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1. Implicit Functions Then and Now

When I was first introduced to inverse and implicit functions as an

undergraduate in the late sixties, students were drilled in the need to

have functions as a prerequisite to doing analysis. Multivalued rela-

tions were to be avoided as much as possible. Indeed, Claude Berge’s

influential book [2] doing elementary point-set topology with multi-

functions first appeared in English — finely translated by my father’s

St Andrew’s topologist colleague — in 1963 and was largely ignored.

It is still in print despite Frank Bonsall’s review [4]:

It is difficult to detect a consistent purpose behind the writ-

ing of this book, or a substantial class of readers for whom

it is intended. The first half of the book is in some respects

an excellent introduction to general topology, and I partic-

ularly like its thoroughness over elementary matters and its

unusually explicit use of quantifiers. On the other hand,

its utility for the beginner is surely greatly reduced by the

author’s insistence on allowing functions to be many-valued.
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2 IMPLICIT FUNCTIONS AND SOLUTION MAPPINGS

While this attitude has not entirely disappeared, a modern under-

graduate text Real Analysis with Real Applications [8] includes Haus-

dorff metric, epigraph and subdifferential in its index.

In advanced calculus the need to justify the existence of a suitable

implicit function was usually dismissed with an argument about “hav-

ing n equations in n unknowns”1 but in the differential equation or

introductory functional analysis courses the matter was treated more

seriously and made the role of implicit function theorems crucial.

A representative inverse function theorem of the period is given on

page 10 of the book under review along with two traditional proofs:

Theorem 1 (Inverse function theorem). Suppose that a function f

maps a Euclidean space to itself and is continuously differentiable in a

neighbourhood of a point x. If ∇f(x) is non-singular then f−1 admits

a single valued localization s in a neighbourhood of y = f(x). Moreover

s is continuously differentiable in some neighbourhood of y and

∇s(y) = ∇f(s(y))−1.

The first proof, based on a modified Newton’s method, originates

with Goursat in 1903 and the second relies on Banach’s 1922 contrac-

tion mapping principle. Many of the requisite ideas had originated in

order to prove theorems like the following, again due to Goursat in his

influential 1903 text:

1This was famously the case in mathematical economics before the celebrated
Arrow-Debreu theorem [1].
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Theorem 2 (Initial value problem). Suppose F is continuous along

with its first partial derivatives on some domain D. Consider an ordi-

nary differential equation

y(n) = F (x, y, y
′
, . . . , y(n))(1.1)

along with the initial conditions

f(x0) = y0, f
′
(x0) = y

′

0, . . . , f
(n)(x0) = y

(n)
0 .(1.2)

Then (1.1) admits locally unique solutions satisfying (1.2) for each

vector
(
y0, y

′
0, . . . , y

(n)
0

)
in D.

Theorem 3 (Banach closed graph and open mapping theorem). We

have both:

(1) A linear mapping T between Banach spaces with a (norm) closed

graph is continuous.

(2) A surjective linear mapping T with a closed graph is an open

mapping (i.e., 0 ∈ int T (B) where B is the unit ball).

Typically one would be deduced and the other extracted as a con-

sequence of a quotient argument so that both T and T−1 were bona

fide functions. This both added spurious technical conditions, so as

to assure that the quotient was a Banach space, and hid the complete

symmetry of a modern treatment as done as it is for multifunctions in

Chapter 5 of the book under review.
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Seemingly unrelated were estimates for the growth of solutions to

(linear) inequality systems — of the sort that the discovery of the

simplex method for linear programming made important.

Theorem 4 (Hoffmann error bounds, 1952). Consider the finite di-

mensional inequality system

S := S(b) = {x : Ax ≤ a,Bx = b}.(1.3)

If S 6= ∅ then for some constant K > 0 one has

d(x, S) ≤ K (‖(Ax− a)+‖+ ‖Bx− b‖) .(1.4)

Here dS(x) = d(x, S) := infx∈S ‖x − s‖ is the metric distance func-

tion of x from S, “≤” represents the coordinate ordering, “+” the

coordinate-wise positive part, while if desired all norms in X are Eu-

clidean. A fine modern treatment of such estimates is in given [12]. By

the late 1970’s, led by Stephen Robinson [13] researchers had started

to connect these various topics coherently.

Likewise, the emergence of convex analysis, and soon thereafter of

modern nonsmooth analysis, made inescapable the need to admit mul-

tivalued “derivatives” or subdifferentials [14, 15, 6, 5] such as the convex

subdifferential

∂f(x) = {y ∈ X∗ : f(x) + 〈y, x− x〉 ≤ f(x),∀x ∈ X}.(1.5)

Forty years on, the utility of multifunctions is much better recognized

and there are many fine expositions of their power and ubiquity. This
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has lead to a much better unified treatment of stability theorems, of

inversion theorems, of measurable and topological selection theorems,

and much more. I refer to [15] for a magisterial accounting in finite

dimensions by Terry Rockafellar and Roger Wets [15], and to two recent

books I have coauthored for more details in infinite dimensions [6, 5].

A simple informative illustration is that the square-root mapping

reiθ 7→ {−
√
reiθ/2,

√
reiθ/2}

in the plane is nonexpansive in the Hausdorff metric but has no single-

valued continuous selection, as observed by Nadler who first extended

the Banach contraction principle to multifunctions in 1969 [11].

The book under review, Implicit Functions and Solution Mappings,

which I will refer to as (“the book”) is the first, and a very welcome,

comprehensive modern treatment of implicit functions. Most satisfac-

torily as the approach has broadened, the results have both become

easier and more generally applicable.

2. Inside this Book

The authors are distinguished members of the mathematical research

community. Terry Rockafellar, alone and with others, has been a

driving force in modern optimization and cognate areas since the ap-

pearance of his definitive Convex Analysis [14] forty years ago. Asen

Dontchev has been an important contributor to the study of perturbed



6 IMPLICIT FUNCTIONS AND SOLUTION MAPPINGS

optimization and control problems and is also a skillful numerical an-

alyst. Their overlapping but distinct skills are well displayed in the

book.

The book commences with a helpful context-setting preface followed

by six Chapters which I shall briefly discuss individually. Each Chapter

starts with a useful preamble and concludes with a careful and instruc-

tive Commentary ; while a good set of References, a Notation guide and

a somewhat brief Index complete this valuable study.

2.1. Ch. 1. Functions Defined Implicitly by Equations. The

authors begin by tracing the history of implicit function theorems from

Dini in the late 19th century on. I wish all authors would so situate

their work. I often encounter technically-expert post doctoral fellows

who have no idea why they are studying the generalizations they care

deeply about.

Dontchev and Rockafellar then introduce the key ideas of modern

Lipschitz analysis such as calmness and so are ready for the main event:

2.2. Ch. 2. Implicit Function Theorems for Variational Prob-

lems. With appropriate recognition of Robinson’s pioneering work [13]

we are now introduced to parametric generalized equations :

0 ∈ f(p, x) + F (x),(2.6)

and given the analytic tools necessary for their study. Here the vari-

ables x, p lie in different Euclidean spaces, and f is a single valued func-

tion, while F has sets for images and so can model tangency properties
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or capture inequality systems. A good example of such a multifunction

is to consider F = S of equation (1.3).

Robinson’s implicit function theorem for the case of a normal cone

F (x) := NC(x) (as defined below (2.10)) is given, after which many

nice extensions and applications to optimization are explored. These

include variational inequality theory and more. Through out, smooth-

ness of the inverse is relaxed to Lipschitz continuity and explicit bounds

are given.

2.3. Ch. 3. Regularity Properties of Set-Valued Solution

Mappings. This chapter then turns to the various stability proper-

ties of the solution set as a function of the parameter p. To do this

requires the introduction of various fundamental set convergence and

Lipschitz continuity concepts.

A key notion is that of metric regularity at x for y ∈ F (x) which

requires

d(x, F−1(y)) ≤ κ d(y, F (x))(2.7)

for some κ > 0 and for x, y close to (x, y).

This is a term I apparently coined in the mid-eighties (e.g., [9, p.

195], [10]) and holds precisely when the inverse mapping is appropri-

ately continuous. Thus, in the perspective of the current book, metric

regularity is an openness condition. Note that (2.7) is qualitatively

similar to (1.4). Once (2.7) is known for a generalized equation of in-

terest, much powerful analysis and numerical analysis can be performed

as we then know that the distance to the feasible set (the LHS) is of
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no greater order that the error in the data (the RHS). This in essence

yields an inverse function.

Of course to do this we must have effective — ideally quantitative —

conditions that ensure metric regularity or one of its weaker or stronger

variants. This is the goal of the next two chapters.

2.4. Ch. 4. Regularity Properties Through Generalized Deriva-

tives. In Theorem 1 the sufficient condition for invertibility is the sur-

jectivity of the derivative. So it will come as no surprise that one must

first introduce appropriate generalized derivatives of multifunctions.

This is a much studied topic and there is no magic bullet.

That said, there is an elegant theory of graphical differentiation.

Once developed, the authors are able to use it to characterize regular-

ity in terms of the local boundedness of the multifunctional inverse of

the derivate. This leads to very complete and attractive results in Eu-

clidean space. Appropriate notice is made of other developments due

to Clarke [7] (generalized Jacobians) and Mordukhovich [10] (coderiva-

tives) that do not fit entirely into the present development.

2.5. Ch. 5. Regularity in Infinite Dimensions. The chapter

starts with a recapture of the open mapping theorem and moves on

to sublinear multifunctions — those whose graphs are closed and con-

vex cones. For these and various strictly differentiable generalizations

a wonderfully complete and useful extension of the classical results is

possible. These include very general versions of the Kuhn-Tucker the-

orem, see (2.11).
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In stark contrast to the finite dimensional setting, it is impossible to

get such precise and exact regularity measures without some restriction.

The unit ball is no longer norm-compact and so much of the familiar

mode of limiting argument is unavailable; and Baire category and weak

compactness arguments can only partially remedy the situation. That

said, the authors show that regularity ideas can be profitably extended

even to complete metric spaces.

Let us illustrate one of the simplest but still puissant instances of

metric regularity:

Example 1 (Metric regularity for two convex sets). Suppose C ⊂

H1, D ⊂ H2 are closed and convex subsets with x0 ∈ A(C) ∩ D 6= ∅,

where A : H1 → H2 is a bounded linear mapping between Hilbert spaces

H1, H2 with adjoint A∗. We consider the multifunction

Ω(x) =:


Ax−D x ∈ C

∅ x 6∈ C.

(2.8)

Then Ω(H1) = A(C)−D and we discover that the openness/regularity

condition: 0 ∈ int Ω(H1) guarantees metric regularity and so (2.7)

allows us to write

dC∩A−1D(x) ≤ κ {(dC(x)) + dD(Ax)}(2.9)

for x near x and some κ > 0. In particular this holds if the classical

Slater condition [14] A(C) ∩ int D 6= ∅ holds.

If we view Ω as a solution mapping then the perturbed solution set

is Ω−1(y) = C ∩ A−1 (y +D) and Ω−1(0) = C ∩ A−1D. We have thus
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written a powerful error bound as an open mapping theorem for a

natural multifunction. Given (2.9) with A = I we can now establish

the geometric convergence of the familiar Von Neumann alternating

projection algorithm to find a point in C ∩D and much more [3]. �

Example 2 (Normal cones for convex systems). Moreover, taking sub-

gradients in (2.9) leads to

∂dC∩A−1D(x) ⊂ κ ∂dC(x) + κA∗∂dD(Ax),(2.10)

and so to

NC∩A−1D(x) ⊂ NC(x) + A∗ND(Ax),(2.11)

since the normal cone to C at x, NC(x), can be defined to be the cone

generated by ∂dC(x). Applied to linearizations of a smooth optimiza-

tion problem — so that A becomes ∇g(x) for some g — this is precisely

the sort of result that in classical Kuhn-Tucker theory is based on the

inverse function theorem.

It is worth considering A = I, and C and D to be two tangent discs

in the plane at the point of tangency, where metric regularity fails and

(2.10), (2.11) are not valid. �

So we have exposed the underlying geometry in a most effective and

natural way.

2.6. Ch. 6. Applications in Numerical Variational Analysis. In

the final chapter, the authors give additional tastes of the power of the

tools they have presented. They start by describing beautiful modern
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understanding of condition numbers for inequality and more general

systems. They then turn to iterative — Newton type — processes for

the solution of generalized equations, and finish with an application to

numerical optimal control.

3. Final Comments

While reviewing this book, I asked a recent PhD well versed with

the material for a comment. He wrote

That’s a hard question for me: I’ve seen this book growing

from the very beginning, so it’s hard to be objective. But

I’ll do my best.

I think it’s important the way they extend the ideas from

the implicit function theorem by relaxing some assumptions,

like differentiability. They carry the ideas from classical

analysis into modern variational analysis, providing thus a

motivation for introducing the regularity properties in Chap-

ter 3 (and later Chapter 5). Overall, I think that’s the main

difference with respect to other books.

In my (biased) opinion, it’s the best reference I’ve seen to

learn about metric regularity for someone who doesn’t know

anything about it, like I was. They do not forget to explain

the graphical differentiation viewpoint of metric regularity

in Chapter 4, and they provide some applications of the

results in the book to numerical analysis in the last chapter.

I also like the way it’s organized, with clear and detailed

proofs, providing some examples that help to understand

the notions and results.
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Like my younger colleague, I unreservedly recommend this book to

all practitioners and graduate students interested in modern optimiza-

tion theory or control theory or to those just engaged by beautiful

analysis cleanly described.
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