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Abstract

In this paper, we establish sublinear and linear convergence of fixed point iterations generated
by averaged operators in a Hilbert space. Our results are achieved under a bounded Hölder
regularity assumption which generalizes the well-known notion of bounded linear regularity.
As an application of our results, we provide a convergence rate analysis for Krasnoselskii–
Mann iterations, the cyclic projection algorithm, and the Douglas–Rachford feasibility algorithm
along with some variants. In the important case in which the underlying sets are convex sets
described by convex polynomials in a finite dimensional space, we show that the Hölder regularity
properties are automatically satisfied, from which sublinear convergence follows.
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1 Introduction

Consider the problem of finding a point in the intersection of a finite family of closed convex subsets
of a Hilbert space. This problem, often referred to as the convex feasibility problem, frequently arises
throughout diverse areas of mathematics, science and engineering. For details, we refer the reader
to the surveys [5, 20], the monographs [6, 23], any of [1, 13,19], and the references therein.

One approach to solving convex feasibility problems involves designing a nonexpansive operator
whose fixed point set can be used to easily produce a point in the target intersection (in the simplest
case, the fixed point set coincides with the target intersection). The operator’s fixed point iteration
can then be used as the basis of an iterative algorithm which, in the limit, yields a desired solution.
An important class of such methods is the so-called projection and reflection methods which employ
various combinations of projection and reflection operations with respect underlying constraint sets.
Notable methods of this kind include the alternating projection algorithm [4, 15, 24], the Douglas–
Rachford (DR) algorithm [33, 34, 39], along with many extensions and variants [8, 17, 18, 43]. Even
in settings without convexity [1–3,14,37,38], such methods remain a popular choice due largely to
their simplicity, ease-of-implementation and relatively – often surprisingly – good performance.
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The origins of the Douglas–Rachford (DR) algorithm can be traced to [33] where it was used
to solve problems arising in nonlinear heat flow. In its full generality, the method finds zeros of the
sum of two maximal monotone operators. Weak convergence of the scheme was originally proven
by Lions and Mercier [39], and the result was recently strengthened by Svaiter [41]. Specialized
to feasibility problems, Svaiter’s result implies that the iterates generated by the DR algorithm
are always weakly convergent, and that the shadow sequence converges weakly to a point in the
intersection of the two closed convex sets. The scheme has also been examined in [34] where
its relationship with another popular method, the proximal point algorithm, was revealed and
explained.

Motivated by the computational observation that the Douglas–Rachford algorithm sometimes
outperforms other projection methods, in the convex case many researchers have studied the actual
convergence rate of the algorithm. By convergence rate, we mean how fast the sequences generated
by the algorithm converges to their limit points. For the Douglas–Rachford algorithm, the first such
result, which appeared in [36] and was later extended by [9], showed that the algorithm converges
linearly whenever the two constraint sets are closed subspaces with a closed sum, and, further, that
the rate is governed exactly by the cosine of the Friedrichs angle between the subspaces. When
the sum of the two subspaces is not closed, convergence of the method – while still assured – need
not be linear [9, Sec. 6]. For most projection methods, it is typical that there exists instances
in which the rate of convergence is arbitrarily slow and not even sublinear or arithmetic [11, 21].
Most recently, a preprint of Davis and Yin shows that indeed the Douglas–Rachford method may
converge arbitrarily slowly in infinite dimensions [22, Th. 9].

In potentially nonconvex settings, a number of recent works [35, 36, 40] have established local
linear convergence rates for the DR algorithm using commonly used constraint qualifications. When
specialized to the convex case, these results state that the DR algorithm exhibits locally linear
convergence for convex feasibility problems in a finite dimensional space whenever the relative
interiors of the two convex sets have a non-empty intersection. On the other hand, when such a
regularity condition is not satisfied, the DR algorithm can fail to exhibit linear convergence, even
in simple two dimensional cases as observed by [10, Ex. 5.4(iii)] (see Section 6 for further examples
and discussion). This therefore calls for further research aimed at answering the question: Can the
global convergence rate of the DR algorithm and its variants be established or estimated for some
reasonable class of convex sets without the above mentioned regularity condition?

The goal of this paper is to provide some partial answers to the above question, as well as
simple tools for establishing sublinear and linear convergence of the Douglas–Rachford algorithm
and variants. Our analysis is performed within the more general setting of fixed point iterations
described by averaged nonexpansive operators. We pay special attention to the case in which
the underlying sets are convex basic semi-algebraic sets in a finite dimensional space. Such sets
comprise a broad sub-class of convex sets that we shall show satisfy Hölder regularity properties
without requiring any further assumptions; they capture all polyhedra and all convex sets described
by convex quadratic functions. Furthermore, convex basic semi-algebraic structure can often be
relatively easily identified.

1.1 Content and structure of the paper

The detailed contributions of this paper are summarized as follows:

(I) We first examine an abstract algorithm which we refer to as the quasi-cyclic algorithm. This
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algorithm covers many iterative fixed-point methods including various Krasnoselskii–Mann
iterations, the cyclic projection algorithm, and Douglas–Rachford feasibility algorithms. We
show that the norm of the successive change in iterates of the quasi-cyclic algorithm converges
with the order at least o(1/

√
t) (Proposition 3.2). This is a quantitative form of asymptotic

regularity [5]. In the presence of so-called bounded Hölder regular properties, sublinear and
linear convergence of the quasi-cyclic algorithm is then established (Theorem 3.6).

(II) We next specialise our results regarding the quasi-cyclic algorithm, in particular, to the
Douglas–Rachford algorithm and its variants (Section 4). We show that the results apply,
for instance, to the important case of feasibility problems for which the underlying sets are
convex basis semi-algebraic in a finite dimensional space.

(III) We also examine a damped variant of the Douglas–Rachford algorithm. In the case where
again the underlying sets are convex basic semi-algebraic sets in a finite dimensional space,
we obtain a more explicit estimate of the sublinear convergence rate in terms of the dimension
of the underlying space and the maximum degree of the polynomials involved (Theorem 5.5).

The remainder of the paper is organized as follows: in Section 2 we recall definitions and
key facts used in our analysis. In Section 3 we investigate the rate of convergence of the quasi-
cyclic algorithm – which encompasses an averaged fixed point iteration – in the presence of Hölder
regularity. In Section 4 we specialize these results to the classical Douglas–Rachford algorithm and
its cyclic variants. In Section 5 we consider a damped version of the Douglas–Rachford algorithm.
In Section 6 we establish explicit convergence rates for two illustrative problems. We conclude the
paper in Section 7 and mention some possible future research directions.

2 Preliminaries

Throughout this paper our setting is a (real) Hilbert space H with inner product 〈·, ·〉. The induced
norm is defined by ‖x‖ :=

√
〈x, x〉 for all x ∈ H. Given a closed convex subset A of H, the (nearest

point) projection operator is the operator PA : H → A given by

PAx = arg min
a∈A

‖x− a‖.

Let us now recall various definitions and facts used throughout this work, beginning with the notion
of Fejér monotonicity.

Definition 2.1 (Fejér monotonicity). Let A be a non-empty convex subset of a Hilbert space H.
A sequence (xk)k∈N in H is Fejér monotone with respect to A if, for all a ∈ A, we have

‖xk+1 − a‖ ≤ ‖xk − a‖ ∀k ∈ N.

Fact 2.2 (Shadows of Fejér monotone sequences [5, Th. 5.7(iv)]). Let A be a non-empty closed
convex subset of a Hilbert space H and let (xk)k∈N be Fejér monotone with respect to A. Then
PA(xk)→ x, in norm, for some x ∈ A.

Fact 2.3 (Fejér monotone convergence [4, Th. 3.3(iv)]). Let A be a non-empty closed convex subset
of a Hilbert space H and let (xk)k∈N be Fejér monotone with respect to A with xk → x ∈ A, in
norm. Then ‖xk − x‖ ≤ 2dist(xk, A).
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We now turn our attention to a Hölder regularity property for usually finite collections of sets.

Definition 2.4 (Bounded Hölder regular intersection). Let {Cj}j∈J be a collection of closed convex
subsets in a Hilbert space H with non-empty intersection. The collection {Cj}j∈J has a bounded
Hölder regular intersection if, for each bounded set K, there exists an exponent γ ∈ (0, 1] and a
scalar β > 0 such that

dist (x,∩j∈JCj) ≤ β
(

max
j∈J

d(x,Cj)

)γ
∀x ∈ K.

Furthermore, if the exponent γ does not depend on the set K, we say the collection {Cj}j∈J is
bounded Hölder regular with exponent γ (i.e., we explicitly specify the exponent).

It is clear, from Definition 2.4, that any collection containing only a single set trivially has
a bounded Hölder regular intersection with exponent γ = 1. More generally, Definition 2.4 with
γ = 1 is well-studied in the literature where it appears, amongst other names, as bounded linear
regularity [5]. For a recent study, the reader is referred to [29, Remark 7]. The local counterpart
to Definition 2.4 has been characterized in [29, Th. 1] under the name of metric [γ]-subregularity.

We next turn our attention to a nonexpansivity notion for operators.

Definition 2.5. An operator T : H → H is:

(a) non-expansive if for all x, y ∈ H,

‖T (x)− T (y)‖ ≤ ‖x− y‖;

(b) firmly non-expansive if for all x, y ∈ H,

‖T (x)− T (y)‖2 + ‖(I − T )(x)− (I − T )(y)‖2 ≤ ‖x− y‖2;

(c) α-averaged for some α ∈ (0, 1), if there exists a non-expansive mapping R : H → H such that

T = (1− α)I + αR.

The class of firmly non-expansive mappings comprises precisely the 1/2-averaged mappings, and
any α-averaged operator is non-expansive [6, Ch. 4]. The following fact provides a characterization
of averaged maps that is useful for our purposes.

Fact 2.6 (Characterization of averaged maps [6, Prop. 4.25(iii)]). Let T : H → H be an α-averaged
operator on a Hilbert space with α ∈ (0, 1). Then, for all x, y ∈ H,

‖T (x)− T (y)‖2 +
1− α
α
‖(I − T )(x)− (I − T )(y)‖2 ≤ ‖x− y‖2.

Denote the set of fixed points of an operator T : H → H by

FixT = {x ∈ H | T (x) = x}.

The following definition is of a Hölder regularity property for operators.
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Definition 2.7 (Bounded Hölder regular operators). Let D be a subset of a Hilbert space H. An
operator T : H → H is bounded Hölder regular if, for each bounded set K ⊆ H, there exists an
exponent γ ∈ (0, 1] and a scalar µ > 0 such that

d(x,FixT ) ≤ µ‖x− T (x)‖γ ∀x ∈ K.

Furthermore, if the exponent γ does not depend on the set K, we say that T is bounded Hölder
regular with exponent γ (i.e., we explicitly specify the exponent).

Note that, in the case when γ = 1, Definition 2.7 collapses to the well studied concept of bounded
linear regularity [5] and has been used in [8] to analyze linear convergence of algorithms involving
non-expansive mappings. Moreover, it is also worth noting that if an operator T is bounded
Hölder regular with exponent γ ∈ (0, 1] then the mapping x 7→ x− T (x) is bounded Hölder metric
subregular with exponent γ. Hölder metric subregularity – which is a natural extension of metric
subregularity – and Hölder type error bounds, have recently been studied in [28,30–32].

Finally, we recall the definitions of semi-algebraic functions and semi-algebraic sets

Definition 2.8 (Semi-algebraic sets and functions [12]). A set D ⊆ Rn is semi-algebraic if

D :=
s⋂
j=1

l⋃
i=1

{x ∈ Rn | fij(x) = 0, hij(x) < 0}

for some integers l, s and some polynomial functions fij , hij on Rn (1 ≤ i ≤ l, 1 ≤ j ≤ s). A
mapping F : Rn → Rp is said to be semi-algebraic if its graph, gphF := {(x, F (x)) | x ∈ Rn}, is a
semi-algebraic set in Rn × Rp.

The next fact summarises some fundamental properties of semi-algebraic sets and functions.

Fact 2.9 (Properties of semi-algebraic sets/functions). The following statements hold.

(P1) Any polynomial is a semi-algebraic function.

(P2) Let D be a semi-algebraic set. Then dist(·, D) is a semi-algebraic function.

(P3) If f, g are semi-algebraic functions on Rn and λ ∈ R then f + g, λf , max{f, g}, fg are
semi-algebraic.

(P4) If fi are semi-algebraic functions, i = 1, . . . ,m, and λ ∈ R, then the sets {x | fi(x) = λ, i =
1, . . . ,m}, {x | fi(x) ≤ λ, i = 1, . . . ,m} are semi-algebraic sets.

(P5) If F : Rn → Rp and G : Rp → Rq are semi-algebraic mappings, then their composition G ◦ F
is also a semi-algebraic mapping.

(P6) ( Lojasiewicz’s inequality) If φ, ψ are two continuous semi-algebraic functions on a compact
semi-algebraic set K ⊆ Rn such that ∅ 6= φ−1(0) ⊆ ψ−1(0) then there exist constants c > 0
and τ ∈ (0, 1] such that

|ψ(x)| ≤ c|φ(x)|τ ∀x ∈ K.

Proof. (P1) and (P4) follow directly from the definitions. See [12, Prop. 2.2.8] for (P2), [12,
Prop. 2.2.6] for (P3) and (P5), and [12, Cor. 2.6.7] for (P6).
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Definition 2.10 (Basic semi-algebraic convex sets in Rn). A set C ⊆ Rn is a basic semi-algebraic
convex set if there exist γ ∈ N and convex polynomial functions, gj , j = 1, . . . , γ such that C =
{x ∈ Rn | gj(x) ≤ 0, j = 1, · · · , γ}.

Any basic semi-algebraic convex set is clearly convex and semi-algebraic. On the other hand,
there exist sets which are both convex and semi-algebraic but fail to be basic semi-algebraic convex
set, see [15].

It transpires out that any finite collection of basic semi-algebraic convex sets has an intersection
which is boundedly Hölder regular (without requiring further regularity assumptions). In the
following lemma, B(n) denotes the central binomial coefficient with respect to n given by

(
n

[n/2]

)
where [ · ] denotes the integer part of a real number.

Lemma 2.11 (Hölder regularity of basic semi-algebraic convex sets in Rn [15]). Let Ci be basic
convex semi-algebraic sets in Rn given by Ci = {x ∈ Rn | gij(x) ≤ 0, j = 1, . . . ,mi}, i = 1, . . . ,m
where gij are convex polynomials on Rn with degree at most d. Let θ > 0 and K ⊆ Rn be a compact
set. Then there exists c > 0 such that

distθ(x,C) ≤ c

(
m∑
i=1

distθ(x,Ci)

)γ
∀x ∈ K,

where γ =
[
min

{
(2d−1)n+1

2 , B(n− 1)dn
}]−1

.

We also recall the following useful recurrence relationship established in [15].

Lemma 2.12 (Recurrence relationship [15]). Let p > 0, and let {δt}t∈N and {βt}t∈N be two se-
quences of nonnegative numbers such that

βt+1 ≤ βt(1− δtβpt ) ∀t ∈ N.

Then

βt ≤
(
β−p0 + p

t−1∑
i=0

δi

)− 1
p

∀t ∈ N.

[We use the convention that 1
0 = +∞.]

3 The rate of convergence of the quasi-cyclic algorithm

In this section we investigate the rate of convergence of an abstract algorithm we call quasi-cyclic.
To define the algorithm, let J be a finite set, and let {Tj}j∈J be a finite family of operators on a
Hilbert space H. Given an initial point x0 ∈ H, the quasi-cyclic algorithm generates a sequence
according to

xt+1 =
∑
j∈J

wj,tTj(x
t) ∀t ∈ N, (1)

where wj,t ≥ 0 for all j ∈ J , and
∑

j∈J wj,t = 1.
The quasi-cyclic algorithm was proposed in [8] where linear convergence of the algorithm was

established under suitable regularity conditions. We note that, as we will see later, the quasi-cyclic
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algorithm provides a broad framework which covers many important existing algorithms such as
Douglas-Rachford algorithms, cyclic projection algorithm and the Krasnoselskii–Mann method.

We first examine the complexity of the successive change of the sequence generated by the
quasi-cyclic algorithm. To establish this, we prove a more general result which shows that the
the successive change of a sequence generated by iterating averaged operators is at worst of order
o(1/
√
t).

Proposition 3.1 (Complexity of the successive change). Let {T t}t∈N be a family of α-averaged
operators on a Hilbert space H with ∩t∈NFixT t 6= ∅ and α ∈ (0, 1). Let x0 ∈ H and set xt+1 = T tx

t

for all t ∈ N. Then there exists a sequence εt ∈ [0, 1] with εt → 0 such that

‖xt+1 − xt‖ ≤ εt√
t+ 1

√
α

1− α
dist(x0,∩t∈NFixT t) ∀ t ∈ N.

Proof. First of all, if x0 ∈ ∩t∈NFixT t, then xt = x0 for all t ∈ N and so the conclusion follows
trivially. Thus, we can assume that x0 /∈ ∩t∈NFixT t. Fix x∗ ∈ ∩t∈NFixT t. For all t ∈ N, since T t
is α-averaged, Fact 2.6 with x = xt and y = x∗ gives us that

‖xt+1 − x∗‖2 +
1− α
α
‖xt − xt+1‖2 ≤ ‖xt − x∗‖2.

This implies that, for all t ∈ N, ‖xt+1 − x∗‖ ≤ ‖xt − x∗‖ ≤ . . . ≤ ‖x0 − x∗‖ and

1− α
α

∞∑
t=0

‖xt − xt+1‖2 ≤ ‖x0 − x∗‖2.

Since ‖xt − x∗‖2 is nonincreasing, we have that

‖xn+1 − xn‖2 ≤ 1

n+ 1

n∑
t=0

‖xt − xt+1‖2 ≤ 1

n+ 1

(
α

1− α

)
‖x0 − x∗‖2.

Thus, by replacing n with t and taking infimum over all x∗ ∈ ∩t∈NFixT t, we see that

‖xt+1 − xt‖ ≤ 1√
t+ 1

√
α

1− α
dist(x0,∩t∈NFixT t) (2)

Now, as
∑+∞

t=0 ‖xt+1 − xt‖2 < +∞, observe that
∑2t−1

N=t ‖xN+1 − xN‖2 → 0 as t → ∞. Note
that, for each t ∈ N

‖xt+2 − xt+1‖ = ‖T txt+1 − T txt‖ ≤ ‖xt+1 − xt‖,
where the last inequality follows from the fact that T t is an α-averaged operator (and in particular,
is nonexpansive). Then, we have

t ‖x2t − x2t−1‖2 ≤ ‖xt+1 − xt‖2 + . . .+ ‖x2t − x2t−1‖2 =

2t−1∑
N=t

‖xN+1 − xN‖2 → 0 as t→∞.

This implies that
√
t ‖xt − xt−1‖ → 0 as t→∞. Let

εt :=
‖xt+1 − xt‖

1√
t+1

√
α

1−αdist(x0,∩t∈NFixT t)
.

Then, εt → 0 as t→∞. Moreover, from (2), we see that εt ∈ [0, 1]. So, the conclusion follows.
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Corollary 3.2 (Complexity of quasi-cyclic algorithm). Let J be a finite set and let {Tj}j∈J be a
finite family of α-averaged operators on a Hilbert space H with ∩j∈JFixTj 6= ∅ and α ∈ (0, 1). For
each t ∈ N, let wj,t ∈ R, j ∈ J , be such that wj,t ≥ 0 and

∑
j∈J wj,t = 1. Let x0 ∈ H and consider

the quasi-cyclic algorithm generated by (1). Then there exists a sequence εt ∈ (0, 1] with εt → 0
such that

‖xt+1 − xt‖ ≤ εt√
t+ 1

√
α

1− α
dist(x0,∩j∈JFixTj) ∀ t ∈ N.

Proof. Define T t =
∑

j∈J wj,tTj . As each Tj is an α-averaged operator, wj,t ≥ 0 and
∑

j∈J wj,t = 1,

it can be verified that T t is also an α-averaged operator. Note that ∩j∈JFixTj ⊆ ∩t∈NT t. Thus
the conclusion follows immediately by applying Proposition 3.1.

Remark 3.3 (Comments on the convergence order of the successive change). Corollary 3.2 shows
that the norm square of the successive change, ‖xt+1−xt‖2, generated by the quasi-cyclic algorithm
is at worst of the order o(1/t), whenever the operators Tj are averaged operators. As we shall see,
this proposition applies, in particular, to the classical Douglas–Rachford algorithm where an O(1/t)
complexity of ‖xt+1−xt‖2 has been proved recently for the DR algorithm (see [26,27]). Herein, we
obtain a slightly improved complexity result for a more general algorithm framework. Moreover, we
note that, very recently, an o(1/t) complexity of ‖xt+1 − xt‖2 has also been established in [21] for
the forward-Douglas–Rachford splitting method under an additional Lipschitz gradient assumption.
We note that, as pointed out in [21, Section 1.4], this method is a special case of the Krasnoselskii–
Mann iterative method, and so, is a particular case of the quasi-cyclic algorithm.

We also note that the norm square of the successive change, ‖xt+1 − xt‖2, provides a straight-
forward numerical necessary condition for convergence of xt to a point in ∩j∈JFixTj or not. Of
course ‖xt+1 − xt‖ → 0 does not necessarily guarantee that the sequence {xt} converges1, and so,
the convergence order of the successive change is not enough to establish convergence of {xt}. 3

To establish the convergence rate of the quasi-cyclic algorithm, we require the following two
lemmas.

Lemma 3.4. Let J be a finite set and let {Tj}j∈J be a finite family of α-averaged operators on a
Hilbert space H with ∩j∈JFixTj 6= ∅ and α ∈ (0, 1). For each t ∈ N, let wj,t ∈ R, j ∈ J , be such
that wj,t ≥ 0 and

∑
j∈J wj,t = 1. Let x0 ∈ H and consider the quasi-cyclic algorithm generated

by (1). Suppose that

σ := inf
t∈N

inf
j∈J+(t)

{wj,t} > 0 where J+(t) = {j ∈ J : wj,t > 0} for each t ∈ N.

Then, for each j ∈ J , we have that ‖xt − Tj(xt)‖ → 0 as t→∞.

Proof. Let y ∈ ∩j∈JFixTj . Then, for all t ∈ N, convexity of ‖ · ‖2 yields

‖xt+1 − y‖2 = ‖
∑
j∈J

wj,tTj(x
t)− y‖2 ≤

∑
j∈J

wj,t‖Tj(xt)− y‖2 ≤ ‖xt − y‖2, (3)

where the last inequality follows by the fact that each Tj is α-averaged (and so, is nonexpansive).
Thus (‖xt − y‖2)t∈N is a decreasing and hence convergence sequence. Furthermore,

lim
t→∞

∑
j∈J

wj,t‖Tj(xt)− y‖2 = lim
t→∞
‖xt − y‖2. (4)

1A simple example is 0, 1
2
, 1, 1

3
, 2
3
, 1, . . . , 1

t
, 2
t
, . . . , t−1

t
, 1, . . .
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Since Tj is α-averaged for each j ∈ J , Fact 2.6 implies, for all t ∈ N,

‖Tj(xt)− y‖2 +
1− α
α
‖xt − Tj(xt)‖2 ≤ ‖xt − y‖2.

from which, for sufficiently large t, we deduce

1− α
α

σ‖xt − Tj(xt)‖2 ≤
1− α
α

∑
j∈J

wj,t‖xt − Tj(xt)‖2 ≤ ‖xt − y‖2 −
∑
j∈J

wj,t‖Tj(xt)− y‖2.

Together with (4), this implies ‖xt − Tj(xt)‖ → 0 for all j ∈ J .

The following proposition gives a convergence rate for Fejér monotone sequences which satisfy
an additional property, which property we will later show is satisfied in the presence of Hölder
regularity.

Proposition 3.5. Let F be a non-empty closed convex set in a Hilbert space H. Suppose the
sequence {xt} is Fejér monotone with respect to F and satisfies

dist2(xt+1, F ) ≤ dist2(xt, F )− δ dist2θ(xt, F ), ∀ t ∈ N, (5)

for some δ > 0 and θ ≥ 1. Then xt → x̄ for some x̄ ∈ F . Moreover, there exist M > 0 and
r ∈ [0, 1) such that

‖xt − x̄‖ ≤

{
Mt
− 1

2(θ−1) θ > 1,

Mrt θ = 1.

Further, when θ = 1, δ necessarily lies in (0, 1].

Proof. Let βt = dist2(xt, F ) and p = θ − 1 ≥ 0. Then (5) becomes

βt+1 ≤ βt
(

1− δβpt
)

(6)

We now distinguish two cases based on the value of θ.
Case 1: Suppose θ ∈ (1,+∞). Then Lemma 2.12 implies

βt ≤
(
β−p0 + (θ − 1)δt

)− 1
θ−1

for all t ∈ N.

So, we see that, there exists M1 > 0 such that dist(xt, F ) =
√
βt ≤ M1t

− 1
2(θ−1) . In particular,

‖xt − PF (xt)‖ = dist(xt, F )→ 0. By Fact 2.2, PF (xt)→ x̄ for some x̄ ∈ F and hence xt → x̄ ∈ F .
This together with Fact 2.3 implies that

‖xt − x̄‖ ≤ 2dist(xt, F ) ≤ 2M1t
− 1

2(θ−1) .

Case 2: Suppose θ = 1. Then (6) simplifies to βt+1 ≤ (1 − δ)βt for all t ∈ N. Moreover, this
shows that δ ∈ (0, 1] and that

dist(xt, F ) =
√
βt ≤

√
β0

(√
1− δ

)t
.

Then, by the same argument as used in Case 1, for some x̄ ∈ F , we see that

‖xt − x̄‖ ≤ 2dist(xt, F ) ≤ 2
√
β0(
√

1− δ)t.

The conclusion follows on setting M = max{2M1, 2
√
β0} and r =

√
1− δ ∈ [0, 1).
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We are now in a position to state our first main convergence result, which we simultaneously
prove for both variants of the Hölder regularity assumption (with and without the Hölder exponents
being independent of the choice of bounded set).

Theorem 3.6 (Rate of convergence of the quasi-cyclic algorithm). Let J be a finite set and let
{Tj}j∈J be a finite family of α-averaged operators on a Hilbert space H with ∩j∈JFixTj 6= ∅ and
α ∈ (0, 1). For each t ∈ N, let wj,t ∈ R, j ∈ J , be such that wj,t ≥ 0 and

∑
j∈J wj,t = 1. Let x0 ∈ H

and consider the quasi-cyclic algorithm generated by (1). Suppose the following assumptions hold:

(a) For each j ∈ J , the operator Tj is bounded Hölder regular .
(b) {Fix Tj}j∈J has a boundedly Hölder regular intersection.
(c) σ := inf

t∈N
inf

j∈J+(t)
{wj,t} > 0 where J+(t) = {j ∈ J : wj,t > 0} for each t ∈ N.

Then there exists ρ > 0 such that xt → x̄ ∈ ∩j∈JFixTj 6= ∅ with sublinear rate O(t−ρ).
Furthermore, if we assume the following stronger assumptions:

(a′) For each j ∈ J , the operator Tj is bounded Hölder regular with exponent γ1,j ∈ (0, 1];
(b′) {Fix Tj}j∈J has a bounded Hölder regular intersection with exponent γ2 ∈ (0, 1].

Then there exist M > 0 and r ∈ [0, 1) such that

‖xt − x̄‖ ≤

{
Mt
− γ

2(1−γ) , γ ∈ (0, 1),

M rt, γ = 1,

where γ := γ1γ2 and γ1 := min{γ1,j | j ∈ J}.

Proof. Suppose first that the assumptions (a), (b) and (c) hold. Since Tj is α-averaged for each
j ∈ J , Fact 2.6 implies that, for all x, y ∈ H,

‖Tj(x)− Tj(y)‖2 +
1− α
α
‖(I − Tj)(x)− (I − Tj)(y)‖2 ≤ ‖x− y‖2.

Set F = ∩j∈JFixTj . Then, for all x ∈ H and for all y ∈ F ,

‖Tj(x)− y‖2 +
1− α
α
‖x− Tj(x)‖2 ≤ ‖x− y‖2.

Hence for all x ∈ H and for all y ∈ F ,

‖
∑
j∈J

wj,tTj(x)− y‖2 = ‖
∑
j∈J

wj,t
(
Tj(x)− y

)
‖2

≤
∑
j∈J

wj,t‖Tj(x)− y‖2

≤
∑
j∈J

wj,t
(
‖x− y‖2 − 1− α

α
‖x− Tj(x)‖2

)
= ‖x− y‖2 − 1− α

α

∑
j∈J

wj,t‖x− Tj(x)‖2

≤ ‖x− y‖2 − σ
(

1− α
α

)
‖x− Tj(x)‖2 ∀j ∈ J,

10



where the first inequality follows from convexity of ‖ · ‖2, and the final inequality follows from
Assumption (c). Setting x = xt yields, for all y ∈ F ,

‖xt+1 − y‖2 ≤ ‖xt − y‖2 − σ
(

1− α
α

)
‖xt − Tj(xt)‖2 ∀j ∈ J.

In particular, the sequence (xt)t∈N is bounded and Fejér monotone with respect to F . Further,
setting y = PF (xt) gives

dist2(xt+1, F ) ≤ ‖xt+1 − PF (xt)‖2 ≤ dist2(xt, F )− σ
(

1− α
α

)
‖xt − Tj(xt)‖2 ∀j ∈ J. (7)

Let K be a bounded set such that {xt | t ∈ N} ⊆ K. For each j ∈ J , since the operator Tj is
bounded Hölder regular, there exist exponents γ1,j > 0 and scalars µj > 0 such that

dist(x,FixTj) ≤ µj‖x− Tj(x)‖γ1,j ∀x ∈ K. (8)

Setting γ1 = min{γ1,j | j ∈ J} gives

‖x− Tj(x)‖γ1j ≤ ‖x− Tj(x)‖γ1 ∀x ∈ K ∩ {x | ‖x− Tj(x)‖ ≤ 1}.

By Lemma 3.4, there exists t0 ∈ N such that ‖xt − Tj(xt)‖ ≤ 1 for all t ≥ t0 and j ∈ J . Hence, for
all t ≥ t0, it follows from (7) and (8) that

σ

(
1− α
α

)
µ
− 2
γ1

j dist
2
γ1 (xt,FixTj) ≤ dist2(xt, F )− dist2(xt+1, F ) ∀j ∈ J.

Taking the maximum over all j ∈ J and letting µ = max{µj | j ∈ J}, we have

σ

(
1− α
α

)
µ
− 2
γ1 max

j∈J
dist

2
γ1 (xt,FixTj) ≤ dist2(xt, F )− dist2(xt+1, F ). (9)

Since {Fix Tj}j∈J has a bounded Hölder regular intersection, there exists β > 0 such that

1

β
dist2θ(xt, F ) ≤

(
max
j∈J

dist(xt,Fix Tj)

)2/γ1

= max
j∈J

dist2/γ1(xt,Fix Tj), (10)

where θ := 1/(γ1γ2) ≥ 1. Altogether, combining (9) and (10), we see that, for all t ≥ t0,

dist2(xt+1, F ) ≤ dist2(xt, F )− δ dist2θ(xt, F ),

where δ := σ(1−α
α )µ

− 2
γ1 β−1 > 0. Then, the first assertion follows from Proposition 3.5.

To see the second assertion, we suppose that the assumptions (a′), (b′) and (c) hold. Proceed
with the same proof as above, and note that the exponent γ1j and γ2 are now independent of the
choice of K, we see that the second assertion also follows.

Remark 3.7. Theorem 3.6 is a generalization of [8, Th. 6.1] which considered the case in which
the Hölder exponents are independent of the bounded set K and given by γ1j = γ2 = 1, j =
1, . . . ,m. 3
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We next provide three important specializations of Theorem 3.6. The first result is concerned
with a simple fixed point iteration, the second with a Kransnoselskii–Mann scheme, and the third
with the method of cyclic projections.

Corollary 3.8 (Averaged fixed point iterations with Hölder regularity). Let T be an α-averaged
operators on a Hilbert space H with FixT 6= ∅ and α ∈ (0, 1). Suppose T is bounded Hölder regular.
Let x0 ∈ H and set xt+1 = Txt. Then there exists ρ > 0 such that xt → x̄ ∈ FixT 6= ∅ with
sublinear rate O(t−ρ). Furthermore, if T is bounded Hölder regular with exponent γ ∈ (0, 1] then
there exist M > 0 and r ∈ [0, 1) such that

‖xt − x̄‖ ≤

{
Mt
− γ

2(1−γ) , γ ∈ (0, 1),

M rt, γ = 1.

Proof. The conclusion follows immediately from Theorem 3.6.

Corollary 3.9 (Krasnoselskii–Mann iterations with Hölder regularity). Let T be an α-averaged
operator on a Hilbert space H with FixT 6= ∅ and α ∈ (0, 1). Suppose T is bounded Hölder regular.
Let σ0 ∈ (0, 1) and let (λt)t∈N be a sequence of real numbers with σ0 := inf

t∈N
{λt(1− λt)} > 0. Given

an initial point x0 ∈ H, set
xt+1 = xt + λt(Tx

t − xt).

Then there exists ρ > 0 such that xt → x̄ ∈ FixT 6= ∅ with sublinear rate O(t−ρ). Furthermore,
if T is bounded Hölder regular with exponent γ ∈ (0, 1] then there exist M > 0 and r ∈ [0, 1) such
that

‖xt − x̄‖ ≤

{
Mt
− γ

2(1−γ) , γ ∈ (0, 1),

M rt, γ = 1.

Proof. First observe that the sequence (xt)t∈N is given by xt+1 = Ttx
t where Tt = (1− λt)I + λtT.

Here, 1− λt ≥ σ0 > 0 and λt ≥ σ0 > 0 for all t ∈ N by our assumption.
A straightforward manipulation shows that the identity map, I, is bounded Hölder regular with

exponent γ1,1 ≤ 1. Since Fix I = H, the collection {Fix I,FixT} has a bounded Hölder regular
intersection with exponent 1. The result now follows from Theorem 3.6.

The following result includes [15, Th. 4.4] and [5, Th. 3.12] as a special cases.

Corollary 3.10 (Cyclic projection algorithm with Hölder regularity). Let J = {1, 2, . . . ,m} and
let {Cj}j∈J a collection of closed convex subsets of a Hilbert space H with non-empty intersection.
Given x0 ∈ H set

xt+1 = PCjx
t where j = t mod m.

Suppose that {Cj}j∈J has a bounded Hölder regular intersection. Then there exists ρ > 0 such that
xt → x̄ ∈ ∩j∈JCj 6= ∅ with sublinear rate O(t−ρ). Furthermore, if the collection {Cj}j∈J is bounded
Hölder regular with exponent γ ∈ (0, 1] there exist M > 0 and r ∈ [0, 1) such that

‖xt − x̄‖ ≤

{
Mt
− γ

2(1−γ) , γ ∈ (0, 1),

M rt, γ = 1.
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Proof. First note that the projection operator over a closed convex set is 1/2-averaged. Now, for
each j ∈ J , Cj = Fix PCj , and hence

d(x,Cj) = d(x,Fix PCj ) = ‖x− PCjx‖ ∀x ∈ H.

That is, for each j ∈ J , the projection operator PCj is bounded Hölder regular with exponent 1.
The result follows from Theorem 3.6.

4 The rate of convergence of DR algorithms

We now specialize our convergence results to the classical DR algorithm and its variants, and so
obtain a convergence rate under the Hölder regularity condition. Recall that the basic Douglas–
Rachford algorithm for two set feasibility problems can be stated as follows:

Algorithm 1: Basic Douglas–Rachford algorithm

Data: Two closed and convex sets C,D ⊆ H
Choose an initial point x0 ∈ H;
for t = 0, 1, 2, 3, . . . do

Set: 
yt+1 := PC(xt),

zt+1 := PD(2yt+1 − xt),
xt+1 := xt + (zt+1 − yt+1).

(11)

end

Direct verification shows that the relationship between consecutive terms in the sequence (xt) of
(11) can be described in terms of the firmly nonexpansive (two-set) Douglas–Rachford operator
which is of the form

TC,D =
1

2
(I +RDRC) , (12)

where I is the identity mapping and RC := 2PD − I is the reflection operator with respect to the
set C (‘reflect-reflect-average’) .

We shall also consider the following abstraction which chooses two constraint sets from some
finite collection at each iteration. Note that iterations (11) and (13) have the same structure.

Algorithm 2: A multiple-sets Douglas–Rachford algorithm

Data: A family of m closed and convex sets C1, C2, . . . , Cm ⊆ H
Choose a list of 2-tuples Ω1, . . . ,Ωs ∈ {(i, j) : i, j = 1, 2, . . . ,m and i 6= j} with
∪sj=1Ωj = {1, . . . ,m};
Choose an initial point x0 ∈ H;
for t = 0, 1, 2, 3, . . . do

Set the indices (i, j) := Ωt′ where t′ = t mod m;
Set 

yt+1 := PCi(x
t),

zt+1 := PCj (2y
t+1 − xt),

xt+1 := xt + (zt+1 − yt+1).

(13)

end

13



The motivation for studying Algorithm 2 is that, beyond Algorithm 1, it include two further
DR-type schemes from the literature. The first scheme is the cyclic DR algorithm and is generated
according to:

xt+1 = (TCm,C1 TCm−1,Cm . . . TC2,C3 TC1,C2)(xt) ∀t ∈ N,

which corresponds the Algorithm 2 with s = m and Ωj = (j, j + 1), j = 1, . . . ,m − 1, and
Ωm = (m, 1). The second scheme the cyclically anchored DR algorithm and is generated according
to:

xt+1 = (TC1,Cm . . . TC1,C3 TC1,C2)(xt) ∀t ∈ N,

which corresponds the Algorithm 2 with s = m − 1 and Ωj = (1, j + 1), j = 1, . . . ,m − 1. The
following lemma shows that underlying operators both these methods are also averaged.

Lemma 4.1 (Compositions of DR operators). Let s be a positive integer. The composition of s
Douglas–Rachford operators is s

s+1–averaged.

Proof. The two-set Douglas–Rachford operator of (12) is firmly nonexpansive, and hence 1/2-
averaged. The result follows by [6, Prop. 4.32].

As a consequence of Lemma 4.1 and Proposition 3.2, we now obtain the complexity of the
successive change for the many set DR algorithm. For convenience, in the following result, for a
set Ωj = {(ij1, i

j
2)} with indices ij1, i

j
2 ∈ {1, . . . ,m}, j = 1, . . . , s, we denote

TΩj := T
Cji1

,Cji2
.

Corollary 4.2 (Complexity of the multiple-sets DR algorithm). Let C1, C2, . . . , Cm be closed convex
sets in a Hilbert space H with non-empty intersection. Let {Ωj}sj=1 and {(yt, zt, xt)} be as used by
the multiple-sets Douglas–Rachford algorithm (13). Then, for each t ∈ N, there exists a sequence
εt → 0 with 0 ≤ εt ≤ 1 such that

‖xt+1 − xt‖ ≤
εt

(
√
s dist(x0,∩sj=1FixTΩj )

)
√
t+ 1

.

Proof. Let J = {1}, T 1 = TΩsTΩs−1 . . . TΩ1 and wt,1 ≡ 1. From Lemma 4.1, T 1 is s/(s+1)-averaged.
Note that ∩sj=1FixTΩj ⊆ FixT 1. Thus, the conclusion follows by applying Proposition 3.1 with

α = s/(s+ 1).

Remark 4.3. The previous corollary holds with s = m for the cyclic DR algorithm, and with
s = (m− 1) for the cyclically anchored DR algorithm. 3

Corollary 4.4 (Convergence rate for the multiple-sets DR algorithm). Let C1, C2, . . . , Cm be closed
convex sets in a Hilbert space H with non-empty intersection. Let {Ωj}sj=1 and {(yt, zt, xt)} be
generated by the multiple-sets Douglas–Rachford algorithm (11). Suppose that:

(a) For each j ∈ {1, . . . , s}, the operator TΩj is bounded Hölder regular.

(b) The collection {FixTΩj}sj=1 has a bounded Hölder regular intersection.

Then there exists ρ > 0 such that xt → x̄ ∈ ∩sj=1FixTΩj with sublinear rate O(t−ρ). Furthermore,
suppose we assume the stronger assumptions:
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(a′) For each j ∈ {1, . . . , s}, the operator TΩj is bounded Hölder regular with exponent γ1,j.

(b′) The collection {FixTΩj}sj=1 has a bounded Hölder regular intersection with exponent γ2 ∈ (0, 1].

Then there exist M > 0 and r ∈ (0, 1) such that

‖xt − x̄‖ ≤

{
Mt
− γ

2(1−γ) if γ ∈ (0, 1),
M rt if γ = 1.

where γ := γ1γ2 where γ1 := min{γ1,j | 1 ≤ j ≤ s}.

Proof. Let J = {1, 2, . . . , s}. For for all j ∈ J , set Tj = TΩj and

wt,j ≡

{
1 j = t mod m,

0 otherwise.
.

Since TΩj is firmly nonexpansive (that is, 1/2-averaged), the conclusion follows from Corollary 4.4.

We next observe that bounded Hölder regularity of the Douglas-Rachford operator TΩj and
Hölder regular intersection of the collection {FixTΩj}sj=1 are automatically satisfied for the semi-
algebraic convex case, and so, sublinear convergence analysis follows in this case without any further
regularity conditions. This follows from:

Proposition 4.5 (Semi-algebraicity implies Hölder regularity & sublinear convergence). Let C1,
C2, . . . , Cm be basic convex semi-algebraic sets in Rn with non-empty intersection, given by

Cj = {x ∈ Rn | gij(x) ≤ 0, i = 1, . . . ,mj}

where gij, i = 1, . . . ,mj, j = 1, . . . ,m, are convex polynomials on Rn with degree d. Let {Ωj}sj=1

be a list of 2-tuples with ∪sj=1Ωj = {1, . . . ,m} Then,

(a) For each j ∈ {1, . . . , s}, the operator TΩj is bounded Hölder regular. Moreover, if d = 1, then
TΩj is bounded Hölder regular with exponent 1.

(b) The collection {FixTΩj}sj=1 has a bounded Hölder regular intersection.

In particular, let {(yt, zt, xt)} be generated by the multiple-sets Douglas–Rachford algorithm (11).
Then there exists ρ > 0 such that xt → x̄ ∈ ∩sj=1FixTΩj with sublinear rate O(t−ρ).

Proof. Fix any j ∈ {1, . . . , s}. We first verify that the operator TΩj is bounded Hölder regular.
Without loss of generality, we assume that Ωj = {1, 2} and so, TΩj = TC1,C2 where TC1,C2 is
the Douglas-Rachford operator for C1 and C2. Recall that for each x ∈ Rn, TC1,C2(x) − x =
PC2(RC1(x))−PC1(x). We now distinguish two cases depending on the value of the degree d of the
polynomials which describes Cj , j = 1, 2.

Case 1 (d > 1): We first observe that, for a closed convex semi-algebraic set C ⊆ Rn, the
projection mapping x 7→ PC(x) is a semi-algebraic mapping. This implies that, for i = 1, 2, x 7→
PCi(x) and x 7→ RCi(x) = 2PCi(x) − x are all semi-algebraic mappings. Since the composition of
semi-algebraic maps remains semi-algebraic ((P5) of Fact 2.9), we deduce that f : x 7→ ‖TC1,C2−x‖2
is a continuous semi-algebraic function. By (P4) of Fact 2.9, FixTC1,C2 = {x | f(x) = 0} which is
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therefore a semi-algebraic set. By (P2) of Fact 2.9, the function dist(·,FixTC1,C2) is semi-algebraic,
and clearly dist(·,FixTC1,C2)−1(0) = f−1(0).

By the  Lojasiewicz inequality for semi-algebraic functions ((P6) of Fact 2.9), we see that for
every ρ > 0, one can find µ > 0 and γ ∈ (0, 1] such that

dist(x,Fix TC1,C2) ≤ µ‖x− TC1,C2x‖γ ∀x ∈ B(0, ρ).

So, the Douglas–Rachford operator TC1,C2 is bounded Hölder regular in this case.
Case 2 (d = 1): In this case, both C1 and C2 are polyhedral, hence their projections PC1 and

PC2 are piecewise affine mappings. Noting that composition of piecewise affine mappings remains
piecewise affine [42], we deduce that F : x 7→ TC1,C2(x)−x is continuous and piecewise affine. Then,
Robinson’s theorem on metric subregularity of piecewise affine mappings [44] implies that for all
a ∈ Rn, there exist µ > 0, ε > 0 such that

dist(x,FixTC1,C2) = dist(x, F−1(0)) ≤ µ‖F (x)‖ = µ‖x− TC1,C2(x)‖ ∀x ∈ B(a, ε).

Then, a standard compactness argument shows that the Douglas–Rachford operator TC1,C2 is
bounded linear regular, that is, bounded Hölder regular with exponent 1.

Next, we assert that the collection {FixTΩj}sj=1 has a bounded Hölder regular intersection. To
see this, as in the proof of part (a), we can show that for each j = 1, . . . , s, FixTΩj is a semi-
algebraic set. Then, their intersection ∩sj=1FixTΩj is also a semi-algebraic set. Thus, ψ(x) =
dist(x,∩sj=1FixTΩj ) and φ(x) = max1≤j≤s dist(x,FixTΩj ) are semi-algebraic functions. It is easy

to see that φ−1(0) = ψ−1(0) and hence the  Lojasiewicz inequality for semi-algebraic functions ((P6)
of Fact 2.9) implies that the collection {FixTΩj}sj=1 has a bounded Hölder regular intersection.

The final conclusion follows by Theorem 3.6.

Next, we establish the convergence rate for DR algorithm assuming bounded Hölder regularity
of the Douglas–Rachford operator TC,D. Indeed, by supposing that TC,D is bounded Hölder regular
with exponent γ ∈ (0, 1], it is immediate from Proposition 3.2 and the firmly nonexpansive property
of TC,D that dist(xt,Fix TC,D) converges to 0 at the order of o(t−

γ
2 ). Below, under the same

assumption we show a stronger result: xt converges to x̄ for some x̄ ∈ FixTC,D at least in the order

of O(t
− γ

2(1−γ) ) if γ ∈ (0, 1), and xt converges to x̄ linearly if γ = 1.

Corollary 4.6 (Convergence rate for the DR algorithm). Let C,D be two closed convex sets in a
Hilbert space H with C ∩D 6= ∅, and let TC,D be the Douglas–Rachford operator. Let {(yt, zt, xt)}
be generated by the Douglas–Rachford algorithm (11). Suppose that TC,D is bounded Hölder regular.
Then there exists ρ > 0 such that xt → x̄ ∈ FixTC,D with sublinear rate O(t−ρ). Furthermore, if
TC,D is bounded Hölder regular with exponent γ ∈ (0, 1] then there exist M > 0 and r ∈ (0, 1) such
that

‖xt − x̄‖ ≤

{
Mt
− γ

2(1−γ) if γ ∈ (0, 1),
M rt if γ = 1.

Proof. Let J = {1}, T1 = TC,D and wt,1 ≡ 1. Note that TC,D is firmly nonexpansive (that is, 1/2-
averaged) and any collection containing only one set has Hölder regular intersection with exponent
one. Then the conclusion follows immediately from Theorem 3.6.

Similar to Proposition 4.5, if C and D are basic convex semi-algebraic sets, then DR algorithm
exhibits a sublinear convergence rate.
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Remark 4.7 (Linear convergence of the DR algorithm). We note that if H = Rn and riC ∩ riD 6= ∅,
then TC,D is bounded linear regular, that is, bounded Hölder regular with exponent 1. Thus, the
Douglas–Rachford algorithm converges linearly in this case. This had been shown in [8]. Also, if
C and D are both subspaces such that C +D is closed (as is automatic in finite-dimensions), then
TC,D is also bounded linear regular, and so, the DR algorithm converges linearly in this case as
well. This was been established in [9]. It should be noted that [9] deduced the stronger result that
the linear convergence rate is exactly the cosine of the Friedrichs angle. 3

5 The rate of convergence of the damped DR algorithm

We now investigate a variant of Algorithm 1 which we refer to as the damped Douglas–Rachford
algorithm. To proceed, let η > 0, let A be a closed convex set in H, and define the operator PηA by

PηA =

(
1

2η + 1
I +

2η

2η + 1
PA

)
,

where I denotes the identity operator on H. The operator PηA can be considered as a relaxation of
the projection mapping. Further, a direct verification shows that

lim
η→∞

PηA(x) = PA(x) ∀x ∈ H,

in norm, and

PηA(x) = proxηdist2A
(x) = arg min

y∈H

{
dist2

A(y) +
1

2η
‖y − x‖2

}
∀x ∈ H, (14)

where proxf denotes the proximity operator of the function f . The damped variant can be stated
as follows:

Algorithm 3: Damped Douglas–Rachford algorithm

Data: Two closed sets C,D ⊆ H
Choose η > 0 and step-size parameters λt ∈ (0, 2];
Choose an initial point x0 ∈ H;
for t = 0, 1, 2, 3, . . . do

Choose λt ∈ (0, 2] with λt ≥ λ and set:
yt+1 := PηC(xt),

zt+1 := PηD(2yt+1 − xt),
xt+1 := xt + λt(z

t+1 − yt+1).

(15)

end

Remark 5.1. Algorithm 2 can be found, for instance, in [6, Cor. 27.4]. A similar relaxation of the
Douglas–Rachford algorithm for lattice cone constraints has been proposed and analyzed in [16]. 3

Whilst it is possible to analyze the damped Douglas–Rachford algorithm within the quasi-cyclic
framework, we learn more by proving the following result directly.
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Theorem 5.2 (Convergence Rate for the damped Douglas–Rachford algorithm). Let C,D be two
closed and convex sets in a Hilbert space H with C ∩D 6= ∅. Let λ = inft∈N λt > 0 with λt ∈ (0, 2]
and let {(yt, zt, xt)} be generated by the damped Douglas–Rachford algorithm (15). Suppose that
the pair of sets {C,D} has a bounded Hölder regular intersection. Then there exists ρ > 0 such
that xt → x̄ ∈ C ∩ D with sublinear rate O(t−ρ). Furthermore, if the pair {C,D} has a bounded
Hölder regular intersection with exponent γ ∈ (0, 1] then there exist M > 0 and r ∈ (0, 1) such that

‖xt − x̄‖ ≤

{
Mt
− γ

2(1−γ) if γ ∈ (0, 1)
M rt if γ = 1.

Proof. Step 1 (A Fejér monotonicity type inequality for xt): Let x∗ ∈ C ∩D. We first show that

2ηλ
(
dist2(yt+1, C) + dist2(zt+1, D)

)
≤ ‖xt − x∗‖2 − ‖xt+1 − x∗‖2. (16)

To see this, note that, for any closed and convex set A, dist2(·, A) is a differentiable convex func-
tion satisfying ∇(dist2)(x,A) = 2(x − PA(x)) which is 2-Lipschitz. Using the convex subgradient
inequality, we have

2ηλ
(
dist2(yt+1, C) + dist2(zt+1, D)

)
≤ 2ηλt

(
dist2(yt+1, C) + dist2(zt+1, D)

)
= 2ηλt

(
dist2(yt+1, C)− dist2(x∗, C) + dist2(zt+1, D)− dist2(x∗, D)

)
≤ 4ηλt

(
〈yt+1 − PC(yt+1), yt+1 − x∗〉+ 〈zt+1 − PD(zt+1), zt+1 − x∗〉

)
= 4ηλt

(
〈yt+1 − PC(yt+1), yt+1 − x∗〉+ 〈zt+1 − PD(zt+1), zt+1 − yt+1〉

+〈zt+1 − PD(zt+1), yt+1 − x∗〉
)

= 4ηλt
(
〈yt+1 − PC(yt+1) + zt+1 − PD(zt+1), yt+1 − x∗〉+ 〈zt+1 − PD(zt+1), zt+1 − yt+1〉)

= 4η
(
λt〈yt+1 − PC(yt+1) + zt+1 − PD(zt+1), yt+1 − x∗〉+ 〈zt+1 − PD(zt+1), xt+1 − xt〉) (17)

where the last equality follows from the last relation in (15). Now using (14), we see that

0 = ∇(dist2(·, C) +
1

2η
‖ · −xt‖2)(yt+1) = 2

(
yt+1 − PC(yt+1)

)
+

1

η
(yt+1 − xt), and

0 = ∇(dist2(·, D) +
1

2η
‖ · −(2yt+1 − xt)‖2)(zt+1) = 2

(
zt+1 − PD(zt+1)

)
+

1

η
(zt+1 − 2yt+1 + xt).

Summing these two equalities and multiplying by λt yields

λt
(
yt+1 − PC(yt+1) + zt+1 − PD(zt+1)

)
= −λt

2η
(zt+1 − yt+1) = − 1

2η
(xt+1 − xt).

Note also that

xt + zt+1 − yt+1 = xt+1 + (1− λt)(zt+1 − yt+1) = xt+1 +
1− λt
λt

(xt+1 − xt).
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Substituting the last two equations into (17) gives

2ηλ
(
dist2(yt+1, C) + dist2(zt+1, D)

)
≤ 4η〈zt+1 − PD(zt+1)− 1

2η
(yt+1 − x∗), xt+1 − xt〉

= 4η〈− 1

2η
(zt+1 − 2yt+1 + xt)− 1

2η
(yt+1 − x∗), xt+1 − xt〉

= −2〈zt+1 − yt+1 + xt − x∗, xt+1 − xt〉

= −2〈xt+1 − x∗, xt+1 − xt〉 − 2
1− λt
λt
‖xt+1 − xt‖

=
(
‖xt − x∗‖2 − ‖xt+1 − x∗‖2 − ‖xt+1 − xt‖2

)
− 2

1− λt
λt
‖xt+1 − xt‖

= ‖xt − x∗‖2 − ‖xt+1 − x∗‖2 − 2− λt
λt
‖xt+1 − xt‖.

Step 2 (establishing a recurrence for dist2(xt, C ∩D)): First note that

yt+1 = PηC(xt) =
1

2η + 1
xt +

2η

2η + 1
PC(xt).

This shows that yt+1 lies in the line segment between xt and its projection onto C. So, PC(yt+1) =
PC(xt) and hence,

dist2(yt+1, C) = ‖yt+1 − PC(xt)‖2 =

(
1

2η + 1

)2

‖PC(xt)− xt‖2 =

(
1

2η + 1

)2

dist2(xt, C).

Similarly, as

zt+1 = PηD(2yt+1 − xt) =
1

2η + 1
(2yt+1 − xt) +

2η

2η + 1
PD(2yt+1 − xt),

the point zt+1 lies in the line segment between 2yt+1−xt and its projection ontoD. Thus PD(zt+1) =
PD(2yt+1 − xt) and so,

dist2(zt+1, D) = ‖zt+1 − PD(2yt+1 − xt)‖2

=

(
1

2η + 1

)2

‖PD(2yt+1 − xt)− (2yt+1 − xt)‖2

=

(
1

2η + 1

)2

dist2(2yt+1 − xt, D).

Now, using the non-expansiveness of dist(·, D), we have

dist2(xt, D) ≤
(
‖xt − (2yt+1 − xt)‖+ dist(2yt+1 − xt, D)

)2

=

(
2‖xt − yt+1‖+ dist(2yt+1 − xt, D)

)2

=

(
4η

2η + 1
dist(xt, C) + dist(2yt+1 − xt, D)

)2

≤ c

(
dist2(xt, C) + dist2(2yt+1 − xt, D)

)
,
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where c = 2(max{ 4η
2η+1 , 1})

2, and where the last inequality above follows from the following ele-
mentary inequalities: for all α, x, y ∈ R+,

αx+ y ≤ max{α, 1}(x+ y), (x+ y)2 ≤ 2(x2 + y2).

Therefore, we have

dist2(2yt+1 − xt, D) ≥ c−1dist2(xt, D)− dist2(xt, C).

So, using (16), we have

‖xt − x∗‖2 − ‖xt+1 − x∗‖2 ≥ 2ηλ
(
dist2(yt+1, C) + dist2(zt+1, D)

)
= 2ηλ

(
1

2η + 1

)2(
dist2(xt, C) + dist2(2yt+1 − xt, D)

)
.

Note that

dist2(xt, C) + dist2(2yt+1 − xt, D) ≥ dist2(xt, C) + c−1dist2(xt, D)− dist2(xt, C) = c−1dist2(xt, D)

and
dist2(xt, C) + dist2(2yt+1 − xt, D) ≥ dist2(xt, C).

It follows that

‖xt − x∗‖2 − ‖xt+1 − x∗‖2 ≥ 2η

(
1

2η + 1

)2

c−1 max{dist2(xt, C),dist2(xt, D)}

= 2η

(
1

2η + 1

)2

c−1(max{dist(xt, C),dist(xt, D)})2. (18)

In particular, we see that the sequence {xt} is bounded and Fejér monotone with respect to C ∩D.
Thence, letting K be a bounded set containing {xt}, by bounded Hölder regularity of {C,D}, there
exists µ > 0 and γ ∈ (0, 1] such that

dist(x,C ∩D) ≤ µmax{dist(x,C),dist(x,D)}γ ∀x ∈ K.

Thus there exists a δ > 0 such that

‖xt − x∗‖2 − ‖xt+1 − x∗‖2 ≥ δ dist2θ(xt, C ∩D)

where θ = 1
γ ∈ [1,∞). So, Fact 2.2 implies that PC∩D(xt) → x̄ for some x̄ ∈ C ∩ D. Setting

x∗ = PC∩D(xt) in (18) we therefore obtain

dist2(xt+1, C ∩D) ≤ dist2(xt, C ∩D)− δdist2θ(xt, C ∩D).

Now, the conclusion follows by applying Proposition 3.5 with θ = 1/γ.

Remark 5.3 (DR versus damped DR). Note that Theorem 5.2 only requires Hölder regularity of the
underlying collection of constraint sets, rather than the damped DR operator explicitly. A careful
examination of the proof of Theorem 5.2 shows that the inequality (17) does not hold for the basic
DR algorithm (which would require setting η = +∞). 3

20



Remark 5.4 (Comments on linear convergence). In the case when 0 ∈ sri(C − D), where sri is
the strong relative interior, then the Hölder regularity result holds with exponent γ = 1 (see [5]).
The preceding proposition therefore implies that the damped Douglas–Rachford method converges
linearly in the case where 0 ∈ sri(C −D). 3

We next show that an explicit sublinear convergence rate estimate can be achieved in the case
where H = Rn and C,D are basic convex semi-algebraic sets.

Theorem 5.5 (Convergence rate for the damped DR algorithm with semi-algebraic sets). Let C,D
be two basic convex semi-algebraic sets in Rn with C ∩D 6= ∅, where C,D are given by

C = {x ∈ Rn | gi(x) ≤ 0, i = 1, . . . ,m1} and D = {x ∈ Rn | hj(x) ≤ 0, j = 1, . . . ,m2}

where gi, hj, i = 1, . . . ,m1, j = 1, . . . ,m2, are convex polynomials on Rn with degree at most d. Let
λ := inft∈N λt > 0 with λt ∈ (0, 2] and let {(yt, zt, xt) be generated by the damped Douglas–Rachford
algorithm (15). Then, xt → x̄ ∈ C ∩D. Moreover, there exist M > 0 and r ∈ (0, 1) such that

‖xt − x̄‖ ≤

{
Mt
− γ

2(1−γ) if d > 1
M rt if d = 1.

where γ = [min
{

(2d−1)n+1
2 , B(n− 1)dn

}
]−1 and β(n − 1), is the central binomial coefficient with

respect to n− 1 which is given by
(

n−1
[(n−1)/2]

)
.

Proof. By Lemma 2.11 with θ = 1, we see that for any compact set K, there exists c > 0 such that
for all x ∈ K,

dist(x,C ∩D) ≤ c

(
dist(x,C) + dist(x,D)

)γ
≤ 2γc max{dist(x,C), dist(x,D)}γ .

where γ = [min
{

(2d−1)n+1
2 , B(n− 1)dn

}
]−1. Note that γ = 1 if d = 1; while γ ∈ (0, 1) if d > 1.

The conclusion now follows from Theorem 5.2.

6 Examples

In this section we fully examine two concrete problems which illustrate the difficulty of establishing
optimal rates. We begin with an example consisting of two sets having an intersection which is
bounded Hölder regular but not bounded linearly regular. In the special case where n = 1, it has
previously been examined in detail as part of [10, Ex. 5.4].

Example 6.1 (Half-space and epigraphical set described by ‖x‖d). Consider the sets

C = {(x, r) ∈ Rn × R | r ≤ 0} and D = {(x, r) ∈ Rn × R | r ≥ ‖(x1, . . . , xn)‖d},

where d > 0 is an even number. Clearly, C ∩ D = {0Rn+1} and riC ∩ riD = ∅. It can be
directly verified that {C,D} does not has a bounded linearly regular intersection because, for
xk = ( 1

k , 0, . . . , 0) ∈ Rn and rk = 1
kd

,

dist
(
(xk, rk), C ∩D

)
= O

(
1

k

)
and max{dist

(
(xk, rk), C

)
, dist

(
(xk, rk), D

)
} =

1

kd
.

21



Let TC,D be the Douglas–Rachford operator with respect to the sets C and D. We will verify
that TC,D is bounded Hölder regular with exponent 1

d . Granting this, by Corollary 4.4, the sequence
(xt, rt) generated by the Douglas–Rachford algorithm converges to a point in FixTC,D = {0Rn}×R+

at least at the order of t
−1

2(d−1) , regardless of the chosen initial point
Firstly, it can be verified (see also [7, Cor. 3.9]) that

FixTC,D = C ∩D +NC−D(0) = {0Rn} × R+,

and so,

dist((x, r),FixT ) =

{
‖x‖ if r ≥ 0
‖(x, r)‖ if r < 0.

Moreover, for all (x, r) ∈ Rn × R,

(x, r)− TC,D(x, r) = PD(RC(x, r))− PC(x, r) = PD(x,−|r|)− (x,min{r, 0}).

Note that, for any (z, s) ∈ Rn × R, denote (z+, s+) = PD(z, s). Then we have

s+ = ‖z+‖d and (z+ − z) + d‖z+‖d−2
(
‖z+‖d − s

)
z+ = 0.

Let (a, γ) = PD(x,−|r|). Then, a = 0Rn if and only if x = 0Rn ,

a− x = −d‖a‖d−2(‖a‖d + |r|)a and γ = ‖a‖d.

It follows that

a =
1

1 + d‖a‖2d−2 + d‖a‖d−2|r|
x. (19)

So,

(x, r)− TC,D(x, r) = (−d‖a‖d−2(‖a‖d + |r|)a, ‖a‖d −min{r, 0})

=

{
(−d‖a‖d−2(‖a‖d + r)a, ‖a‖d) if r ≥ 0

(−d‖a‖d−2(‖a‖d − r)a, ‖a‖d − r) if r < 0.

Let K be any bounded set of Rn+1 and consider any (x, r) ∈ K. By the nonexpansivity of the
projection mapping, (a, γ) = PD(x,−|r|) is also bounded for any (x1, x2) ∈ K. Let M > 0 be such
that ‖(a, γ)‖ ≤ M and ‖(x, r)‖ ≤ M for all (x, r) ∈ K. To verify the bounded Hölder regularity,
we divide the discussion into two cases depending on the sign of r.

Case 1 (r ≥ 0): As d is even, it follows that for all (x, r) ∈ K with x 6= 0Rn

‖(x, r)− TC,D(x, r)‖2

‖x‖2d
=
d2‖a‖2(d−1)(‖a‖d + r)2 + ‖a‖2d

‖x‖2d
≥ ‖a‖2d

‖x‖2d

=

(
1

1 + d‖a‖2d−2 + d‖a‖d−2|r|

)2d

≥
(

1

1 + dM2d−2 + dMd−1

)2d

,

where the equality follows from (19). This shows that, for all (x, r) ∈ K,

dist((x, r),FixTC,D) ≤ (1 + dM2d−2 + dMd−1)‖(x, r)− TC,D(x, r)‖
1
d .
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Case 2 (r < 0): As d is even, it follows that for all (x, r) ∈ K\{0Rn+1},

‖(x, r)− TC,D(x, r)‖2

‖x‖2d + r2d
=

(1 + d2‖a‖2(d−1))(‖a‖d − r)2

‖x‖2d + r2d

≥ ‖a‖2d + r2

‖x‖2d + r2d

≥ ‖a‖2d + r2dM2−2d

‖x‖2d + r2d

=

(
1

1+d‖a‖2d−2+d‖a‖d−2|r|

)2d

‖x‖2d + r2dM2−2d

‖x‖2d + r2d

≥ min{
(

1

1 + dM2d−2 + dMd−1

)2d

,M2−2d},

where the equality follows from (19). Therefore, there exists µ > 0 such that, for all (x, r) ∈ K,

dist((x, r),FixTC,D) ≤ µ‖(x, r)− TC,D(x, r)‖
1
d .

Combining these two cases, we see that TC,D is bounded Hölder regular with exponent 1
d , and

so, the sequence (xt, rt) generated by the Douglas–Rachford algorithm converges to a point in

FixTC,D = {0Rn} × R+ at least at the order of t
−1

2(d−1) .
We note that, for n = 1, it was shown in [10] (by examining the generated DR sequence directly)

that the sequence xt converges to zero at the order t−
1
d−2 where d > 2. Note that rt = ‖xt‖d. It

follows that the actual convergence rate for (xt, rt) for this example is t−
1
d−2 in the case n = 1.

Thus, our convergence rate estimate is not tight for this example in the case n = 1. On the other
hand, as noted in [10], their analysis is largely limited to the 2-dimensional case and it is not clear
how it can be extended to the higher dimensional setting. 3

We now examine an even more concrete example involving a subspace and a lower level set of
a convex quadratic function in the plane.

Example 6.2 (Hölder regularity of the DR operator involving a ball and a tangent line). Consider
the following basic convex semi-algebraic sets in R2:

C = {x ∈ R2 | x1 = 0} and D = {x ∈ R2 | ‖x+ (1, 0)‖2 ≤ 1},

which have intersection C ∩D = {0}. We now show that the DR operator TC,D is bounded Hölder
regular. Since C −D = [0, 1]× R, by [7, Cor. 3.9], the fixed point set is given by

FixTC,D = C ∩D +NC−D(0) = (−∞, 0]× {0}.

We therefore have that

dist(x,FixTC,D) =

{
‖x‖ x1 > 0,

|x2| x1 ≤ 0.

Setting α = 1/max{1, ‖x− (1, 0)‖}, a direct computation shows that

TC,Dx :=

(
I +RDRC

2

)
x = (α− 1− αx1, αx2) , (20)
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and thus
‖x− TC,Dx‖2 = ((1− α) + x1(1 + α))2 + (x2(1− α))2 . (21)

Now, fix an arbitrary compact set K and let M > 0 such that ‖x‖ ≤ M for all x ∈ K. For all
x ∈ K, there exists m ∈ (0, 1] such that α = 1/max{1, ‖x − (1, 0)‖} ∈ [m, 1] for all x ∈ K. By
shrinking m if necessary, we may assume that

√
m2 + 2m

2
≥M m2

1 +m
. (22)

We now distinguish two cases depending on α.
Case 1 (α = 1): In this case, we have

‖x− (1, 0)‖ ≤ 1 =⇒ ‖x‖2 ≤ 2x1.

In particular, this shows that x1 ≥ 0. Now (21) gives

‖x− TC,Dx‖ = 2x1 ≥ ‖x‖2 = dist2(x,FixTC,D).

Case 2 (α < 1): Fix x ∈ K. In this case, we show that

‖x− TC,Dx‖ ≥
m2

2(1 +m)
‖x‖3 =

m2

2(1 +m)
dist3(x, TC,Dx). (23)

To do this, we further divide the discussion into two subcases depending on the sign of x1.
Subcase I (x1 > 0): In this case, dist(x,FixTC,D) = ‖x‖. Note that

‖x− TC,Dx‖2 = ((1− α) + x1(1 + α))2 + (x2(1− α))2

≥ (x1(1 + α))2 + (x2(1− α))2

≥ (m2 + 2m)x2
1 + (1− α)2‖x‖2,

where the last inequality follows by the fact that α ≥ m. So, the elementary inequality
√
a2 + b2 ≥

(a+ b)/2 for all a, b ≥ 0 implies that

‖x− TC,Dx‖ ≥
√
m2 + 2m

2
x1 +

1− α
2
‖x‖. (24)

From the definition of α, we see that

1− α =
‖x− (1, 0)‖ − 1

‖x− (1, 0)‖
=

x2
1 − 2x1 + x2

2

‖x− (1, 0)‖(‖x− (1, 0)‖+ 1)
.

As m ≤ α < 1, ‖x− (1, 0)‖ ≤ 1
m . So,

1− α ≥ m2

1 +m
(x2

1 − 2x1 + x2
2) =

m2

1 +m
‖x‖2 − 2

m2

1 +m
x1.

Then, by combining with (24), we deduce

‖x− TC,Dx‖ ≥
√
m2 + 2m

2
x1 +

1

2
‖x‖

(
m2

1 +m
‖x‖2 − 2

m2

1 +m
x1

)
=

m2

2(1 +m)
‖x‖3 + x1

(√
m2 + 2m

2
− m2

1 +m
‖x‖

)

=
m2

2(1 +m)
‖x‖3 + x1

(√
m2 + 2m

2
− m2

1 +m
M

)
.
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The claimed equation (23) now follows from (22).
Subcase II (x1 ≤ 0): In this case, dist(x,FixTC,D) = |x2| and

‖x− TC,Dx‖ =

√
((1− α) + x1(1 + α))2 + (x2(1− α))2

≥ (1− α)x2.

Similar to Subcase I, we can show that

1− α ≥ m2

1 +m
(x2

1 − 2x1 + x2
2) ≥ m2

1 +m
x2

2.

where the last inequality follows from x1 ≤ 0. Thus, (23) also follows in this subcase.
Combining the two cases we have

dist(x,FixTC,D) ≤ ‖x− TC,Dx‖1/3 ∀x ∈ K.

That is, TC,D is bounded Hölder regular with exponent γ = 1/3. Therefore, for this example,
Corollary 4.6 implies that the DR algorithm generated a sequence {xt} which converges to x̄ ∈
FixTC,D = (−∞, 0] × {0} at least in a sublinear convergence rate O( 1

4√t). Let xt = (xt1, x
t
2) and

x̄ = (x̄1, 0) with x̄1 ≤ 0. As xt+1 = TC,D(xt), by passing to the limit in (20), we have x̄1 = ᾱ−1−ᾱx̄1

where ᾱ = 1/max{1, |x̄1 − 1|}. If x̄1 < 0, then |x̄1 − 1| > 1, and so, ᾱ = 1/(1 − x̄1). This implies
that x̄1 = (ᾱ − 1)/(1 + ᾱ) = x̄1/(2 − x̄1) and hence, x̄1 = 1 or x̄1 = 0 which is impossible. This
shows that x̄1 = 0, and so, {xt} converges to x̄ = (0, 0) at worst in a sublinear convergence rate
O( 1

4√t) regardless the choice of the initial points.

We now illustrate the sublinear convergence rate by numerical simulation. To do this, we first
randomly generate an initial point in [−100, 100]2. We then ran the DR algorithm for this example
(starting with the corresponding random starting point) whilst tracking the value of 4

√
t ‖xt − x̄‖

and −log(‖xt−x̄‖)
log(t) . The experiment was repeated 200 times, and the results plotted in Figure 1.

From the first graph, we see that the value of 4
√
t ‖xt − x̄‖ quickly decrease with increasing t.

This supports the conclusion that xt converges at least in the order of O(1/ 4
√
t). From the second

graph, the value of −log(‖xt−x̄‖)
log(t) appears to approach 1/2. This suggests that the actual sublinear

convergence rate for this example is O(1/
√
t), regardless of the choice of the initial point. 3

Furthermore, the following example shows that, whenever the initial point is chosen in the
region specified below, the sequence in Example 6.2 converges with an exact order O(1/

√
t) and

thus supports the conjectured rate of convergence.

Example 6.3 (The sequence in Example 6.2 with specific initial points). Consider the setting of
Example 6.2, and suppose that the initial point x0 = (u0, v0) ∈ R−− × (0, 1). If xt = (ut, vt) ∈
R−− × (0, 1), then using (20) we deduce that

xt+1 = TC,D(xt) =
(1− ut, vt)√
(1− ut)2 + v2

t

− (1, 0) ∈ R−− × (0, 1).

Inductively, the Douglas–Rachford sequence {xt} is contained in R−− × R++. By Example 6.2,
the sequence xt = (ut, vt) → (0, 0). Below we verify that the sequence with an exact sublinear
convergence order O(1/

√
t).
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Figure 1: Numerical simulation results: (top) the successive change 4

√
t ‖xt − x̄‖ and (bottom) the

ratio −log(‖xt−x̄‖)
log(t) as a function of the number of iterations, t.

To see this, we note from ut < 0 that

vt+1 =
vt√

(1− ut)2 + v2
t

<
vt√

1 + v2
t

.

Setting wt = v2
t , we deduce

wt+1 <
wt

1 + wt
= wt − w2

t +O(w3
t ).

Since wt → 0, for sufficiently large t, we have

wt+1 < wt −
1

2
w2
t =⇒ 1

wt+1
− 1

wt
>

1

2− wt
=⇒ lim inf

t→∞

(
1

wt+1
− 1

wt

)
≥ 1

2
.

It now follows that(
lim inf
t→∞

1/
√
t

vt

)2

= lim inf
t→∞

1

t

1

wt
= lim inf

t→∞

1

t

(
1

wt
− 1

w0

)
= lim inf

t→∞

1

t

t−1∑
n=0

(
1

wn+1
− 1

wn

)
≥ 1

2
.

Square rooting and inverting both sides we obtain

lim sup
t→∞

vt

1/
√
t
≤
√

2. (25)
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Now, recall that

ut+1 =
1− ut√

(1− ut)2 + v2
t

− 1 =
(1− ut)−

√
(1− ut)2 + v2

t√
(1− ut)2 + v2

t

=
−v2

t√
(1− ut)2 + v2

t

(
(1− ut) +

√
(1− ut)2 + v2

t

) .
Since

√
(1− ut)2 + v2

t

(
(1 − ut) +

√
(1− ut)2 + v2

t

)
→ 2 as t → ∞, whenever t is sufficiently large

we have
0 > ut+1 ≥ −v2

t . (26)

Combining (25) and (26), we see that there exists C > 0 such that ‖(ut, vt)‖ ≤ C 1√
t

for all t ∈ N.

In particular, this also shows that ut → 0.
Noting that vt+1

vt
= 1√

(1−ut)2+v2t
→ 1 as t→∞ and vt > 0, we therefore deduce that vt−1 < 2vt

for all sufficiently large t. Combining with (26), this yields

vt+1 =
vt√

(1− ut)2 + v2
t

≥ vt√
(1 + v2

t−1)2 + v2
t

=
vt√

1 + 9v2
t + 162v4

t

>
vt

1 + 9
2v

2
t

.

As before, we set wt = v2
t . Since wt → 0 and (1 + 9

2wt)
2(1− 10wt) = 1− wt − 279

4 w2
t − 405

2 w3
t < 1,

we deduce
wt+1 >

wt

(1 + 9
2wt)

2
> wt(1− 10wt) =⇒ wt+1 > wt − 10w2

t .

Proceeding as before, we obtain

lim inf
t→∞

vt

1/
√
t
≥ 1

10
.

This shows that ‖(ut, vt)‖ ≥ 1
10

1√
t
. Altogether, we have proven that (ut, vt)→ (0, 0) with an exact

sublinear convergence order O(1/
√
t). 3

7 Conclusions

In this paper, using a Hölder regularity assumption, sublinear and linear convergence of fixed point
iterations described by averaged nonexpansive operators has been established. The framework
was then specialized to various fixed point algorithms including Krasnoselskii–Mann iterations, the
cyclic projection algorithm, and the Douglas–Rachford feasibility algorithm along with some vari-
ants. In the case where the underlying sets are basic convex semi-algebraic, in a finite dimensional
space, the results apply without any further regularity assumptions.

In particular, for our damped Douglas–Rachford algorithm, an explicit estimate for the sub-
linear convergence rate has been provided in terms of the dimension and the maximum degree of
the polynomials which define the convex sets. We emphasise that, unlike the for damped Douglas–
Rachford algorithm, we were not able to provide an explicit estimate of the sublinear convergence
rate for the classical Douglas–Rachford algorithm when the two convex sets are described by con-
vex polynomials. Our approach relies on the  Lojasiewicz’s inequality which gives no quantitative
information regarding the Hölder exponent. Providing explicit estimates is left as an open question
for future research.
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Another area for future research involves characterization of the convergence rate in the absence
of Hölder regularity properties. For instance, it is known that the alternating projection method
can exhibit arbitrarily slow convergence when applied to two subspaces in infinite dimensional
spaces without closed sum [11]. As shown in [18, Cor. 3.1], if only two sets are involved and the
initial point is chosen in a specific way, the cyclic Douglas–Rachford method can coincide with
the alternating projection method, and so, it may exhibit arbitrarily slow convergence. On the
other hand, it was shown in Proposition 4.5 that the basic/cyclic Douglas–Rachford method enjoys
a sublinear convergence rate if the underlying sets are basic convex semi-algebraic sets in finite
dimensional spaces. It would be interesting to see whether an arbitrarily slow convergence can
happen for these two methods for general closed and convex sets in finite dimensional spaces.

Finally, the current definition of basic semi-algebraic convex sets only applies to finite dimen-
sional spaces. It would interesting to see if a suitable extension of the notion can be profitably used
in infinite dimensional spaces using, for instance, polynomials as defined in [25].
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