, from Definition 17 are
in fact the same.

We can derive various results for generalized continued fractions that are similar to
those for continued logarithms. Most notably, we get the following sufficient criteria for
guaranteed convergence and rational finiteness.

Theorem 26. Suppose there is a constant M > 0 such that cj11 — c¢; < Mc; for all j.
Then every infinite continued fraction with term sequence (cy,)5, will converge.

Theorem 27. Suppose (¢p41—¢n) | ¢ for alln > 1. Then for every a > 1, the continued
fraction of « is finite if and only if a € Q.

We are also able to extend some of the measure-theoretic results to generalized contin-
ued fractions, though details are not provided here. We conjecture that the main results
that we derived for the distribution and Khinchine constant of continued logarithms would
extend (likely with some additional restrictions on the sequence (¢,,)$° ) to our generalized
continued fractions.

Acknowledgements

We would like to thank Andrew Mattingly for his input and assistance. This research
was initiated at and supported by the Priority Research Centre for Computer-Assisted
Research Mathematics and its Applications at the University of Newcastle.

24



References

[1] David H. Bailey, Jonathan M. Borwein, Richard E. Crandall. “On the Khinchine
Constant”, Mathematics of Computation, 66 (1997), pp. 417-431

[2] Jonathan M. Borwein, Neil J. Calkin, Scott B. Lindstrom, Andrew Mattingly “Con-
tinued Logarithms and Associated Continued Fractions”, To appear in Ezperimental
Mathematics (2016). https://carma.newcastle.edu.au/jon/clogs.pdf

[3] Jonathan M. Borwein, Alf van der Poorten, Jeff Shallit, and Wadim Zudilin. Nev-
erending Fractions, Australia Mathematical Society Lecture Series, Cambridge Uni-
versity Press. 2014.

[4] Bill Gosper. “Continued Fraction Arithmetic.” Perl Paraphernalia. Accessed October
14, 2015. http://perl.plover.com/classes/cftalk/INFO/gosper.txt.

[5] Alexsander YA. Khinchin. Continued Fractions, Third Edition, University of Chicago
Press. 1964.

[6] Dan Lascu. “A Gauss-Kuzmin Theorem for Continued Fractions Associated with
Nonpositive Integer Powers of an Integer M > 2.7 The Scientific World Journal
(2014), 1-8.

[7] Jeffrey Shallit. “Length of the continued logarithm algorithm on rational inputs.”
Preprint (2016). https://arxiv.org/abs/1606.03881v2

Appendix A: Proof of the Type III Continued Loga-
rithm Distribution

This appendix is devoted to proving Theorems 17 and 20, restated below:

Theorem 17 (Restated). There exist constants A, X > 0 such that

bx
log -7y

| < Ae=Wn
log 357

My (7) —

for alln >0 and x € (1,2).
Theorem 20 (Restated). There exist constants A, X > 0 such that
] (ebF 1) ((£+1)bF+141)

08 @y | Ae V!
log bi—bl 00+ 1)0F

for allk € Zso, 0 € {1,2,...,0— 1} and n € Z>y.

These proofs are based extensively on the proof presented in Section 15 of [5], which
proves similar statements for simple continued fractions.
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Lemma 28. For x > 1,

o b—1

bk 1 1
g; z+l—12(1+bkaz+l—1))b+bFaz+l—1)"1) zz+b-1)
Proof.
i (=12 L+ 0z + =) )b+ bz +-1)7)
oo b—1 bk
- ; L (b + 0= 1)+ Dz +0— 1) +1)
1 b—1 oo bk bk+1
T 1- ;;bk(:@+€—1)+1 V(4 l—1)+1
S b
= m
l—b& o+l hooobbz+l-1)+1
1L [
B 1—b£:1 x+0 x+0-—-1
1 1 1] 1 1-b 7 1
S l-bla+b-1 2| 1-b|lo(z+b-1)] z@+b-—1)
[
Theorem 29. The sequence of functions m,(x) = -“m,(z) is given by the recursive
relationship
mi(z) = 1 (18)
oo b—1
Z b R4+l —1)2ml (1 + b e+ -1 n>1. (19)
—0 (=1
for1 <ax <2.

Proof. Equation (18) follows immediately from (9). Notice that (19) is the result of
differentiating both sides of (10). In general, if m/,,, is bounded and continuous for some
n, then the series on the right hand side of (19) will converge uniformly on (1,2). Thus
the sum of the series will be bounded and continuous and will equal m;, ;, so (19) follows
by induction, since my is clearly bounded and continuous. ]

We will now prove a number of lemmas and theorems about the following classes of
sequences of functions, to which (m],)7, belongs.

Definition 18. Let fy, f1,... be a sequence of functions on (1,2). We will say (f,)32, €
A* if for all z € (1,2) and n > 0,

co b-—1 7k: bik
Sl sz+£—1 (“m)- (20

=0 (=1

Furthermore, we say that (f,)22, € A™ if (f,)5°, € A* and there exist constants M, ;1 > 0
such that for all € (1,2), we have 0 < fo(z) < M and |fj(x)| < p.
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Lemma 30.
(n) ba0+...+an

Z Qn(Qn + bananl)

= 1.

Proof. Since the intervals of rank n are disjoint and

we have that "
) MJn(al’ a”)—M(l,Q)—l.
Cly, ..., Cp

Now notice that by Lemma 13 and Lemma 7,

n n n + 0Dy b (Pndn-1 — QnPn—
MJn<a1’ 7a):p__p+ p1:’ (PnGn—1 = GuPn-1)
Cl, ..., Cp Gn qn + bananl Qn<Qn + bananl)
(_1)n71ba0+---+an ba0+---+an
B QN(Qn + banQn—l) B Qn<Qn + b“"Qn—ﬂ’
and thus
(n) perot-tan (n) a a
5" () o
qn(Qn—f—baTLQn—l) C1, ..., Cp

Lemma 31. If ()22, € A* then forn >0,

(n) _
_ Pn + ba"pn_l(x — 1) hoj=0 %
fn(l‘) - Zf() (Qn + b“”qn_l(x _ 1)> (Qn T b“"qn_l(x — 1))2- (21)

Proof. For n = 0, we just have a single interval, so

(0)
po + b®p_i(z — 1) b
Zfo (CJO + boog_y(xr — 1)) (g0 +b%gq1(z — 1))
_ (1+(1)(1)(l‘—1)> !
"N+ MO -1)) A+ 1)©)(x ~1))?
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Now suppose (21) holds for n. Then

fn—i-l(x)
oo b—1
b+ b=*

S S (1 S

%;(x%—ﬁ—ly r+0—1
SS (et 4o
- 0 _

k=0 (=1 (& + ﬁ Gn + b gna (1 + %ﬂk—l) (gn + b g1 (1 + m+£ 1))2
B %i%f (pnbk(x+€— 1) —|—ba"pn_1) b0 a5
e @b (z + 0 — 1)+ bong, 1 ) (qubF(z + € — 1) + bong,_ ;)2
Sy (ﬁbkpn P+ D 1)) b=io bt
e T g A b G+ Vg (2 — 1) ) (6 A b g+ D (2 — 1))
— (gf) f (Cn+1b“”+1pn + 0" Pt + 0"y — 1)) o

"\ Caprb™ 1 g+ b gy + b g (@ — 1) ) (Cnab g + b gy + b g, (2 — 1))

- (nzﬂ) /i (anrl + b+ p (1 — 1)) bzn+1
— 0
(

Qn+1 + ban+IQn($ - 1) Qn+1 + ban+1qn(x - 1))2’
so the result follows by induction. O]

Lemma 32. If (f,);>, € A™, then for n >0,

3
[fu(@)] < 5 +4M.

pn“l’banpnfl (1-,1)

Proof. Differentiate (21) termwise, letting u = 0= 1)

to get

)n leZJ 0 @j banqn_le?:oaj
. 22
Zfo (¢n +b“"q (z—1)) Zfo n + b g1 (z — 1)) (22)

The validity of termwise dlfferentlatlon follows from the unlform convergence of both sums
on the right hand side for 1 < z < 2. Notice that

(—1)" 1?0 Gub=i=0" 26250 (23)
(gn + b g1 (z — 1)) @~ 20702, (gn + b gp)
by Lemma 6, Lemma 5, and the fact that ¢, + 0*'¢,—1 < 2¢q,. Additionally,
b b0 b b0 20 (24)
(@n 4 b*gp1(x —1))3 — a = Gulgn 0 qn1)

since b q,,—1 < ¢, and g, + b ¢—1 < 2q,. Since (f,)5>, € A™, we have by Definition 18
that | fo(z)| < M and |fi(x)| < p for all z € (1,2). Thus we have by (22), (23), (24), and
Lemma 30,

|<Z|fo

)n 1b2ZJ 0 @j
(¢n +ba”q

b dn—1 bz?:ﬂ 4
(Gn + b qp_1(z —1))3

+22‘f0

(n) g n g
20 bzy:O @ bZ]:O a;

< + 4M

2(n_1)/2 Z qn<q + banq Z qTL qn + banq 71>

21

= +4M = 2\/_“ e
- 2(n—1)/2 on/ on/2
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Lemma 33. If (f,)5, € A* and for some constants T >t > 0,

T
2 rb_1) < falz) < b —1) vz € (1,2),

then , T
m < fn+1($) < m Vo € (1,2)

Proof. By (20) and Lemma 28 we have

oo b—1 _ b_k
an(“f):ZZ et (1 )

k=0 ¢

bk t

Mg

(=12 (L4 (@ + =17 F) b+ (z+ L= 1)7107F)

B
Il

S+ =

r(x+b—1)
and a similar derivation shows

T

frnr(z) < SRS

from which the result follows.

Lemma 34. If (f,);>, € A* then for alln > 0,

/12 fn(z) dz = /12 fo(z) dz

Proof. Notice that

oo b—1
=JUa+ e+ F 1+ 0707,

k=0 ¢=1

where the intervals are pairwise disjoint. We then have, by (20) that

oo b—1 b_k b_k
n(2)dz = —_— 1+——1)d
/f T /kz_oz(zw—l)f (+z+€—1) :
0 b1 +(+1)" 1ok
= ZZ/ —fn-1(u) du
k=0 (=1 7 1HL71O7E
0o b=1  .14g-lpk
= / foo1(u)du
P iyaeiV SERASYEST R
2
= fn—l(u) dua

from which the result follows by induction.
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Lemma 35. Suppose (f,)52, € A*™ and there are constants g,G > 0 such that for all
€ (1,2),

g G
z(xr+b—1) <f0(x)<x(x—|—b—1)' (25)
Then there exist n € N and g1, Gy > 0 such that
g1 Gy
I 7t 9
(x+b—1)<f”() s(@+b—1) (26)
g<g <G <G, (27)
and
Gi—g1 < (G=g)d+27"*(u+G), (28)
where § = 4(b 0 log -2 b+1
Proof. First define
g G
—= e — - @ 2
ole) = b0 - e )= e - b@ @

which are both positive functions by (25) and Lemma 33. Notice that for the functions

h(z) = @i and H(z) = % we have by Lemma 28 that
b=+ g
(x+0—=1204+bFax+—-1)"1)b+bFax+¢-1)"1)

b—k:
(x—i—ﬁ—l)zwn (1+x+€—1>'

P07 pr—1(z—1)
qn+bongn_1(z—1)’

S

Thus ()5, (Vn)eey € A*, so by Lemma 31, setting u = we get

(n) b0 as
u
(qn + 0% qp_y(x — 1))

bZ] =0 @j

(30)

»-l>|>—*
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and similarly

sz 0@

since

Gn + 0" qp1(x — 1) < 2¢, Ve € (1,2).
On the other hand, the mean value theorem gives

(n) oo

1 [? 1 b2=i=0%

- z)dz = - u , 32

1] el =33 ol (32)
and

1 /[? h2i=0 %

- P 33

4/1 ¢0( Zwo q +banq ) ( )

pn Pntb*"pr_1

qn’ gntbngn_1
pZ5=0 %

an(gn+bngn_1)"

where for each interval ( ) of rank n, u; and wuy are points in the interval

and the length of the interval is From (30) and (32) we then get

1 bE?:o a;
n(x z)dz > = U , 34
onle) = 4/1 Z #olw) = eoln)] Gn (G + b G 1) (34
and from (31) and (33), we get
bZ?:o aj

)= 1 [ ez Z[wou o) (35)

Qn(Qn + ba"Qn—l) .

Now for 1 < 2 < 2, we have |g(2)] < [fo(2)|+9 < ptg and |g(2)] < |fo(2)|+G < p+G,
so it follows by Lemma 6 that

ot _ptg o ptg
lpo(u1) — wo(w)| < (1 + g)lur —ul < (u+g)qn(qn n banqn_1> = < 2% (36)
and similarly
+G
o u2) = tho(u)| < 2557 (37)

Then by Lemma 30, (34) and (36) give

(n) ng
1 /2 1 b2i=0 %
n(x) > = z)dz — - uUy) — U
enl@)> 7 [ () az = 3 fpoln) — en(w]
1 i bZ?:oaj
> == |po(u1) — @o(u)|
4 Z Qn(Qn + ba"Qn—l)
1 (n) > ay
Clp+yg bes=0 _, lptg , ptyg
2 272 £~ gy (gn + b 1) 2 202 /241

where £ = 1 [?¢g(2) dz. Similarly, (35) and (37) give

G+ p
w"(x) 2 L— 2n/2+1’
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where L = f1 ¥o(2) dz. Now by (29), we have

-9 9 L, kTg
fn(x) - l‘(l’+b— 1) +90n(x) > 1‘(I+b— 1) +£ 2n/2+1
g+HL=2""ut+g) g (38)
z(x+b—1) z(x+b—1)
where g1 = g+ £ —27?(u + g), and
e e L+ G
S S A SR o
Jal@) z(x+b—1) Ynlw) < z(r+b—1) MTEE
G—(+2"*(u+G) Gy (39)
z(x+b—1) x(r+b—1)

where G; = G — L + 27?7 (u + G). Now since £, L > 0, we can choose n sufficiently
large so that 27271 (y 4 g) < £ and 27>~ (u + G) < L, so that we get

g< g1 <Gy <(G. (40)

Thus by (38), (39), and (40), we have found gy, Gy, and n that satisfy (26) and (27).
Notice that we also have

Gi—g1=G—g—(L+0)+2" 2u+94+G) <G —g—(L+0)+2"*(u+G). (41)

Now since

1 [ G-g 1 2b
(+L=-] — "9 qp— (G- 1
* 4/1 -G

(41) becomes

L%
10—1) %o+

G —g1 < (1 - > (G—g)+2"*(u+G)=0(G —g)+27"*(n+ @),

so we see that g, Gy, and n also satisfy (28), completing the proof. O]

Remark 11. Notice that the value of n chosen depends only on the values of p and G,
and that if we make 0 < iy < p and 0 < G; < G, the value of n chosen for p and G will
also work for p; and GGy. In other words, we can make p and G smaller without having
to increase n. This will be useful in the proof of the Theorem 36.

Theorem 36. Suppose (f,)5>, € A*™*. Then there exist constants A\, A > 0 such that for
alln >0 and z € (1,2),

_*
x(x+b—1)

b—1
/fo
logb

fn<x) -

‘ < Ae MW"

where
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Proof. By assumption, f, is differentiable and continuous on [1, 2], so there is some con-
stant m > 0 such that m < fo(x) < M for all x € [1,2]. Then since 2(b£rl) < :c(z-i—lb—l) <3
for all x € (1,2), we have

bm 2(b+ 1)M
z(z+b—1) < Jolw) < z(z+b-—1)

Thus let g = bm and G = 2(b+ 1) M and apply Lemma 35 to fy, g, and G, to get g1, G1,
and n such that

Ve (1,2).

g )<fn(a:)<x( & vz € (1,2),

r(z+b-—1 r+b—1)
g<gl<G1<G,

and
Gy —g1 <6(G—g)+27"(u+G).

By Lemma 32, |f!(z)| < p1 = 2?% + 4M, and we can arrange to have pu; < p by making
p and n sufficiently large. (By Remark 11, the results above are still valid for the new
values of 1 and n.) We can then apply Lemma 35 again with f,, ¢;, and G instead of

fo, g, and G. This gives us new constants g, and Gs such that (again due to Remark 11),

92 Gy
ZE(I’—I—b—l) <f2n(x)< l’(l’—i—b—l)

g< g1 < g2 <Gy <G <G,

vz € (1,2),

and
Gy — g2 < (G — 1) + 2_2n/2(M1 +Gh).

Repeating this in a similar fashion gives, in general, constants g,., G, such that

gr G,
r(r+b—1) < Jurlz) < z(xr+b—1)

g<n < <g1<g <G <G_1<- <G <G,

Vo € (1,2),

and
Gr —gr < 5(Gr—1 - gr—l) + 2_1ﬂn/2(,u1ﬂ—1 + Gr—l)a
where 1,1 is a constant such that |f),_;)(z)] < pr—1 for all z € (1,2). By Lemma 32,

we can take p, = QE’T”/Q + 4M, and then can choose ry € N such that pu,; < 5M for all
r > ro. Then since G, < G = 2(b+ 1)M, we have

Gy —gr <0Gy — gr1) + (2b+T)M27/2 = §(Gyy — groy) + M27™2 (42)
for all r > ro where M; = (20 + 7)M. We now claim that for all & > 0,

k
Grosk = Grosk < 0%(G — g) + 6 My2702 Y ~(2779/2579), (43)

7=0
For k = 0, from (42), we have
Gro = Gro < 0(Gro1 = Grg1) + ]\/[1277“”0/2 < (G—-yg)+ M127”7”0/2

0
= 0%(G — g) + M;8°2770/2y " 225

J=0
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Now suppose (43) holds for k. Notice that
M12—n(ro+k+l)/2 _ Ml5k+12—nro/22—n(k+l)/25—(k—i-l)’
so by (42),

Grotkt1 — Gro+kt1 < 0(Grosk — Grotk) + M2 o tkt1)/2

k
<4 ((Sk(G . g) + M15k2—m“o/2 Z(Q—nj/Z(s—j)> + M12—n(7"o+k+1)/2

j=0

k
_ (5kz+1(G B g) + M15k+12—n7°0/2 (2(2—713'/25—]') + 2—n(k+1)/25—(k+1)>
=0
k+1
_ 5k+1(G—g) + M15k+12—n7°0/222—nj/25—j’

j=0

o (43) follows by induction.
Now notice that for & > 0,

22 2§ < Z (226)7 <3 (2126) 7 =y < o0,
=0
since 2126 = /2(1 — ﬁ log bi—bl) > v2(1—tlog2) > 1. (43) then becomes

Grotk = Grork < 0°(G — g+ My27"%7) = d¥c,
where ¢ > 0 is a constant. Then for r» > ry, we have
G, — g, <8 c=6(6"c)="d,

where again, d > 0 is a constant. Finally, since § < 1, we can choose B, A > 0 such that
G, — g, < Be™". Thus there is clearly some common limit

a= lim g, = hm G,,

r—00 r—r
and we have (setting r = n) that
a
— | < Be™™ V. 1,2). 44
hli) = | < B re(2) (44
Thus we have
2 2
a a 2b
I o (2)dz = _ 1 ,
dim [ Fel(2)dz /1 s@tb—1) b1 ®bht1
so by Lemma 34, fl fo(z)dz = % log 2% b+1 and thus

b—1 /
fo(z
log b+1

34



Now for arbitrary N > r2, we can choose n > 1y such that n> < N < (n + 1)%. We then
have, by (44),

a—2(b+1)Be ™ a

- a @+ 2(b+1)Be
z(x+b—1) z(x+b—1)

—Be ™" 2 —+B
‘ <fn(3[:)<x(x+b—1)jL ‘ rlx+b—1)

for all = € (1,2). Then by Lemma 33,

a—2(b+ 1)Be " a+2(b+1)e

x(x+b—1) < fvle) < r(r+b—1)
SO
a 2(b + 1)B€7/\n Y A —\ _
- 2(b+1)Be ™ = 2(b+1)Bete X+ < Al WN
Iu(z) x(x+b—1)’ w@rb_1) " lrBe (b+1)Bee <Ae

where A’ = 2(b+1) Be’ is a constant. Now for 0 < N < 72, note that each fy is continuous
(since fy is differentiable and thus continuous and fy; is an absolutely convergent sum
of continuous transformations of fy). Thus we can choose Ay, Ay, ..., A2y such that for
0<NL 7“3 —1

< A VN vz e (1,2), VNe{01,....r2-1}

fn(@) - 2 rb_1)

for all x € (1,2). Finally, take A = max{Ao, 4;,..., A;,—1, A'}, so we have

fn(z) — .

ﬁ‘ < AG_)\\/N Vx € (1,2) VN € ZZ()?
l‘ —

proving the theorem. O]
Corollary 37. There exist constants A\, A > 0 such that for alln >0 and z € (1,2),

a

() = ————| < Ae™V,
‘mn(x) x(aj—i—b—l)‘ ¢
where
b—1
a= )
logbi—b1

Proof. By Theorem 29, (m/] )2, € A**. Then Theorem 36 gives constants A, A > 0 such
that

/ a -A/n
L
(o) = | < e

b—1 [? b—1 [? b—1
Ogb-i-_l 1 logb+—1 1 log—

where

proving the corollary. O]

Our main goals, Theorems 17 and 20, follow easily from Corollary 37.
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Theorem 17 (Restated). There exist constants A, A > 0 such that

lo
mn(x) . g CE+b

log 2% b+1

< Ae MV

for alln >0 and x € (1,2).

Proof. First note that since m,(1) = 0 for all n, so by the Fundamental Theorem of

Calculus,
mp(2) = my(1) +/ m! (z) dz:/ m! (z)dz
1 1

Thus
z b—1 [* 1 b—1 lo log %2
/ m! (z)dz— dz = my,(z)— 8 it = mn(:ﬂ)—g”ﬁ':—’;bb_1
1 log 2 Ji 2(z+b—1) log 2% b—l log 25
(45)
Then by Theorem 36, we have
lo b—1 1
my(z) — & ‘Hb 5 dz
logb longr—lz(z—kb—l)
b—1 1 v
< / m,,(z) — 5 dz < / Ae =M
1 log ;25 2(z +b—1) 1
= (z — 1)Ae™V" < Ae7V,
[
Theorem 20 (Restated). There exist constants A, X > 0 such that
(6P +1) ((e+1)bR+141) W=
M(Dy(k, 0)) — log Ty @ e - Ae=rvn—l
o log 2 0+ 1)k
for allk € Zsp,0 € {1,2,...,b— 1} and n € Z>y.
Proof. By Theorem 19,
1+~ 1p=k
MD,(k, 0) = mp (1 + ) —my  (T+ (C+1D)7H7F) = / m!_,(z)dz.
14+(6+1) =1k

Then by Corollary 37, it follows that there is are constants A, A > 0 such that

1+£_1b_k b . 1 1+f_1b_k 1
m’nfl(z) dz — —%/ —dz
L (61)~1b—* log 2% Jit@sry-1o-+ 2(z +b—1)
140 1pF b—1 1
</ ml ()~ d
1+(Z+1)—1b—k log b—i-_l Z(Z + b — ]_)

- A —\V/n—1
< / AT dz = (7 — (04 1) TR AV = SE
14+-(44+1)"1p—k €(€ * 1)b
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Finally, since

—1p- (14610~ F) (14 (e+1) 1o~ (HHD)
b—1 /1+£ o 1 Qs — b—1 log (146~ 1o= D) (T ((11)~16-F)
log 22 Jit(es1y-1pr 2(z +b—1) log 2% b—1
(ebF+1) ((e+1)bF+141)
_ log G 1) (e D)
log 2% ’
we have
(6P 1) ((£+1)bF+141) —1p—k
MD, (k. €) — —2 @ETEFD | / A L
’ log 2% ek log 2% (2 +b—1)
Ae—)\\/n—l
< —.
00+ 1)bk

Appendix B: Proof of the Type III Logarithmic Khin-
chine Constant

This appendix is devoted to proving Theorems 22 and 23, restated below. Note that the
proofs in this appendix rely on certain results from Appendix A.

Theorem 22 (Restated). For almost every o € (1,2) with continued logarithm [1, ;b , c2b®, ... ety
we have

log (1+£‘1b—’“)(b+(€+1)—1b—’“§

(b+e— o= F)(1+(f+1)—1b-F

P,(k,0) =
(k. 6) logbi—b1

for allk € Zsy and £ € {1,2,...,b—1}.

Theorem 23 (Restated). For almost every o € (1,2) with continued logarithm [1, c1b™, c2b%%, ... |y

we have
N 1/N
. an _ 1A
lim (li[l(cnb )) = b,

where ,

1 1 1

Ay = ———— | 1—-11 1+-1.
’ logblogb;—bl;og( Z) og< 6)

Definition 19. Let n € N, 71,72,...,j, € N be distinct, ki, ko, ...k, € Z>¢, and
gl,gg,...,gn S {1,2,...,[)- 1} Define

jlv j?a sy ]n R L J—
E l{j17 k27 ceey k‘n = {Oé c (172) . ajl - kl) a]2 - k’2> ey a]n - kn }
617 627 ey gn le 2617 CJ2 2627 Y CJ’"« :gn
jl? R jn
Remark 12. We will always assume that j; < jo < -+ < j,,, inwhichcase £ | k1, ..., k,
by, .., 4,

is a countable union of intervals of rank j,.
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Theorem 38. There exist constants A, X > 0 such that for arbitrary m € N, j; < --- <
Jm <JEN, ki,... km,k € Z>q, and by, ... Ly, 0 €{1,...,b— 1}, we have

jla R jmv ]
ME V ki, ..., kn, k . s
glv SRR gma ¢ 1Og gll)-—l-i_f 111: k))((bigi—‘_ig*lll:*k; AeMWimim=1
; . - < i
Jis -y Im log b+1 g(é“‘l)b
ME | ky, ..., kn
by, ..., Ly
kv, ..., kn
Proof. First fix some interval J = J, 0 0 of rank m. Let
L ooy bm

M, (z) =M{a € J: zpin < x}.

In order to have a € M, (z) with @y, = k and ¢4, = ¢, we must have 1 + (z 4+ ¢ —
D% < 2001 < 14+ 07157F (similar to in (13)). Tt follows that

=

co b—1
= My L+ = My (L+ (x4 £—1)7'b7h),
k=0 1

)

so that (M])>2, € A*. Now by Lemma 13, an arbitrary a € J can be written as

_ PmTm+1 + bampm—l
GmTm+1 + baQOfl ,

or since rmi1 = ;——,
_ Dm + bampm—l(zm - 1)
dm + baQO—1<Zm - 1)

To have 1 < z,, < x, we must have

oe <p_m’ R S o 1)) '
Gm  Gm + bamqm—l(x - 1)

Thus sm
" m 04,1 (2 — 1 hi=0m (g — 1
Mofa) = P P P2 >‘= T
G G 01 (z = 1) @@ + 01 (z — 1))
Now define M, ()
(T
and note that (x,,)5, € A*, since (M])> , € A* and
Pm Pm + bampm—l bZ;n:O 4
MJ =" — = 47
O i I (/) (47)

is a constant. Now by (46) and (47), we have

xo(e) = Ut Vo )lo D),
Gm + b @1 (x — 1)
Qm(Qm + bam(]m—l)
(Gm + b G 1 (2 — 1))
") = — 2Gmb"" g1 (G + 5" Grn—1)
(Gm + b @1 (x — 1))3

Xo(7) =
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Thus for 1 <z < 2, we have xp(z) < 5 2 — 9, Xo(x) > (QZ’”) = 1, and |xj(z)| < qm =4,
50 (XL)5e, € A™. Tt then follows from Theorem 36 that there are Constants AN > 0 such

that
a

/
e Py
for all n > 0 and = € (1, 2), or equivalently there exist functions 6, : (1,2) — (—1, 1) such
that

< Ae MV

a
/ —
for all n > 0 and x € (1,2). We then have, for k € Z>¢ and ¢ € {1,...,b— 1}, that

Xa(HC7F) = xn (14 (€4 1)7107F)

1+¢-1p=F
-/ ¥y (a) dr
14 (6+1)~1b—k

+ 0, (z) Ae™ VP

14+¢~1p=F a .
B ————— + 0, (x)Ae” V" da
/1+(e+1)1bk r(x+b—1) (z)
L+ 770 1)~tp=* 141y F
b—1 7 (b 7o) (L (£ 1)~1b~ +(6+1) 1bk

Now

1+¢=1p=k
/ On(z) dx

1+¢-1p=F 1+~ 1=k 1
< |0n(x)]dx</ ldr = ————,
14 (€+1) "1k /1+(é+1)1bk 1+(+1)~ 1ok 2(5 + 1)bk

so there exist functions =, : (1,2) — (—1,1) such that

/HZlbk On(z)dr = %—(x)

1H(0+1) b+ (0 + 1)bF
1, ..., m, m+n
Then since ME | ki, ..., kmy, kpin | = My 1 (L+077F) = M, (14 (£4+1)7167F),
b, ooy by g
I, ..., m, m+n
ME | k1, ooy kmy  Eman
b, ooy by s
1+ ") b+ (e+1) "o~ F) R —t 1....
_ IOg (b+€‘1b_k)(1+(5+1)_1b_k) ’}/n(x)Ae Avn—1 ME k’ ! 7/)];7/
log 2% 00+ 1) é""’gm

Now we can sum this relationship for k; from 0 to oo and ¢; from 1 to b — 1 for certain
indices j < m. The indices we sum over will cancel from both sides, and we are left with
an arbitrary sequence of subscripts 1 < j; < jo < -+ < j; = m. Then if we let j = m+n,
we get

jlv ey jma .]
ME | by, oy ko, K (140~ 15~ F) (b4 (£+1) =16 F) JE—
b, oy Ay L log (b+0-1b k)(1+(z+1)—1b—k) Ae=MVimim=l
. ; — < —,
Jis ey Jm log 2 b+1 0+ 1)b
ME |k, ..., kn
T
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completing the proof. O

Theorem 39. Suppose [ : Z>ox{1,...,b—1} — R is a positive function for which there
exist constants C,6 > 0 such that

f(s,t) < C(th*)2~0

forall s € Zsy and t € {1,...,b—1}. Then for almost every o € (1,2),

1 N 0o b1 log (140~ F)(b+(L+1) "1 F)
. IR+ " R)
lim — E (G, ) = E f(k,0) b+ 5 )
N—oo N n=1 k=0 (=1 log b+1

Proof. First define
2 2
= d b, = —ug)*d
U, /1f(akack) a, k /1(f<akack) uy)” da,
2
g = [ (Flase) = w)(Flanc) —w)da,  Syla) = Y (Flanr) - ).
1

Notice that the integral uy is finite for all &, since

oo b—1

2
uk:/ f(ak,ck)da:ZZfstMD )
1 s=0 t=1
oo b—1 oo b—1
<Y N o)y =20 > )T
s=0 t=1 s=0 t=1
Furthermore,
oo b—1 co b—1
/ folak, cx) da—ZZfst )*MD,(s,t) <Z:Z:C2 (tb*)'~ 2 (2t72b%)
s=0 t=1 s=0 t=1
oo b—1
:20222t L)) ™ = ¢ < o0,
s=0 t=1
SO

2 2 2
b = / (f(a, cp)—up)* da = / flag, ci)? d04—2uk/ flag, cx) datu; < Cr—uy, < Oy < 00,
1 1 1
(48)
and by the Cauchy-Schwarz Inequality,

uy, :/1 flag, ) da < \//1 flag, ep)? da < /Ch. (49)

Furthermore, for k£ > i, we have

b—1 ik

oo b—1 oo
gzk—/ flai,¢) fag, cx) da—u;uy = § E E f(s1,t1) f(s2,te) ME | 51 So | —uuy.
s1=0t1=1 s9=01t2=1 tl t2

(50)
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Now by Theorem 38 and Corollary 15,

. k (H’tz_lb_S?)(b+(t2+1)_1b_52) . . _
ME SZ o) log (b+t5 b==2)(1+(t2+1)~1b—52) ME SZ 5 LWME
1 S2 log 2% 1 s 10
1t il t

< 4Ae VI M E

and by Theorem 20 and Corollary 15,

1425 10752) (b4 (t2+1) " 1b—52)

(
ME f log (e o) (1 (tar 1) 10 2) _ AemAVEL
2| — )
ty log bi—bl to(ty + 1)b*
g (145 1o™52) (b4 (tg+1) ~16752)
O —1,—s —13—s
Now by (51) and (52), letting v = — 2" 12;(31%1) ) we get
b+1
1k 1 k
ME S1 SS9 — ME S1 ME S9
t1 19 t to
<|ME|s so| —oME s ||+|vME |s1| —ME|s;
tl tg tl tl tl
. i k
< (4Ae VT L 4 A VEIYME | 51 | ME | 5o
t1 to
A i k
< 8AeWVEFTIME [ s, | ME | 59
1 iy
Then by (50) and (53), we get
oo b—1 oo b-1 7 /{3
ik — Z Z Z Z f(s1,t) f(s2, L) ME | s1 | ME | s2 | + uug
$1=0t1=1 s2=01t2=1 tl t2
oo b—1 oo b-1 7 k
< 8Ae MhT! Z Z Z Z f(s1,t1) f(s2,ta) ME | 51 | ME | 82
$1=0t1=1 s2=01to=1 tl t2
= 8Ae MWF Ly .
But since
oo b—1 oo b-1 7 ]C
Z Z Z Z f(s1,t1) f(s2,ta) ME | s1 | ME | s9 | = wjuy,
$1=0t1=1 s2=01to=1 t]_ t2

(54) is just
T e
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Zl
Szl ME
131
(51)
(52)
k
ME S9
12
(53)
(54)
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From (48) and (55), we have for n > m > 0,

[ 6.0 = Sueda
= /12 [ z”: flag, cx) —ukr da

k=m+1
n

= > (flar, ) — w)* dor + 2 z_: > / (f(as, ¢i) —wi)(f(ak, cx) — up) d

1

k=m+1 i=m+1 k=i+1
n n—1 n n—1 n
- Z b + 2 Z Z g < C1(n —m) 4+ 16ACH Z Z e MVh—i—l
k=m+1 i=m—+1 k=i+1 i=m—+1 k=i+1
< Ci(n—m) +16AC, Z Z eI = Cy(n —m) 4 16AC, (n — m) Z eI
i=m~+1 j=0 J=0
= Coy(n —m), (56)

where Cy = C1 + 16 AC, Z;io e 7 is a constant. Now let £ > 0 and define
en ={a € (1,2):]S,(a)| > en}.

Clearly
2
/ Sp(a)*da > / Sp(a)?da > e*n*Me,,
1

so that if we let m = 0 in (56) we get

Me,2 < f12 Sp(a)?da Gy

e2nd e2n3’

Thus the series Y | Me,2 converges, so almost every a € (1,2) belongs to e,2 for only
finitely many n € N. Therefore for almost every a € (1,2) and for sufficiently large n,

Spz ()

2

<E€.
n

Now since € > 0 was arbitrary, we can conclude that

lim Sn2(a)

n—oo ’)’L2

—0 (57)

for almost every a € (1, 2).
Now let N € N be arbitrary and choose n such that n? < N < (n + 1)?, so that

/2(SN(a) — Sp2(a))?da < Co(N —n?) < Cy((n+1)% —n?) = Cy(2n + 1) < 3Con.

Let € > 0 and define
enn = {a € (1,2) : [Sy(a) — Sp2(a)| > en?}

and
(n+1)2-1

E%/Zi LJ enJv.

N=n?

42



We then have for n? < N < (n + 1)? that

/1 (Sy (@) — Sp2(a))*da > / (Sy(a) — Sp2(a))? > e*n* Me, v,

and )
fl (SN(OJ)z — Op2 (CY))Q 302
Me, ny < o < oy
SO )
(n+1)*—1
3C 9C
2 2 2 2
ME, < NZ; Menn < ((n+1)° —n?) 55 < 5.

Thus the series ) -, ME, converges, so almost every a € (1,2) belongs to E, for
only finitely many n € N. In other words, for almost every «, sufficiently large N, and

n = |V N|, we have
‘SN(Oé) — Sp2 (Oé)|

< €.
n2
Since ¢ > 0 was arbitrary, we can conclude
lim Sn(@) — Sn =0
N—oo n2 n?
for almost every a € (1,2), where n = |[v/N|. By (57),
S
lim N(za) =0,
N—oco N

where n = |V/N|. Now since 0 < @) < S350 3¢ follows that ( L 5 0asn — .

Equivalently, by the definition of Sy,

1

N 1 N
— S —0

as N — oo. Now by Theorem 20,

log A4+~ ®) b+ (e+1) "1 F)

= (e Th— k)(1+(e+1)—1b—k)
un— Y Y f(k,0) 1
k=0 (=1 08 511 b+1

(142710 F) (b4 (04+1) " 1bF)

oo b—1
k log 5=y () =57

k=0 ¢=1 IOgb_l
Sy SO Gy G
< Ae Ml ’ < Ae Ml
P 00+ 1)bF i (€+1)bk
oo b—1
1
—ACe‘AV”_IZZ : Aje= WV

for some constant A;. Thus for almost every a € (1,2),

(AL~ (b+-(e4+1) "1 F)
)

lim u,, = f: f(k,0) (b= To=F)(1+(¢+1)~Tp=F
n—oo — logbi_—bl

(58)



so indeed,
A+~ (b+(e+1)"1b—F)

b—1 log
o1 To=F)(1+((rD)—1b-F)
lim — E Uy = g f(k,0) )
N=eo N k=0 (=1 log 377

at which point (58) gives

(1LY (bt (e+1) " 1o F

oo b—1 IOg )
1 B b+ T F) (I+(¢+1) 10~ F)
Jm oy Zf@m% =2 2 SO T
—0 (=1 bt
for almost every o € (1,2). O

We can now prove the desired theorems.

Theorem 22 (Restated). For almost every o € (1,2) with continued logarithm [1,c1b™, c2b®, ... iy )

we have
o (1460~ F)(b+(L+1) "1 F)
Pk, () = & G+ R (LH(Cr) - 15-F)

2b
lOg b+l

forallk € Zsy and ¢ € {1,2,...,b—1}.
Proof. Fix k € Z>p and ¢ € {1,2,...,b— 1}. Let

f<s,t>={1 R

0 otherwise

Clearly f(s,t) <2 < 3(tb*)}/* so f satisfies the conditions of theorem 39. Now

N—oo N ’

N
1 Zf(anacn): lim {n e N:a, =k,c, =}

so Theorem 39 immediately gives, for almost every a € (1,2) that

A+~ F) (b+(e+1) " 1b—H)
P (k E) 1 |{n G N an - acn = £}| _ ].Og (b—l—@ 1p— k)(1+(€ 1)71177’“)

N—oo N log b+1

?

proving the theorem. O]

Theorem 23 (Restated). For almost every o € (1,2) with continued logarithm [1, ;b , c2b®, ... iy

we have
N 1/N
: An _ 1A
dim (H(Cnb )) = b,

n=1

where

1 1 1
_ 1 1—-1 1
logblogb+1zog( 5) og( +€)

2b =2

Proof. Define f(s,t) = log,(tb*) = s + log, . Notice that we can choose C' > 0 such that
log,(z) < Cz'/3 for all z > 1. Then if we take 6 = %, we get

f(s,t) = log,(th°) < C(tbs)1/3 = C(th*)z",
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so f satisfies the conditions of Theorem 39. We then get that for almost every o € (1,2).

] 0o b1 log (14671 F) (b4-(4+1) 16 F)
1 k 1 k
]\}1_131 Nlogb Cnba" 2 :2 :10gb gbk (b+¢— Ii )(1+(€+1) b— ) (59)
k=0 ¢=1 08 511 b

Now let u(k,£) = log(1 + ¢=16=") and v(k) = u(k,f) — u(k,€ + 1). Notice that u(k,b) =
u(k +1,1). Then

0o b—1 log (1471 F) (b+(4+1) " 1o—F)
Z logb H)k (b+€= 10— k) (1+(€4+1)~1b—F)

2b
k=0 (=1 log 775
oo b—1
5 > > (k+log, O)fu(k, ) + u(k + 1,0+ 1) — u(k + 1,0) — u(k, € + 1)]
logb+1k0€ 1
b—1 oo

1 B
k +log, O)[v(k) —v(k +1)] = —(A+—),
" log bibl ; kz; log 2% log b
where
b—1 oo b—1 oo oo b—1
A= "kpk) vk + D] =D ok) =D > ulk,0) —u(k,(+1)
/=1 k=0 /=1 k=1 k=1 ¢=1
= ulk,1) —u(k,b) => u(k,1) —u(k+1,1) = u(1,1) - lim u(k,1) = log (1 + 1) :
k—o0 b
k=1 k=1
and
b—1 00 b—1
B=> logl» wv(k)—v(k+1)= logl(v(0) - Lim v(k))
/=1 k=0 /=1 e
- %10 e TN O e
T BT T ) kS BT (1 1)1

1 1
log (1—}—?) — log <1+€+—1>:|
1
= log /1 1 log(¢ —1)1 1
Zog og(+) Zog )og<+£)

b—1
1 1
=logllog2 — Z [log(¢ — 1) — log ] log (1 + Z) —log(b— 1) log (1 + 5)

=2

——il 1—1 1 1+1 log(b—1)1 1+1
= og 7 ) 108 7 0g og 5

(=2
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Thus we have

0o b—1 log (40" F) o+ (e41) "o F)
Zzlogb Kbk (b+£—1b— ’v)(1+(€+1)*1b*k)
=0 (=1 log 25 b+1

! logblo <1+1)—10 (b—1)lo (1+1>—bilo (1—1)10 (1+1>
" loghlog 2 | 578 b & & b) = 0) B\ T
1 1 1 1
= 1 1—-1 1 1 1+-)=A
logblog b2b Z og( ﬁ) og( * 6) logblog log blog &L Z og( ) < i f)

+1 =2 26 (=2

Thus (59) becomes

lim — Zlogb cpb) = A,

Nooo N

from which it follows that for almost all « € (1,2),

N N
lim H e b | = pimase & S0l logy(enb™) _ pA
N—oo ’
n=1

as required. N
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