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Convex Functions: Constructions, Characterizations
and Counterexamples

Like differentiability, convexity is a natural and powerful property of functions that
plays a significant role in many areas of mathematics, both pure and applied. It ties
together notions from typology, algebra, geometry and analysis, and is an important
tool in optimization, mathematical programming and game theory. This book,
which is the product of a collaboration of over 15 years, is unique in that it focuses
on convex functions themselves, rather than on convex analysis. The authors
explore the various classes and their characteristics, treating convex functions in
both Euclidean and Banach spaces.

They begin by demonstrating, largely by way of examples, the ubiquity of
convexity. Chapter 2 then provides an extensive foundation for the study of convex
functions in Euclidean (finite-dimensional) space, and Chapter 3 reprises important
special structures such as polyhedrality, selection theorems, eigenvalue optimization
and semidefinite programming. Chapters 4 and 5 play the same role in
(infinite-dimensional) Banach space. Chapter 6 discusses a number of other basic
topics, such as selection theorems, set convergence, integral and trace class
funcitonals, and convex functions on Banach lattices.

Chapters 7 and 8 examine Legendre functions and their relation to the geometry
of Banach spaces. The final chapter investigates the application of convex functions
to (maximal) monotone operators through the use of a recently discovered class of
convex representive functions of which the Fitzpatrick function is the progenitor.

The book can either be read sequentially as a graduate text, or dipped into by
researchers and practitioners. Each chapter contains a variety of concrete examples
and over 600 exercises are included, ranging in difficulty from early graduate to
research level.
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4.5 Čebyšev sets and proximality 186
4.6 Small sets and differentiability 194

5 Duality between smoothness and strict convexity 209
5.1 Renorming: an overview 209
5.2 Exposed points of convex functions 232
5.3 Strictly convex functions 238
5.4 Moduli of smoothness and rotundity 252
5.5 Lipschitz smoothness 267



BORWEIN: “FM” — 2009/9/17 — 10:52 — PAGE viii — #8

viii Contents

6 Further analytic topics 276
6.1 Multifunctions and monotone operators 276
6.2 Epigraphical convergence: an introduction 285
6.3 Convex integral functionals 301
6.4 Strongly rotund functions 306
6.5 Trace class convex spectral functions 312
6.6 Deeper support structure 317
6.7 Convex functions on normed lattices 329

7 Barriers and Legendre functions 338
7.1 Essential smoothness and essential strict convexity 338
7.2 Preliminary local boundedness results 339
7.3 Legendre functions 343
7.4 Constructions of Legendre functions in Euclidean space 348
7.5 Further examples of Legendre functions 353
7.6 Zone consistency of Legendre functions 358
7.7 Banach space constructions 368

8 Convex functions and classifications of Banach spaces 377
8.1 Canonical examples of convex functions 377
8.2 Characterizations of various classes of spaces 382
8.3 Extensions of convex functions 392
8.4 Some other generalizations and equivalences 400

9 Monotone operators and the Fitzpatrick function 403
9.1 Monotone operators and convex functions 403
9.2 Cyclic and acyclic monotone operators 413
9.3 Maximality in reflexive Banach space 433
9.4 Further applications 439
9.5 Limiting examples and constructions 445
9.6 The sum theorem in general Banach space 449
9.7 More about operators of type (NI) 450

10 Further remarks and notes 460
10.1 Back to the finite 460
10.2 Notes on earlier chapters 470

List of symbols 477
References 479
Index 501



BORWEIN: “FM” — 2009/9/17 — 10:52 — PAGE ix — #9

Preface

This book on convex functions emerges out of 15 years of collaboration between the
authors. It is far from being the first on the subject nor will it be the last. It is neither
a book on convex analysis such as Rockafellar’s foundational 1970 book [369] nor
a book on convex programming such as Boyd and Vandenberghe’s excellent recent
text [128]. There are a number of fine books – both recent and less so – on both
those subjects or on convexity and relatedly on variational analysis. Books such as
[371, 255, 378, 256, 121, 96, 323, 332] complement or overlap in various ways with
our own focus which is to explore the interplay between the structure of a normed
space and the properties of convex functions which can exist thereon. In some ways,
among the most similar books to ours are those of Phelps [349] and of Giles [229] in
that both also straddle the fields of geometric functional analysis and convex analysis
– but without the convex function itself being the central character.

We have structured this book so as to accommodate a variety of readers. This leads
to some intentional repetition. Chapter 1 makes the case for the ubiquity of convexity,
largely by way of examples, many but not all of which are followed up in later chapters.
Chapter 2 then provides a foundation for the study of convex functions in Euclidean
(finite-dimensional) space, and Chapter 3 reprises important special structures such
as polyhedrality, eigenvalue optimization and semidefinite programming.

Chapters 4 and 5 play the same role in (infinite-dimensional) Banach space.
Chapter 6 comprises a number of other basic topics such as Banach space selec-
tion theorems, set convergence, integral functionals, trace-class spectral functions
and functions on normed lattices.

The remaining three chapters can be read independently of each other. Chapter 7
examines the structure of Legendre functions which comprises those barrier functions
which are essentially smooth and essentially strictly convex and considers how the
existence of such barrier functions is related to the geometry of the underlying Banach
space; as always the nicer the space (e.g. is it reflexive, Hilbert or Euclidean?) the
more that can be achieved. This coupling between the space and the convex functions
which may survive on it is attacked more methodically in Chapter 8.

Chapter 9 investigates (maximal) monotone operators through the use of a special-
ized class of convex representative functions of which the Fitzpatrick function is the
progenitor. We have written this chapter so as to make it more useable as a stand-alone
source on convexity and its applications to monotone operators.
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x Preface

In each chapter we have included a variety of concrete examples and exercises –
often guided, some with further notes given in Chapter 10. We both believe strongly
that general understanding and intuition rely on having fully digested a good cross-
section of particular cases. Exercises that build required theory are often marked
with �, those that include broader applications are marked with † and those that take
excursions into topics related – but not central to – this book are marked with ��.

We think this book can be used as a text, either primary or secondary, for a variety of
introductory graduate courses. One possible half-course would comprise Chapters 1,
2, 3 and the finite-dimensional parts of Chapters 4 through 10. These parts are listed
at the end of Chapter 3. Another course could encompass Chapters 1 through 6 along
with Chapter 8, and so on. We hope also that this book will prove valuable to a larger
group of practitioners in mathematical science; and in that spirit we have tried to keep
notation so that the infinite-dimensional and finite-dimensional discussion are well
comported and so that the book can be dipped into as well as read sequentially. This
also requires occasional intentional redundancy. In addition, we finish with a ‘bonus
chapter’ revisiting the boundary between Euclidean and Banach space and making
comments on the earlier chapters.

We should like to thank various of our colleagues and students who have pro-
vided valuable input and advice. We should also like to thank Cambridge University
Press and especially David Tranah who has played an active and much appreci-
ated role in helping shape this work. Finally, we have a companion web-site at
http://projects.cs.dal.ca/ddrive/ConvexFunctions/ on which
various related links and addenda (including any subsequent errata) may be found.
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1

Why convex?

The first modern formalization of the concept of convex function appears in J. L. W. V.
Jensen, “Om konvexe funktioner og uligheder mellem midelvaerdier.” Nyt Tidsskr. Math. B
16 (1905), pp. 49–69. Since then, at first referring to “Jensen’s convex functions,” then more
openly, without needing any explicit reference, the definition of convex function becomes a
standard element in calculus handbooks. (A. Guerraggio and E. Molho)1

Convexity theory . . . reaches out in all directions with useful vigor. Why is this so? Surely any
answer must take account of the tremendous impetus the subject has received from outside
of mathematics, from such diverse fields as economics, agriculture, military planning, and
flows in networks. With the invention of high-speed computers, large-scale problems from
these fields became at least potentially solvable. Whole new areas of mathematics (game
theory, linear and nonlinear programming, control theory) aimed at solving these problems
appeared almost overnight. And in each of them, convexity theory turned out to be at the
core. The result has been a tremendous spurt in interest in convexity theory and a host of
new results. (A. Wayne Roberts and Dale E. Varberg)2

1.1 Why ‘convex’?

This introductory polemic makes the case for a study focusing on convex functions and
their structural properties. We highlight the centrality of convexity and give a selection
of salient examples and applications; many will be revisited in more detail later in
the text – and many other examples are salted among later chapters. Two excellent
companion pieces are respectively by Asplund [15] and by Fenchel [212]. A more
recent survey article by Berger has considerable discussion of convex geometry [53].

It has been said that most of number theory devolves to the Cauchy–Schwarz
inequality and the only problem is deciding ‘what to Cauchy with’. In like fashion,
much mathematics is tamed once one has found the right convex ‘Green’s function’.
Why convex? Well, because . . .

• For convex sets topological, algebraic, and geometric notions often coincide; one
sees this in the study of the simplex method and of continuity of convex functions.
This allows one to draw upon and exploit many different sources of insight.

1 A. Guerraggio and E. Molho, “The origins of quasi-concavity: a development between mathematics and
economics,” Historia Mathematica, 31, 62–75, (2004).

2 Quoted by Victor Klee in his review of [366], SIAM Review, 18, 133–134, (1976).
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2 Why convex?

• In a computational setting, since the interior-point revolution [331] in linear opti-
mization it is now more or less agreed that ‘convex’ = ‘easy’ and ‘nonconvex’ =
‘hard’ – both theoretically and computationally. A striking illustration in combi-
natorial optimization is discussed in Exercise 3.3.9. In part this easiness is for the
prosaic reason that local and global minima coincide.

• ‘Differentiability’ is understood and has been exploited throughout the sciences for
centuries; ‘convexity’ less so, as the opening quotations attest. It is not emphasized
in many instances in undergraduate courses – convex principles appear in topics
such as the second derivative test for a local extremum, in linear programming
(extreme points, duality, and so on) or via Jensen’s inequality, etc. but often they
are not presented as part of any general corpus.

• Three-dimensional convex pictures are surprisingly often realistic, while two-
dimensional ones are frequently not as their geometry is too special. (Actually
in a convex setting even two-dimensional pictures are much more helpful com-
pared to those for nonconvex functions, still three-dimensional pictures are better.
A good illustration is Figure 2.16. For example, working two-dimensionally, one
may check convexity along lines, while seeing equal right-hand and left-hand
derivatives in all directions implies differentiability.)

1.2 Basic principles

First we define some of the fundamental concepts. This is done more methodically
in Chapter 2. Throughout this book, we will typically use E to denote the finite-
dimensional real vector space R

n for some n ∈ N endowed with its usual norm, and
typically X will denote a real infinite-dimensional Banach space – and sometimes
merely a normed space. In this introduction we will tend to state results and introduce
terminology in the setting of the Euclidean space E because this more familiar and
concrete setting already illustrates their power and utility.

Aset C ⊂ E is said to be convex if it contains all line segments between its members:
λx + (1 − λ)y ∈ C whenever x, y ∈ C and 0 ≤ λ ≤ 1. Even in two dimensions this
deserves thought: every set S with {(x, y) : x2 +y2 < 1} ⊂ S ⊂ {(x, y) : x2 +y2 ≤ 1}
is convex.

The lower level sets of a function f : E → [−∞, +∞] are the sets {x ∈ E : f (x) ≤
α} where α ∈ R. The epigraph of a function f : E → [−∞, +∞] is defined by

epi f := {(x, t) ∈ E × R : f (x) ≤ t}.

We should note that we will use ∞ and +∞ interchangeably, but we prefer to use
+∞ when −∞ is nearby.

Consider a function f : E → [−∞, +∞]; we will say f is closed if its epigraph
is closed; whereas f is lower-semicontinuous (lsc) if lim inf x→x0 f (x) ≥ f (x0) for
all x0 ∈ E. These two concepts are intimately related for convex functions. Our
primary focus will be on proper functions, those functions f : E → [−∞, +∞] that
do not take the value −∞ and whose domain of f , denoted by dom f , is defined
by dom f := {x ∈ E : f (x) < ∞}. The indicator function of a nonempty set D
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1.2 Basic principles 3

is the function δD defined by δD(x) := 0 if x ∈ D and δD(x) := +∞ otherwise.
These notions allow one to study convex functions and convex sets interchangeably,
however, our primary focus will center on convex functions.

A sketch of a real-valued differentiable convex function very strongly suggests
that the derivative of such a function is monotone increasing, in fact this is true more
generally – but in a nonobvious way. If we denote the derivative (or gradient) of a
real function g by ∇g, then using the inner product the monotone increasing property
of ∇g can be written as

〈∇g(y)− ∇g(x), y − x〉 ≥ 0 for all x and y.

The preceding inequality leads to the definition of the monotonicity of the gradient
mapping on general spaces. Before stating our first basic result, let us recall that a set
K ⊂ E is a cone if tK ⊂ K for every t ≥ 0; and an affine mapping is a translate of a
linear mapping.

We begin with a recapitulation of the useful preservation and characterization
properties convex functions possess:

Lemma 1.2.1 (Basic properties). The convex functions form a convex cone closed
under pointwise suprema: if fγ is convex for each γ ∈ � then so is x 
→ supγ∈� fγ (x).

(a) A function g is convex if and only if epi g is convex if and only if δepi g is convex.
(b) A differentiable function g is convex on an open convex set D if and only if ∇g

is a monotone operator on D, while a twice differentiable function g is convex if
and only if the Hessian ∇2g is a positive semidefinite matrix for each value in D.

(c) g ◦ A and m ◦ g are convex when g is convex, α is affine and m is monotone
increasing and convex.

(d) For t > 0, (x, t) 
→ tg(x/t) and (x, t) 
→ g(xt)/t are convex if and only if g is
and if in the latter case g(0) ≥ 0.

Proof. See Lemma 2.1.8 for (a), (c) and (d). Part (b) is developed in Theorem 2.2.6
andTheorem 2.2.8, where we are more precise about the form of differentiability used.
In (d) one may be precise also about the lsc hulls, see [95] and Exercise 2.3.9.

Before introducing the next result which summarizes many of the important con-
tinuity and differentiability properties of convex functions, we first introduce some
crucial definitions. For a proper function f : E → (−∞, +∞], the subdifferential of
f at x̄ ∈ E where f (x̄) is finite is defined by

∂f (x̄) := {φ ∈ E : 〈φ, y − x̄〉 ≤ f (y)− f (x̄), for all y ∈ E}.

If f (x̄) = +∞, then ∂f (x̄) is defined to be empty. Moreover, if φ ∈ ∂f (x̄), then φ
is said to be a subgradient of f at x̄. Note that, trivially but importantly, 0 ∈ ∂f (x) –
and we call x a critical point – if and only if x is a minimizer of f .

While it is possible for the subdifferential to be empty, we will see below that very
often it is not. An important consideration for this is whether x̄ is in the boundary of
the domain of f or in its interior, and in fact, in finite dimensions, the relative interior



BORWEIN: “CHAP01” — 2009/9/16 — 22:16 — PAGE 4 — #4

4 Why convex?

AN ESSENTIALLY STRICTLY CONVEX FUNCTION WITH
NONCONVEX SUBGRADIENT DOMAIN

AND WHICH IS NOT STRICTLY CONVEX

max{(x – 2) ^ 2 + y ^ 2 – 1, – (x*y) ^ (1/4)}

Figure 1.1 A subtle two-dimensional function from Chapter 6.

(i.e. the interior relative to the affine hull of the set) plays an important role. The
function f is Fréchet differentiable at x̄ with Fréchet derivative f ′(x̄) if

lim
t→0

f (x̄ + th)− f (x̄)

t
= 〈f ′(x̄), h〉

exists uniformly for all h in the unit sphere. If the limit exists only pointwise, f
is Gâteaux differentiable. With these terms in mind we are now ready for the next
theorem.

Theorem 1.2.2. In Banach space, the following are central properties of
convexity:

(a) Global minima and local minima coincide for convex functions.
(b) Weak and strong closures coincide for convex functions and convex sets.
(c) A convex function is locally Lipschitz if and only if it is continuous if and only if

it is locally bounded above. A finite lsc convex function is continuous; in finite
dimensions lower-semicontinuity is not automatic.

(d) In finite dimensions, say n=dim E, the following hold.

(i) The relative interior of a convex set always exists and is nonempty.
(ii) A convex function is differentiable if and only if it has a unique subgradient.
(iii) Fréchet and Gâteaux differentiability coincide.
(iv) ‘Finite’ if and only if ‘n + 1’ or ‘n’ (e.g. the theorems of Radon, Helly,

Carathéodory, and Shapley–Folkman stated below in Theorems 1.2.3, 1.2.4,
1.2.5, and 1.2.6). These all say that a property holds for all finite sets as
soon as it holds for all sets of cardinality of order the dimension of the
space.
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Proof. For (a) see Proposition 2.1.14; for (c) see Theorem 2.1.10 and Proposi-
tion 4.1.4. For the purely finite-dimensional results in (d), see Theorem 2.4.6 for (i);
Theorem 2.2.1 for (ii) and (iii); and Exercises 2.4.13, 2.4.12, 2.4.11, and 2.4.15, for
Helly’s, Radon’s, Carathéodory’s and Shapley–Folkman theorems respectively.

Theorem 1.2.3 (Radon’s theorem). Let {x1, x2, . . . , xn+2} ⊂ R
n. Then there is a

partition I1∪I2 = {1, 2, . . . , n+2} such that C1∩C2 �= ∅where C1 = conv{xi : i ∈ I1}
and C2 = conv{xi : i ∈ I2}.

Theorem 1.2.4 (Helly’s theorem). Suppose {Ci}i∈I is a collection of nonempty closed
bounded convex sets in R

n, where I is an arbitrary index set. If every subcollection
consisting of n+1 or fewer sets has a nonempty intersection, then the entire collection
has a nonempty intersection.

In the next two results we observe that when positive as opposed to convex
combinations are involved, ‘n + 1’ is replaced by ‘n’.

Theorem 1.2.5 (Carathéodory’s theorem). Suppose {ai : i ∈ I} is a finite set of points
in E. For any subset J of I , define the cone

CJ =
{∑

i∈J

µiai : µi ∈ [0, +∞), i ∈ J

}
.

(a) The cone CI is the union of those cones CJ for which the set {aj : j ∈ J } is
linearly independent. Furthermore, any such cone CJ is closed. Consequently,
any finitely generated cone is closed.

(b) If the point x lies in conv{ai : i ∈ I} then there is a subset J ⊂ I of size at most
1 + dim E such that x ∈ conv{ai : i ∈ J }. It follows that if a subset of E is
compact, then so is its convex hull.

Theorem 1.2.6 (Shapley–Folkman theorem). Suppose {Si}i∈I is a finite collection of
nonempty sets in R

n, and let S := ∑
i∈I Si. Then every element x ∈ conv S can be

written as x = ∑
i∈I xi where xi ∈ conv Si for each i ∈ I and moreover xi ∈ Si for

all except at most n indices.

Given a nonempty set F ⊂ E, the core of F is defined by x ∈ core F if for each
h ∈ E with ‖h‖ = 1, there exists δ > 0 so that x + th ∈ F for all 0 ≤ t ≤ δ. It
is clear from the definition that the interior of a set F is contained in its core, that
is, int F ⊂ core F . Let f : E → (−∞, +∞]. We denote the set of points of continuity
of f is denoted by cont f . The directional derivative of f at x̄ ∈ dom f in the direction
h is defined by

f ′(x̄; h) := lim
t→0+

f (x̄ + th)− f (x̄)

t
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if the limit exists – and it always does for a convex function. In consequence one has
the following simple but crucial result.

Theorem 1.2.7 (First-order conditions). Suppose f : E → (−∞, +∞] is convex.
Then for any x ∈ dom f and d ∈ E,

f ′(x; d) ≤ f (x + d)− f (x). (1.2.1)

In consequence, f is minimized (locally or globally) at x0 if and only if f ′(x0; d) ≥ 0
for all d ∈ E if and only if 0 ∈ ∂f (x0).

The following fundamental result is also a natural starting point for the so-called
Fenchel duality/Hahn–Banach theorem circle. Let us note, also, that it directly relates
differentiability to the uniqueness of subgradients.

Theorem 1.2.8 (Max formula). Suppose f : E → (−∞, +∞] is convex (and lsc in
the infinite-dimensional setting) and that x̄ ∈ core(dom f ). Then for any d ∈ E,

f ′(x̄; d) = max{〈φ, d〉 : φ ∈ ∂f (x̄)}. (1.2.2)

In particular, the subdifferential ∂f (x̄) is nonempty at all core points of dom f .

Proof. See Theorem 2.1.19 for the finite-dimensional version and Theorem 4.1.10
for infinite-dimensional version.

Building upon the Max formula, one can derive a quite satisfactory calculus for
convex functions and linear operators. Let us note also, that for f : E → [−∞, +∞],
the Fenchel conjugate of f is denoted by f ∗ and defined by f ∗(x∗) := sup{〈x∗, x〉 −
f (x) : x ∈ E}. The conjugate is always convex (as a supremum of affine functions)
while f = f ∗∗ exactly if f is convex, proper and lsc. Avery important case leads to the
formula δ∗C(x∗) = supx∈C〈x∗, x〉, the support function of C which is clearly continu-
ous when C is bounded, and usually denoted by σC . This simple conjugate formula
will play a crucial role in many places, including Section 6.6 where some duality rela-
tionships between Asplund spaces and those with the Radon–Nikodým property are
developed.

Theorem 1.2.9 (Fenchel duality and convex calculus). Let E and Y be Euclidean
spaces, and let f : E → (−∞, +∞] and g : Y → (−∞, +∞] and a linear map
A : E → Y , and let p, d ∈ [−∞, +∞] be the primal and dual values defined
respectively by the Fenchel problems

p := inf
x∈E

{ f (x)+ g(Ax)} (1.2.3)

d := sup
φ∈Y

{−f ∗(A∗φ)− g∗(−φ)}. (1.2.4)
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Then these values satisfy the weak duality inequality p ≥ d. If, moreover, f and g are
convex and satisfy the condition

0 ∈ core(dom g − A dom f ) (1.2.5)

or the stronger condition

A dom f ∩ cont g �= ∅ (1.2.6)

then p = d and the supremum in the dual problem (1.2.4) is attained if finite.
At any point x ∈ E, the subdifferential sum rule,

∂( f + g ◦ A)(x) ⊃ ∂f (x)+ A∗∂g(Ax) (1.2.7)

holds, with equality if f and g are convex and either condition (1.2.5) or (1.2.6)
holds.

Proof. The proof for Euclidean spaces is given in Theorem 2.3.4; a version in Banach
spaces is given in Theorem 4.4.18.

A nice application of Fenchel duality is the ability to obtain primal solutions from
dual ones; this is described in Exercise 2.4.19.

Corollary 1.2.10 (Sandwich theorem). Let f : E → (−∞, +∞] and g : Y →
(−∞, +∞] be convex, and let A : E → Y be linear. Suppose f ≥ −g ◦ A and
0 ∈ core(dom g − A dom f ) (or A dom f ∩ cont g �= ∅). Then there is an affine
function α : E → R satisfying f ≥ α ≥ −g ◦ A.

It is sometimes more desirable to symmetrize this result by using a concave function
g, that is a function for which −g is convex, and its hypograph, hyp g, as in Figure 1.2.

Using the sandwich theorem, one can easily deduce Hahn–Banach exten-
sion theorem (2.1.18) and the Max formula to complete the so-called Fenchel
duality/Hahn–Banach circle.

epi f

hyp g

Figure 1.2 A sketch of the sandwich theorem.
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A final key result is the capability to reconstruct a convex set from a well defined
set of boundary points, just as one can reconstruct a convex polytope from its corners
(extreme points). The basic result in this area is:

Theorem 1.2.11 (Minkowski). Let E be a Euclidean space. Any compact convex
set C ⊂ E is the convex hull of its extreme points. In Banach space it is typically
necessary to take the closure of the convex hull of the extreme points.

Proof. This theorem is proved in Euclidean spaces in Theorem 2.7.2.

With these building blocks in place, we use the following sections to illustrate some
diverse examples where convex functions and convexity play a crucial role.

1.3 Some mathematical illustrations

Perhaps the most forcible illustration of the power of convexity is the degree to which
the theory of best approximation, i.e. existence of nearest points and the study of
nonexpansive mappings, can be subsumed as a convex optimization problem. For a
closed set S in a Hilbert space X we write dS(x) := inf x∈S ‖x − s‖2 and call dS the
(metric) distance function associated with the set S. A set C in X such that each x ∈ X
has a unique nearest point in C is called a Čebyšev set.

Theorem 1.3.1. Let X be a Euclidean (resp. Hilbert) space and suppose C is a
nonempty (weakly) closed subset of X . Then the following are equivalent.

(a) C is convex.
(b) C is a Čebyšev set.
(c) d2

C is Fréchet differentiable.
(d) d2

C is Gâteaux differentiable.

Proof. See Theorem 4.5.9 for the proof.

We shall use the necessary condition for inf C f to deduce that the projection
on a convex set is nonexpansive; this and some other properties are described in
Exercise 2.3.17.

Example 1.3.2 (Algebra). Birkhoff’s theorem [57] says the doubly stochastic matri-
ces (those with nonnegative entries whose row and column sum equal one) are convex
combinations of permutation matrices (their extreme points).

A proof using convexity is requested in Exercise 2.7.5 and sketched in detail in
[95, Exercise 22, p. 74].

Example 1.3.3 (Real analysis). The following very general construction links convex
functions to nowhere differentiable continuous functions.

Theorem 1.3.4 (Nowhere differentiable functions [145]). Let an > 0 be such that∑∞
n=1 an < ∞. Let bn < bn+1 be integers such that bn|bn+1 for each n, and the
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sequence anbn does not converge to 0. For each index j ≥ 1, let fj be a continuous
function mapping the real line onto the interval [0, 1] such that fj = 0 at each even
integer and fj = 1 at each odd integer. For each integer k and each index j, let fj be
convex on the interval (2k , 2k + 2).

Then the continuous function
∑∞

j=1 ajfj(bjx) has neither a finite left-derivative nor
a finite right-derivative at any point.

In particular, for a convex nondecreasing function f mapping [0, 1] to [0, 1],
define f (x) = f (2 − x) for 1 < x < 2 and extend f periodically. Then Ff (x) :=∑∞

j=1 2−j f (2jx) defines a continuous nowhere differentiable function.

Example 1.3.5 (Operator theory). The Riesz–Thorin convexity theorem informally
says that if T induces a bounded linear operator between Lebesgue spaces Lp1 and
Lp2 and also between Lq1 and Lq2 for 1 < p1, p2 < ∞ and 1 < q1, q2 < ∞ then it
also maps Lr1 to Lr2 whenever (1/r1, 1/r2) is a convex combination of (1/p1, 1/p2)

and (1/p1, 1/p2) (all three pairs lying in the unit square).

A precise formulation is given by Zygmund in [451, p. 95].

Example 1.3.6 (Real analysis). The Bohr–Mollerup theorem characterizes the
gamma-function x 
→ ∫∞

0 tx−1 exp(−t) dt as the unique function f mapping the
positive half line to itself such that (a) f (1) = 1, (b) xf (x) = f (x + 1) and (c) log f
is convex function

A proof of this is outlined in Exercise 2.1.24; Exercise 2.1.25 follows this by
outlining how this allows for computer implementable proofs of results such as
β(x, y) = �(x)�(y)/�(x, y)where β is the classical beta-function. A more extensive
discussion of this topic can be found in [73, Section 4.5].

Example 1.3.7 (Complex analysis). Gauss’s theorem shows that the roots of the
derivative of a polynomial lie inside the convex hull of the zeros.

More precisely one has the Gauss–Lucas theorem: For an arbitrary not identically
constant polynomial, the zeros of the derivative lie in the smallest convex polygon
containing the zeros of the original polynomial. While Gauss originally observed:
Gauss’s theorem: The zeros of the derivative of a polynomial P that are not multiple
zeros of P are the positions of equilibrium in the field of force due to unit particles
situated at the zeros of P, where each particle repels with a force equal to the inverse
distance. Jensen’s sharpening states that if P is a real polynomial not identically
constant, then all nonreal zeros of P

′
lie inside the Jensen disks determined by all

pairs of conjugate nonreal zeros of P. See Pólya–Szegő [273].

Example 1.3.8 (Levy–Steinitz theorem (combinatorics)). The rearrangements of a
series with values in Euclidean space always is an affine subspace (also called a flat).

Riemann’s rearrangement theorem is the one-dimensional version of this lovely
result. See [382], and also Pólya-Sze̋go [272] for the complex (planar) case.
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We finish this section with an interesting example of a convex function whose
convexity, established in [74, §1.9], seems hard to prove directly (a proof is outlined
in Exercise 4.4.10):

Example 1.3.9 (Concave reciprocals). Let g(x) > 0 for x > 0. Suppose 1/g is
concave (which implies log g and hence g are convex) then

(x, y) 
→ 1

g(x)
+ 1

g(y)
− 1

g(x + y)
,

(x, y, z) 
→ 1

g(x)
+ 1

g(y)
+ 1

g(z)
− 1

g(x + y)
− 1

g(y + z)
− 1

g(x + z)
+ 1

g(x + y + z)

and all similar n-fold alternating combinations are reciprocally concave on the strictly
positive orthant. The foundational case is g(x) := x. Even computing the Hessian in
a computer algebra system in say six dimensions is a Herculean task.

1.4 Some more applied examples

Another lovely advertisement for the power of convexity is the following reduction
of the classical Brachistochrone problem to a tractable convex equivalent problem.
As Balder [29] recalls

‘Johann Bernoulli’s famous 1696 brachistochrone problem asks for the optimal shape of
a metal wire that connects two fixed points A and B in space. A bead of unit mass falls
along this wire, without friction, under the sole influence of gravity. The shape of the wire
is defined to be optimal if the bead falls from A to B in as short a time as possible.’

Example 1.4.1 (Calculus of variations). Hidden convexity in the Brachistochrone
problem. The standard formulation, requires one to minimize

T ( f ) :=
∫ x1

0

√
1 + f ′2(x)√

g f (x)
dx (1.4.1)

over all positive smooth arcs f on (0, x1)which extend continuously to have f (0) = 0
and f (x1) = y1, and where we let A = (0, 0) and B := (x1, y1), with x1 > 0, y1 ≥ 0.
Here g is the gravitational constant.

A priori, it is not clear that the minimum even exists – and many books slough
over all of the hard details. Yet, it is an easy exercise to check that the substitution
φ := √

f makes the integrand jointly convex. We obtain

S(φ) := √
2gT (φ2) =

∫ x1

0

√
1/φ2(x)+ 4φ ′2(x) dx. (1.4.2)

One may check elementarily that the solutionψ on (0, x1) of the differential equation(
ψ ′(x)

)2
ψ2(x) = C/ψ(x)2 − 1, ψ(0) = 0,

where C is chosen to force ψ(x1) = √
y1, exists and satisfies S(φ) > S(ψ) for

all other feasible φ. Finally, one unwinds the transformations to determine that the
original problem is solved by a cardioid.
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It is not well understood when one can make such convex transformations in vari-
ational problems; but, when one can, it always simplifies things since we have
immediate access to Theorem 1.2.7, and need only verify that the first-order nec-
essary condition holds. Especially for hidden convexity in quadratic programming
there is substantial recent work, see e.g. [50, 440].

Example 1.4.2 (Spectral analysis). There is a beautiful Davis–Lewis theorem char-
acterizing convex functions of eigenvalues of symmetric matrices. We let λ(S) denote
the (real) eigenvalues of an n by n symmetric matrix S in nonincreasing order. The
theorem shows that if f : E → (−∞, +∞] is a symmetric function, then the ‘spectral
function’ f ◦λ is (closed) and convex if and only if f is (closed) and convex. Likewise,
differentiability is inherited.

Indeed, what Lewis (see Section 3.2 and [95, §5.2]) established is that the convex
conjugate which we shall study in great detail satisfies

(f ◦ λ)∗ = f ∗ ◦ λ,

from which much more actually follows. Three highly illustrative applications follow.

I. (Log determinant) Let lb(x) := − log(x1x2 · · · xn) which is clearly symmetric
and convex. The corresponding spectral function is S 
→ − log det(S).

II. (Sum of eigenvalues) Ranging over permutations π , let

fk(x) := max
π

{xπ(1) + xπ(2) + · · · + xπ(k)} for k ≤ n.

This is clearly symmetric, continuous and convex. The corresponding spectral
function is σk(S) := λ1(S) + λ2(S) + · · · + λk(S). In particular the largest
eigenvalue, σ1, is a continuous convex function of S and is differentiable if and
only if the eigenvalue is simple.

III. (k-th largest eigenvalue) The k-th largest eigenvalue may be written as

µk(S) = σk(S)− σk−1(S).

In particular, this representsµk as the difference of two convex continuous, hence
locally Lipschitz, functions of S and so we discover the very difficult result that
for each k , µk(S) is a locally Lipschitz function of S. Such difference convex
functions appear at various points in this book (e.g. Exercises 3.2.11 and 4.1.46)
Sometimes, as here, they inherit useful properties from their convex parts.

Harder analogs of the Davis–Lewis theorem exists for singular values, hyperbolic
polynomials, Lie algebras, and the like.

Lest one think most results on the real line are easy, we challenge the reader to
prove the empirical observation that

p 
→ √
p
∫ ∞

0

∣∣∣∣ sin x

x

∣∣∣∣
p

dx

is difference convex on (1, ∞).
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Another lovely application of modern convex analysis is to the theory of two-person
zero-sum games.

Example 1.4.3 (Game theory). The seminal result due to von Neumann shows that

µ := min
C

max
D

〈Ax, y〉 = max
D

min
C

〈Ax, y〉, (1.4.3)

where C ⊂ E and D ⊂ F are compact convex sets (originally sets of finite probabil-
ities) and A : E 
→ F is an arbitrary payoff matrix. The common value µ is called the
value of the game.

Originally, Equation (1.4.3) was proved using fixed point theory (see [95, p. 201])
but it is now a lovely illustration of the power of Fenchel duality since we may write
µ := inf E

{
δ∗D(Ax)+ δC(x)

}
; see Exercise 2.4.21.

One of the most attractive extensions is due to Sion. It asserts that

min
C

max
D

f (x, y) = max
D

min
C

f (x, y)

when C, D are compact and convex in Banach space while f (·, y), −f (x, ·) are required
only to be lsc and quasi-convex (i.e. have convex lower level sets). In the convex-
concave proof one may use compactness and the Max formula to achieve a very neat
proof. We shall see substantial applications of reciprocal concavity and log convexity
to the construction of barrier functions in Section 7.4.

Next we turn to entropy:

‘Despite the narrative force that the concept of entropy appears to evoke in everyday writing,
in scientific writing entropy remains a thermodynamic quantity and a mathematical formula
that numerically quantifies disorder. When the American scientist Claude Shannon found
that the mathematical formula of Boltzmann defined a useful quantity in information theory,
he hesitated to name this newly discovered quantity entropy because of its philosophical
baggage. The mathematician John von Neumann encouraged Shannon to go ahead with
the name entropy, however, since “no one knows what entropy is, so in a debate you will
always have the advantage.’3

Example 1.4.4 (Statistics and information theory). The function of finite
probabilities

−→p 
→
n∑

i=1

pi log(pi)

defines the (negative of) Boltzmann–Shannon entropy, where
∑n

i=1 pi = 1 and pi ≥
0, and where we set 0 log 0 = 0. (One maximizes entropy and minimizes convex
functions.)

I. (Extended entropy.) We may extend this function (minus 1) to the nonnegative
orthant by

−→x 
→
n∑

i=1

(xi log(xi)− xi) . (1.4.4)

3 The American Heritage Book of English Usage, p. 158.
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(See Exercise 2.3.25 for some further properties of this function.) It is easy to
check that this function has Fenchel conjugate

−→y 
→
∑

exp(yi),

whose conjugate is given by (1.4.4) which must therefore be convex – of course
in this case it is also easy to check that x log x − x has second derivative 1/x > 0
for x > 0.

II. (Divergence estimates.) The function of two finite probabilities

(−→p , −→q ) 
→
n∑

i=1

{
pi log

(
pi

qi

)
− (pi − qi)

}
,

is called the Kullback–Leibler divergence and measures how far−→q deviates from−→p (care being taken with 0 ÷ 0). Somewhat surprisingly, this function is jointly
convex as may be easily seen from Lemma 1.2.1 (d), or more painfully by taking
the second derivative. One of the many attractive features of the divergence is
the beautiful inequality

n∑
i=1

pi log

(
pi

qi

)
≥ 1

2

(
n∑

i=1

|pi − qi|
)2

, (1.4.5)

valid for any two finite probability measures. Note that we have provided a
lower bound in the 1-norm for the divergence (see Exercise 2.3.26 for a proof
and Exercise 7.6.3 for generalizations). Inequalities bounding the divergence (or
generalizations as in Exercise 7.6.3) below in terms of the 1-norm are referred
to as Pinsker-type inequalities [228, 227].

III. (Surprise maximization.) There are many variations on the current theme. We
conclude this example by describing a recent one. We begin by recalling the
Paradox of the Surprise Exam:

‘A teacher announces in class that an examination will be held on some day during the
following week, and moreover that the examination will be a surprise. The students
argue that a surprise exam cannot occur. For suppose the exam were on the last day
of the week. Then on the previous night, the students would be able to predict that the
exam would occur on the following day, and the exam would not be a surprise. So it
is impossible for a surprise exam to occur on the last day. But then a surprise exam
cannot occur on the penultimate day, either, for in that case the students, knowing
that the last day is an impossible day for a surprise exam, would be able to predict on
the night before the exam that the exam would occur on the following day. Similarly,
the students argue that a surprise exam cannot occur on any other day of the week
either. Confident in this conclusion, they are of course totally surprised when the exam
occurs (on Wednesday, say). The announcement is vindicated after all. Where did the
students’ reasoning go wrong?’ ([151])

This paradox has a grimmer version involving a hanging, and has a large literature
[151]. As suggested in [151], one can leave the paradox to philosophers and ask, more
pragmatically, the information-theoretic question what distribution of events will
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Figure 1.3 Optimal distributions: m = 7 (L) and m = 50 (R).

maximize group surprise? This question has a most satisfactory resolution. It leads
naturally (see [95, Ex. 28, p. 87]) to the following optimization problem involving
Sm, the surprise function, given by

Sm(
−→p ) :=

m∑
j=1

pj log

(
pj

1
m

∑
i≥j pi

)
,

with the explicit constraint that
∑m

j=1 pj = 1 and the implicit constraint that
each pi ≥ 0.

From the results quoted above the reader should find it easy to show Sm is convex.
Remarkably, the optimality conditions for maximizing surprise can be solved beau-
tifully recursively as outlined in [95, Ex. 28, p.87]. Figure 1.3 shows examples of
optimal probability distributions, for m = 7 and m = 50.

1.4.1 Further examples of hidden convexity

We finish this section with two wonderful ‘hidden convexity’ results.

I. (Aumann integral)The integral of a multifunction� : T 
→ E over a finite measure
space T , denoted

∫
T �, is defined as the set of all points of the form

∫
T φ(t)dµ,

where µ is a finite positive measure and φ(·) is an integrable measurable selection
φ(t) ∈ �(t) a.e. We denote by conv� the multifunction whose value at t is the
convex hull of �(t). Recall that � is measurable if {t : �(t) ∩ W �= ∅} is
measurable for all open sets W and is integrably bounded if supσ∈� ‖σ(t)‖ is
integrable; here σ ranges over all integrable selections.

Theorem 1.4.5 (Aumann convexity theorem). Suppose (a) E is finite-dimensional
and µ is a nonatomic probability measure. Suppose additionally that (b) � is
measurable, has closed nonempty images and is integrably bounded. Then∫

T
� =

∫
T

conv�,

and is compact.

In the fine survey by ZviArtstein [9] compactness follows from the Dunford–Pettis
criterion (see §5.3); and the exchange of convexity and integral from an extreme point
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argument plus some measurability issues based on Filippov’s lemma. We refer the
reader to [9, 155, 156, 157] for details and variants.4

In particular, since the right-hand side of Theorem 1.4.5 is clearly convex we have
the following weaker form which is easier to prove – directly from the Shapley–
Folkman theorem (1.2.6) – as outlined in Exercise 2.4.16 and [415]. Indeed, we need
not assume (b).

Theorem 1.4.6 (Aumann convexity theorem (weak form)). If E is finite-dimensional
and µ is a nonatomic probability measure then

∫
T
� = conv

∫
T
�.

The simplicity of statement and the potency of this result (which predatesAumann)
means that it has attracted a large number of alternative proofs and extensions, [155].
An attractive special case – originating with Lyapunov – takes

�(t) := {−f (t), f (t)}

where f is any continuous function. This is the genesis of so-called ‘bang-bang’
control since it shows that in many settings control mechanisms which only take
extreme values will recapture all behaviour. More generally we have:

Corollary 1.4.7 (Lyapunov convexity theorem). Suppose E is finite-dimensional and
µ is a nonatomic finite vector measure µ := (µ1,µ2, . . . ,µn) defined on a sigma-
algebra, 
, of subsets of T , and taking range in E. Then R(µ) := {µ(A) : A ∈ 
}
is convex and compact.

We sketch the proof of convexity (the most significant part). Let ν := ∑ |µk |. By
the Radon–Nikodým theorem, as outlined in Exercise 6.3.6, each µi is absolutely
continuous with respect to ν and so has a Radon–Nikodým derivative fk . Let f :=
( f1, f2, . . . , fn). It follows, with �(t) := {0, f (t)} that we may write

R(µ) =
∫

T
� dν.

Then Theorem 1.4.5 shows the convexity of the range of the vector measure. (See
[260] for another proof.)

II. (Numerical range)As a last taste of the ubiquity of convexity we offer the beautiful
hidden convexity result called the Toeplitz–Hausdorff theorem which establishes
the convexity of the numerical range, W (A), of a complex square matrix A (or
indeed of a bounded linear operator on complex Hilbert space). Precisely,

W (A) := {〈Ax, x〉 : 〈x, x〉 = 1},

4 [156] discusses the general statement.
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so that it is not at all obvious that W (A) should be convex, though it is clear that
it must contain the spectrum of A.

Indeed much more is true. For example, for a normal matrix the numerical range
is the convex hull of the eigenvalues. Again, although it is not obvious there is a
tight relationship between the Toeplitz–Hausdorff theorem and Birkhoff’s result
(of Example 1.3.2) on doubly stochastic matrices.

Conclusion Another suite of applications of convexity has not been especially high-
lighted in this chapter but will be at many places later in the book. Wherever possible,
we have illustrated a convexity approach to a piece of pure mathematics. Here is one
of our favorite examples.

Example 1.4.8 (Principle of uniform boundedness). The principle asserts that point-
wise bounded families of bounded linear operators between Banach spaces are
uniformly bounded. That is, we are given bounded linear operators Tα : X → Y
for α ∈ A and we know that supα∈A ‖Tα(x)‖ < ∞ for each x in X . We wish to show
that supα∈A ‖Tα‖ < ∞. Here is the convex analyst’s proof:

Proof. Define a function fA by

fA(x) := sup
α∈A

‖Tα(x)‖

for each x in X . Then, as observed in Lemma 1.2.1, fA is convex. It is also closed since
each mapping x 
→ ‖Tα(x)‖ is (see also Exercise 4.1.5). Hence fA is a finite, closed
convex (actually sublinear) function. Now Theorem 1.2.2 (c) (Proposition 4.1.5)
ensures fA is continuous at the origin. Select ε > 0 with sup{fA(x) : ‖x‖ ≤ ε} ≤ 1.
It follows that

sup
α∈A

‖Tα‖ = sup
α∈A

sup
‖x‖≤1

‖Tα(x)‖ = sup
‖x‖≤1

sup
α∈A

‖Tα(x)‖ ≤ 1/ε.

We give a few other examples:

• The Lebesgue–Radon–Nikodým decomposition theorem viewed as a convex
optimization problem (Exercise 6.3.6).

• The Krein–Šmulian or Banach–Dieudonné theorem derived from the von Neumann
minimax theorem (Exercise 4.4.26).

• The existence of Banach limits for bounded sequences illustrating the Hahn–
Banach extension theorem (Exercise 5.4.12).

• Illustration that the full axiom of choice is embedded in various highly desirable
convexity results (Exercise 6.7.11).

• A variational proof of Pitt’s theorem on compactness of operators in �p spaces
(Exercise 6.6.3).
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• The whole of Chapter 9 in which convex Fitzpatrick functions are used to attack
the theory of maximal monotone operators – not to mention Chapter 7.

Finally we would be remiss not mentioned the many lovely applications of con-
vexity in the study of partial differential equations (especially elliptic) see [195] and
in the study of control systems [157]. In this spirit, Exercises 3.5.17, 3.5.18 and
Exercise 3.5.19 make a brief excursion into differential inclusions and convex
Lyapunov functions.
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[425] L. Veselý and L. Zajíček. On composition of d.c. functions and mappings.
arXiv:0706.0624, 2007.
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