
Noname manuscript No.
(will be inserted by the editor)

Recent Results on Douglas–Rachford Methods for

Combinatorial Optimization Problems

Francisco J. Aragón Artacho · Jonathan M.

Borwein · Matthew K. Tam

the date of receipt and acceptance should be inserted later

Abstract We discuss recent positive experiences applying convex feasibility al-

gorithms of Douglas–Rachford type to highly combinatorial and far from convex

problems.

Keywords Douglas–Rachford · projections · reflections · combinatorial optimiza-

tion · modelling · feasibility · satisfiability · Sudoku · Nonograms

Mathematics Subject Classification (2010) 90C27 · 90C59 · 47N10

F.J. Aragón Artacho

Systems Biochemistry Group, University of Luxembourg, 4362, Esch-sur-Alzette, Luxembourg.

E-mail: francisco.aragon@ua.es

J.M. Borwein · M.K. Tam (B)

CARMA, University of Newcastle, Callaghan, NSW 2308, Australia.

E-mail: matthew.k.tam@gmail.com

J.M. Borwein

Also Distinguished Professor, KAU Jeddah, SA.

E-mail: jon.borwein@gmail.com

francisco.aragon@ua.es
matthew.k.tam@gmail.com
jon.borwein@gmail.com


2 F.J. Aragón Artacho et al.

1 Introduction

Douglas–Rachford iterations, as defined in Section 2, are moderately well under-

stood when applied to finding a point in the intersection of two convex sets. Over

the past decade, they have proven very effective in some highly non-convex set-

tings; even more surprisingly this is the case for some highly discrete problems.

In this paper we wish to advertise the use of Douglas–Rachford methods in such

combinatorial settings. The remainder of the paper is organized as follows.

In Section 2, we recapitulate what is proven in the convex setting. This is fol-

lowed, in Section 3, by a review of the normal way of handling a (large) finite

number of sets in the product space. In Section 4, we reprise what is known in

the non-convex setting. Now there is less theory but significant and often positive

experience. In Section 5, we turn to more detailed discussions of combinatorial

applications before focusing, in Section 6, on solving Sudoku puzzles, and, in Sec-

tion 7, on solving Nonograms. It is worth noting that both of these are NP-complete

as decision problems. We complete the paper with various concluding remarks in

Section 8.

2 Convex Douglas–Rachford Methods

In this section we review what is known about the behaviour of Douglas–Rachford

methods applied to a finite family of closed and convex sets.



Recent Results on Douglas–Rachford Methods for Comb. Optim. Probl. 3

2.1 The Classical Douglas–Rachford Method

The classical Douglas–Rachford scheme was originally introduced in connection

with partial differential equations arising in heat conduction [1], and convergence

later proven in [2], who proposed the scheme for finding zeros of the sum of two

maximal monotone operators. Throughout this paper, we consider application of

the Douglas–Rachford scheme to feasibility problems. For the precise connection

between these two applications, we refer the reader to [3] and the references therein.

Given two subsets A,B of a Hilbert space, H, the scheme iterates by repeatedly

applying the 2-set Douglas–Rachford operator,

TA,B :=
I +RBRA

2
,

where I denotes the identity mapping, and RA(x) denotes the reflection of a point

x ∈ H in the set A. The reflection can be defined as

RA(x) := 2PA(x)− x,

where PA(x) is the closest point projection of the point x onto the set A, that is,

PA(x) :=

{
z ∈ A : ‖x− z‖ = inf

a∈A
‖x− a‖

}
.

In general, the projection PA is a set-valued mapping. If A is closed and convex, the

projection is uniquely defined for every point in H, thus yielding a single-valued

mapping (see e.g. [4, Th. 4.5.1]).

In the literature, the Douglas–Rachford scheme is also known as “reflect-reflect-

average” [5], and “averaged alternating reflections (AAR)” [6].

Applied to closed and convex sets, convergence is well understood and can be

explained by using the theory of (firmly) nonexpansive mappings.



4 F.J. Aragón Artacho et al.

Theorem 2.1 (Douglas–Rachford Scheme) Let A,B ⊆ H be closed and convex

with nonempty intersection. For any x0 ∈ H, set xn+1 = TA,Bxn. Then (xn) converges

weakly to a point x such that PAx ∈ A ∩B.

As part of their analysis of von Neumann’s alternating projection method, Bauschke

and Borwein [7] introduced the notion of the displacement vector, v, and used the

sets E and F to generalize A ∩B.

v := PB−A(0), E := A ∩ (B − v), F := (A+ v) ∩B.

Note, if A ∩B 6= ∅ then E = F = A ∩B.

The same framework was utilized by Bauschke, Combettes and Luke [6] to

analyze the Douglas–Rachford method.

Theorem 2.2 (Infeasible case [6, Th. 3.13]) Let A,B ⊆ H be closed and convex.

For any x0 ∈ H, set xn+1 = TA,Bxn. Then the following hold.

(i) xn+1 − xn = PBRAxn − PAxn → v and PBPAxn − PAxn → v.

(ii) If A ∩B 6= ∅ then (xn) converges weakly to a point in

Fix(TA,B) = (A ∩B) +NA−B(0);

otherwise, ‖xn‖ → +∞.

(iii) Exactly one of the following two alternatives holds.

(a) E = ∅, ‖PAxn‖ → +∞, and ‖PBPAxn‖ → +∞.

(b) E 6= ∅, the sequences (PAxn) and (PBPAxn) are bounded, and their weak

cluster points belong to E and F , respectively; in fact, the weak cluster points

of

((PAxn, PBRAxn)) and ((PAxn, PBPAxn)) (1)

are best approximation pairs relative to (A,B).



Recent Results on Douglas–Rachford Methods for Comb. Optim. Probl. 5

Here, NC(x) := {u ∈ H : 〈c − x, u〉 ≤ 0, ∀c ∈ C} denotes the normal cone to a

convex set C ⊂ H at a point x ∈ C, and Fix(T ) := {x ∈ H : x ∈ T (x)} denotes the

set of fixed points of the mapping T .

Remark 2.1 (Behaviour of best approximation pairs) If best approximation pairs rela-

tive to (A,B) exist and PA is weakly continuous, then the sequences in (1) actually

converge weakly to such a pair [6, Remark 3.14(ii)].

Since xn/n → −v, ‖xn/n‖ can be used to approximate ‖v‖ = d(A,B) [6, Re-

mark 3.16(ii)]. ♦

For other pertinent references relating to the classical Douglas–Rachford method,

see [8–13].

We turn next to an alternative new method:

2.2 The Cyclic Douglas–Rachford Method

There are many possible generalizations of the classic Douglas–Rachford iteration.

Given three sets A,B,C and x0 ∈ H, an obvious candidate is the iteration defined

by repeatedly setting xn+1 := TA,B,Cxn where

TA,B,C :=
I +RCRBRA

2
. (2)

For closed and convex sets, like TA,B , the mapping TA,B,C is firmly nonexpan-

sive, and has at least one fixed point provided A ∩B ∩C 6= ∅. Using a well known

theorem of Opial [14, Th. 1], (xn) can be shown to converge weakly to a fixed

point. However, attempts to obtain a point in the intersection using said fixed

point have, so far, been unsuccessful.



6 F.J. Aragón Artacho et al.

Example 2.1 (Failure of three set Douglas–Rachford iterations.) We give an example

showing the iteration described in (2) can fail to find a feasible point. Consider

the one-dimensional subspaces A,B,C ⊂ R2 defined by

A := {λ(0, 1) : λ ∈ R},

B := {λ(
√

3, 1) : λ ∈ R},

C := {λ(−
√

3, 1) : λ ∈ R}.

Then A ∩B ∩ C = {(0, 0)}.

Let x0 = (−
√

3,−1). Since x0 ∈ FixRCRBRA,

x0 ∈ Fix
I +RCRBRA

2
.

However,

PAx0 = (0,−1), PBx0 = x0 = (−
√

3,−1), PCx0 = (−
√

3/2, 1/2).

That is, PAx0, PBx0, PCx0 6∈ A ∩B ∩ C. The trajectory is illustrated in Fig. 1. ♦

Instead, Borwein and Tam [15] considered cyclic applications of 2-set Douglas–

Rachford operators. Given N sets C1, C2, . . . , CN , and x0 ∈ H, their cyclic Douglas–

Rachford scheme iterates by repeatedly setting xn+1 := T[C1,C2,...,CN ]xn, where

T[C1,C2,...,CN ] denotes the cyclic Douglas–Rachford operator defined by

T[C1,C2,...,CN ] := TCN ,C1
TCN−1,CN

. . . , TC2,C3
TC1,C2

.

In the consistent case, the iterations behave analogously to the classical Douglas–

Rachford scheme (cf. Theorem 2.1).

Theorem 2.3 (Cyclic Douglas–Rachford) Let C1, C2, . . . , CN ⊆ H be closed and

convex sets with a nonempty intersection. For any x0 ∈ H, set xn+1 = T[C1 C2 ... CN ]xn.



Recent Results on Douglas–Rachford Methods for Comb. Optim. Probl. 7

A

BC

x0 = RCRBRAx0

RAx0

RBRAx0

(0, 0)

Fig. 1: Trajectory of Example 2.1.

Then (xn) converges weakly to a point x such that PCi
x = PCj

x, for all indices i, j.

Moreover, PCj
x ∈

⋂N
i=1 Ci, for each index j.

Example 2.2 (Example 2.1 revisited) Consider the cyclic Douglas–Rachford scheme

applied to the sets of Example 2.1. As before, let x0 = (−
√

3,−1). By Theorem 2.3,

the sequence (xn) converges to a point x such that

PAx = PBx = PCx = (0, 0).

Furthermore, PA, PB , PC are orthogonal projections, hence x = (0, 0). The trajec-

tory is illustrated in Fig. 2.

As a consequence of the problem’s rotational symmetry, the sequence of Douglas–

Rachford operators can be described by

TA,Bxn = PCxn, TB,CTA,Bxn = PAPCxn, xn+1 = TC,ATB,CTA,Bxn = PBPAPCxn.



8 F.J. Aragón Artacho et al.

A

BC

x0

TA,Bx0

TB,CTA,Bx0

T[AB C]x0 = TC,ATB,CTA,Bx0

Fig. 2: Trajectory of Example 2.2. Solid black arrows represent 2-set Douglas–

Rachford iterations (i.e. they connect the sequence x0, TA,Bx0, TB,CTA,Bx0,

TC,ATB,CTA,Bx0, . . . ). Constructions (reflect-reflect-average) are dotted.

That is, starting at x0, the cyclic Douglas–Rachford trajectory applied to the

A,B,C, coincides with von Neumann’s alternating projection method applied to

C,A,B (cf. [15, Cor. 3.1]). ♦

If N = 2 and C1 ∩C2 = ∅ (the inconsistent case), unlike the classical Douglas–

Rachford scheme, the iterates are not unbounded (cf. Theorem 2.2). Moreover,

there is evidence to suggest that the scheme can be used to produce best approx-

imation pairs relative to (C1, C2) whenever they exist.

The framework of Borwein and Tam [15], can also be used to derive a number

of applicable variants. A particularly nice one is the averaged Douglas–Rachford



Recent Results on Douglas–Rachford Methods for Comb. Optim. Probl. 9

scheme which, for any x0 ∈ H, iterates by repeatedly setting1

xn+1 :=
1

N

(
N∑
i=1

TCi,Ci+1

)
xn.

Since each 2-set Douglas–Rachford operator can be computed independently the

iteration easily parallelizes.

Remark 2.2 (Failure of norm convergence) It is known that the alternating pro-

jection method may fail to converge in norm [16], and it follows that the cyclic

Douglas-Rachford methods may also only converge weakly., see [15, Cor. 3.1.] for

details. For the classical method Douglas-Rachford method, this seems to be un-

resolved and the examples of from [16, Section 5] do not apply. ♦

2.2.1 Numerical Performance

Applied to the problem of finding a point in the intersection of N balls in Rm, initial

numerical experiments suggest that the cyclic Douglas–Rachford outperforms the

classical Douglas–Rachford scheme [15].

To ensure this performance is not an artefact of having highly symmetrical con-

straints, the same problem, replacing the balls with prolate spheroids (the type of

ellipsoid obtained by rotating a 2-dimensional ellipse around its major axis) hav-

ing one common focus was considered. Unlike ball constraints, there is no simple

formula for computing the projection onto a spheroid. However, the projections

can be computed efficiently. The process reduces to numerically solving, for t, the

equation

a2u2

(a2 − t)2
+

b2v2

(b2 − t)2
= 1,

1 Here indices are understood modulo N . That is, CN+1 := C1.



10 F.J. Aragón Artacho et al.

Fig. 3: A cyclic Douglas–Rachford trajectory for three ellipses in R2. Blue arrows

represent 2-set Douglas–Rachford iterations (i.e. they connect the sequence x0,

TA,Bx0, TB,CTA,Bx0, TC,ATB,CTA,Bx0, . . . ).

for constants a, b > 0 and u, v ∈ R. For further details, see [17, Ex. 2.3.18].

In the spheroid case, the computational results are very similar to the ball

case, considered in [15]. An example having three spheroids in R2 is illustrated in

Fig. 3.

3 Feasibility Problems in the Product Space

Given C1, C2, · · · , CN ⊂ Rm, the feasibility problem2 asks:

Find x ∈
N⋂
i=1

Ci ⊂ Rm. (3)

A great many optimization and reconstruction problems, both continuous and

combinatorial, can be cast within this framework.

2 In this context, “feasibility” and “satisfiability” can be used interchangeably.



Recent Results on Douglas–Rachford Methods for Comb. Optim. Probl. 11

Define two sets C,D ⊂ (Rm)N by

C :=
N∏
i=1

Ci, D := {(x, x, . . . , x) ∈ (Rm)N : x ∈ Rm}.

While the set D, the diagonal, is always a closed subspace, the properties of C are

largely inherited. For instance, when C1, C2, . . . , CN are closed and convex, so is

C.

Consider, now, the equivalent feasibility problem:

Find x ∈ C ∩D ⊂ (Rm)N . (4)

Equivalent in the sense that

x ∈
N⋂
i=1

Ci ⇐⇒ (x, x, . . . , x) ∈ C ∩D.

Moreover, knowing the projections onto C1, C2, . . . , CN , the projections onto C and

D can be easily computed. The proof has recourse to the standard characterization

of orthogonal projections,

p = PDx ⇐⇒ 〈x− p, d〉 = 0 for all d ∈ D.

Proposition 3.1 (Product projections) Let x = (x1, . . . ,xN ) ∈ (Rm)N . Then

PDx =

(
1

N

N∑
i=1

xi, . . . ,
1

N

N∑
i=1

xi

)
,

and if PC1
(x1), . . . , PCN

(xN ) are nonempty then

PCx =
N∏
i=1

PCi
(xi).

Proof Let (p, . . . ,p) ∈ D be the projection of x onto D. For any d ∈ Rm, one has

(d, . . . ,d) ∈ D. Now

0 = 〈x− (p, . . . ,p), (d, . . . ,d)〉 =
N∑
i=1

〈xi − p,d〉 = 〈
N∑
i=1

xi −Np,d〉;



12 F.J. Aragón Artacho et al.

whence, p = 1
N

∑N
i=1 xi. The proves the projection onto D.

We now prove the projection formula for C. For any c = (c1, . . . , cN ) ∈ C and

p = (p1, . . . ,pN ) ∈
∏N

i=1 PCi
(xi) ⊆ C,

‖x− c‖2 =
N∑
i=1

‖xi − ci‖2 ≥
N∑
i=1

‖xi − pi‖2 = ‖x− p‖2 .

Since PC(x) ⊆ C, this shows PCx ⊇
∏N

i=1 PCi
(xi).

Conversely, let p = (p1, . . . ,pN ) ∈ PC(x) and suppose pj 6∈ PCj
(xj) for some

j. Define q := (q1, . . . ,qN ) ∈ (Rm)N where qj ∈ PCj
(xk) and qi = pi if i 6= j.

Then

‖x− p‖2 =
N∑
i=1

‖xi − pi‖2 >
N∑
i=1

‖xi − qi‖2 = ‖x− q‖2.

Since q ∈ C, we conclude that p 6∈ PC(x). This completes the proof. ut

Most projection algorithms can be applied to feasibility problems with any

finite number of sets without significant modification. An exception is the Douglas–

Rachford scheme, which until [15] had only been successfully investigated for the

case of two sets. This has made the product formulation crucial for the Douglas–

Rachford scheme.

4 Non-convex Douglas–Rachford Methods

While there is not nearly so much theory in the non-convex setting, there are some

useful beginnings:

4.1 Theoretical Underpinnings

As a prototypical non-convex scenario, Borwein and Sims [5] considered the Douglas–

Rachford scheme applied to a Euclidean sphere and a line. More precisely, they



Recent Results on Douglas–Rachford Methods for Comb. Optim. Probl. 13

Fig. 4: A Douglas–Rachford trajectory showing local convergence to a feasible

point, as in Theorem 4.1, exhibiting “spiralling” behaviour.

looked at the sets

S := {x ∈ Rm : ‖x‖ = 1}, L := {λa+ αb ∈ Rm : λ ∈ R},

where, without loss of generality, ‖a‖ = ‖b‖ = 1, a ⊥ b, α > 0. We summarize their

findings.

Appropriately normalized the iteration becomes

xn+1(1) = xn(1)/ρn,

xn+1(2) = α+ (1− 1/ρn)xn(2), and

xn+1(k) = (1− 1/ρn)xn(k), for k = 3, . . . ,m,

(5)

where ρn := ‖xn‖ :=
√
xn(1)2 + . . .+ xn(m)2, see [5] for details. The non-convex

sphere, S, provides an accessible model of many reconstruction problems in which

the magnitude, but not the phase, of a signal is measured.

Note α ∈ [0, 1] represents the consistent case, and α > 1 the inconsistent one.

Theorem 4.1 (Sphere and line) Given x0 ∈ Rm define xn+1 := TS,Lxn. Then:



14 F.J. Aragón Artacho et al.

0.2 0.4 0.6 0.8 1 1.2 1.4

0.2

0.4

0.6

0.8

1

1.2

1.4

Fig. 5: The explicit region of convergence (grey) given in [18].

1. If 0 < α < 1, (xn) is locally convergent at each of ±
√

1− α2a+ αb.

2. If α = 0 and x0(1) > 0, (xn) converges to a.

3. If α = 1 and x0(1) 6= 0, (xn) converges to ŷb for some ŷ > 1.

4. If α > 1 and x0(1) 6= 0, ‖xn‖ → ∞.

Replacing L with the proper affine subspace, A := A0 +αb for some non-trivial

subspace A0, (xn) needs to be excluded from A⊥0 . Now, if x0 6∈ A⊥0 then for some

infeasible q 6= 0, x0 ∈ Q := A⊥0 + Rq, then (xn) are confined to the subspace Q.

Theorem 4.1 can, with some care then be extended to the following.

Corollary 4.1 (Sphere and non-trivial affine subspace) For each feasible point

p ∈ S ∩ A ∩ Q there exists a neighbourhood Np of p in Q such that starting from any

x0 ∈ Np the Douglas–Rachford scheme converges to p.

If in Theorem 4.1 x0(1) = 0, the behaviour of the scheme can provably be quite

chaotic [5]. Indeed, this was a difficulty encountered by Aragón and Borwein [18],

in giving an explicit region of convergence for the R2 case with α = 1/
√

2.



Recent Results on Douglas–Rachford Methods for Comb. Optim. Probl. 15

Fig. 6: A two cycle (2/5,±3/10).

Theorem 4.2 (Global convergence [18, Th. 2.1]) Let x0 ∈ [ε, 1]× [0, 1] with

ε := (1− 2−1/3)3/2 ≈ 0.0937.

Then the sequence generated by the Douglas–Rachford scheme of (5) with starting point

x0 is convergent to (1/
√

2, 1/
√

2).

The restriction to α = 1/
√

2 was largely made for notational simplicity.

In fact, a careful analysis show that the region of convergence is actually larger

[18, Remark 2.12], as illustrated in Fig. 5.

Example 4.1 (Failure of Douglas–Rachford for a half-line and circle) Just replacing

a line by a half line in the setting of Borwein–Sims [5, 18] is enough to allow

complicated periodic behaviour.

Let

A := SR2 := {x ∈ R2 : ‖x‖ = 1}, B := {(x1, 0) ∈ R2 : x1 ≤ a}.

Then

PAx =


x/‖x‖ if x 6= 0,

A otherwise.

, PBx =


(x1, 0) if x1 ≤ a

(a, 0) otherwise.

The following holds.



16 F.J. Aragón Artacho et al.

Proposition 4.1 For each a ∈ (0, 1), there is a 2-cycle starting at

x0 =
(
a/2,

√
1− a2/2

)
.

Proof Since ‖x0‖ = 1
2 ,

RAx0 = 2
x0
‖x0‖

− x0 = 3x0.

Since (RAx0)1 = 3a/2 > a, PBRAx = (a, 0) and hence

TA,Bx0 =
x0 + 2(a, 0)− 3x0

2
= (a, 0)− x0 =

(
a/2,−

√
1− a2/2

)
.

By symmetry, T 2
A,Bx0 = x0. ut

If we replace B by the singleton {(a, 0)} or the doubleton {(a, 0), (−1, 0)} we

obtain the same two-cycle. The case of a singleton shows the need for A to be

non-trivial in Corollary 4.1.

This cycle is illustrated in Fig. 6 for a = 4/5 which leads to a rational cycle.

For points near the cycle, the iteration generates remarkably subtle limit cycles as

shown in Fig. 7.3 ♦

In [19], Hesse and Luke utilize (S, ε)-(firm) nonexpansiveness, a relaxed local

version of (firm) nonexpansiveness, a notion which quantifies how “close” to being

(firmly) nonexpansive a mapping is. Together with a coercivity condition, and ap-

propriate notions of super-regularity and linear strong regularity, their framework

can be utilized to prove local convergence of the Douglas–Rachford scheme, if the

first reflection is performed with respect to a subspace, see [19, Th. 42]. The order

of reflection is reversed, so the results of Hesse and Luke do not directly overlap

with that of Aragón, Borwein and Sims. This is not a substantive difference.

3 See http://carma.newcastle.edu.au/DRmethods/comb-opt/2cycle.html for an animated

version.

http://carma.newcastle.edu.au/DRmethods/comb-opt/2cycle.html


Recent Results on Douglas–Rachford Methods for Comb. Optim. Probl. 17

Fig. 7: The orbit starting at (.49, .21).

Remark 4.1 Recently Bauschke, Luke, Phan and Wang [20] obtained local conver-

gence results for a simpler algorithm, von Neumann’s alternating projection method

(MAP), applied to sparsity optimization with affine constraints — a form of com-

binatorial optimization (Sudoku, for example, can be modelled in this framework

[21]). In practice, however, our experience is that MAP often fails to converge

satisfactorily when applied to these problems. See, for example, [22, Fig. 2]. ♦

4.2 A Summary of Applications

We briefly mention a variety of highly non-convex, primarily combinatorial, prob-

lems where some form of Douglas–Rachford algorithm has proven very fruitful.

1. Protein folding and graph coloring problems were first studied via Douglas–

Rachford methods in [23] and [24], respectively.

2. Image retrieval and phase reconstruction problems are analyzed in some detail

in [25, 26]. The bit retrieval problem is considered in [24].



18 F.J. Aragón Artacho et al.

3. Matrix completion problems were studied using Douglas–Rachford methods in

[22]. This included finding various types of Hadamard matrices, and reconstruc-

tion of low-rank distance matrices. For a survey of matrix completion problem,

see [27].

4. The N-queens problem, which requests the placement of N queens on a N ×N

chessboard, is studied and solved in [28].

5. Boolean satisfiability is treated in [24, 29]. Note that the three variable case,

3-SAT, was the first problem to be shown NP-complete [30].

6. TetraVex4 is an edge-matching puzzle (see Fig. 8), whose NP-completeness is

discussed in [31], was studied in [32].5 Problems up to size 4×4 could be solved

in an average of 200 iterations. There are 102n(n+1) base-10 n×n boards, with

n = 3 being the most popular.

7. Solutions of (very large) Sudoku puzzles have been studied in [28, 24]. For a

discussion of NP-completeness of determining solvability of Sudokus see [33].

The effective solution of Suduko puzzles forms the basis of Section 6.

8. Nonograms [34, 35] are a more recent NP-complete Japanese puzzle whose

solution by Douglas–Rachford methods is described in Section 7.6

4 Also known as McMahon Squares in honour of the great English combinatorialist, Percy

MacMahon, who examined them nearly a century ago.

5 Pulkit Bansal did this as a 2010 NSERC summer student with Heinz Bauschke and Xianfu

Wang.

6 Japanese, being based on ideograms, does not lead itself to anagrams, crosswords or other

word puzzles; this in part explains why so many good numeric and combinatoric games origi-

nate in Japan.



Recent Results on Douglas–Rachford Methods for Comb. Optim. Probl. 19

Fig. 8: A game of 3 × 3 TetraVex being played in GNOME TetraVex. Square tiles

on the right board must be moved to the left board so that all touching numbers

agree.

5 Successful Combinatorial Applications

The key to successful application is two-fold.

First, the iteration must converge—at least with high probability. Our experi-

ence is when that happens, random restarts in case of failure are very fruitful. As

we shall show, often this depends on making good decisions about how to model

the problem.

Second, one must be able to compute the requisite projections in closed form—

or to approximate them efficiently numerically. As we shall indicate this is fre-

quently possible for significant problems.

When these two events obtain, we are in the pleasant position of being able to

lift much of our experience as continuous optimizers to the combinatorial milieu.



20 F.J. Aragón Artacho et al.

5.1 Model Formulation

Within the framework of feasibility problems, there can be numerous ways to model

a given type of problem. The product space formulation (4) gives one example,

even without assuming any additional knowledge of the underlying problem.

The chosen formulation heavily influences the performance of projection algo-

rithms. For example, in initial numerical experiments, the cyclic Douglas–Rachford

scheme of Section 2.2, was directly applied to (3). As a serial algorithm, it seems to

outperform the classic Douglas–Rachford scheme, which must instead be applied

to in the product space (4). For details see [15].

As a heuristic for problems involving one or more non-convex set, the sensitiv-

ity of the Douglas–Rachford method to the formulation used must be emphasized.

In the (continuous) convex setting, the formulation influences performance of the

algorithm, while in the combinatorial setting, the formulation determines whether

or not the algorithm can successfully and reliably solve the problem at hand. Di-

rect applications to feasibility problems with integer constraints have been largely

unsuccessful. On the other hand, many of the successful applications outlined in

Section 4.2 use binary formulations.

We now outline the basic idea behind these reformations. If

x ∈ {c1, c2, . . . , cm} ⊂ R. (6)

We reformulate x as a vector y ∈ Rm. If x = ci, then y = (y1, . . . , ym) is defined by

yj =


1 if j = i,

0 otherwise.

With this interpretation (6) is equivalent to:

y ∈ {e1, e2, . . . , em} ⊂ Rm,



Recent Results on Douglas–Rachford Methods for Comb. Optim. Probl. 21

with y = ei if and only if x = ci.

Choosing c1, c2, . . . , cm ∈ Z takes care of the integer case.

5.2 Projection onto the Set of Permutations of Points

In many situations, in order to apply the Douglas–Rachford iteration, one needs

to compute the projection of a point x = (x1, . . . , xm) ∈ Rm onto the set of

permutations of m given points c1, . . . , cm ∈ R, a set that will be denoted by C.

We shall see below that this is the case for the Sudoku puzzle.

As we show next, the projection can be easily and efficiently computed. In what

follows, given y ∈ Rm, we will denote by [y] the vector with the same components

permuted in nonincreasing order. We need the following classical rearrangement

inequality, see [36, Th. 368].

Theorem 5.1 (Hardy–Littlewood–Pólya) Any x, y ∈ Rm satisfy

xT y ≤ [x]T [y].

Fix x ∈ Rm. Denote by [C]x the set of vectors in C (which therefore have the

same components but perhaps permuted) such that y ∈ [C]x if the ith largest entry

of y has the same index in y as the ith largest entry of x. As a consequence of

Theorem 5.1, one has the following.

Proposition 5.1 (Projections on permutations) Denote by C ⊂ Rm the set of

vectors whose entries are all permutations of c1, c2, . . . , cm ∈ R. Then for any x ∈ Rm,

PCx = [C]x.



22 F.J. Aragón Artacho et al.

Proof For any c ∈ C,

‖x− c‖2 = ‖x‖2 + ‖c‖2 − 2xT c

= ‖[x]‖2 + ‖[c]‖2 − 2xT c

≥ ‖[x]‖2 + ‖[c]‖2 − 2[x]T [c]

= ‖[x]− [c]‖2

= ‖x− y‖2, for y ∈ [C]x.

This completes the proof. ut

Remark 5.1 In particular, taking c1 = 1 and c2 = c3 = · · · = cm = 0 one has

C = {e1, e2, . . . , em},

where ei denotes the ith standard basis vector; whence

PC(x) = {ei : xi = max{x1, x2, . . . , xm}}.

A direct proof of this special case is given in [28, Section 5.9]. ♦

Remark 5.2 Proposition 5.1 suggests the following algorithm for computing a pro-

jection of x onto C. Since the projection, in general, is not unique, we are content

with finding the nearest point, p, in the set of projections or some other reasonable

surrogate.

For convenience, given a vector y ∈ (R2)m, we denote the projections onto the

first and second product coordinates by Q and S, respectively. That is, if

y = ((x1, c2), (x2, c2), . . . , (xm, cm)) ∈ (R2)m,

then

Qy := (x1, x2, . . . , xm), Sy := (c1, c2, . . . , cm).



Recent Results on Douglas–Rachford Methods for Comb. Optim. Probl. 23

We can now can now state the following:

Algorithm 5.1 (Projection) Input: x ∈ Rm and c1, c2, . . . , cm ∈ R.

1. By relabelling if necessary, assume ci ≤ ci+1 for each i.

2. Set y = ((x1, c1), (x2, c2), . . . , (xm, cm)) ∈ (R2)m.

3. Set z to be a vector with the same components as y permuted such that Qz is

in non-increasing order.

4. Output: p = Sz.

In our experience many projections required in combinatorial settings have this

level of simplicity. ♦

6 Solving Sudoku Puzzles

We now demonstrate the reformulation described in Section 5 with Sudoku, mod-

elled first as an integer feasibility problem, and secondly as a binary feasibility

problem.

We introduce some notation. Denote by A[i, j], the (i, j)-th entry of the matrix

A. Denote by A[i : i′, j : j′] the submatrix of A formed by taking rows i through i′

and columns j through j′ (inclusive). When i and i′ are the indices of the first

and last rows, we abbreviate by A[:, j : j′]. We abbreviate similarly for the column

indices. The vectorization of the matrix A by columns, is denoted by vecA. For

multidimensional arrays, the notation extends in the obvious way.

Let S denote the partially filled 9×9 integer matrix representing the incomplete

Sudoku. For convenience, let I = {1, 2, . . . , 9} and let J ⊆ I2 be the set of indices

for which S is filled.



24 F.J. Aragón Artacho et al.

Whilst we will formulate the problem for 9× 9 Sudoku, we note that the same

principles can be applied to larger Sudoku puzzles.

6.1 Sudoku Modelled as an Integer Program

Sudoku is modelled as an integer feasibility problem in the obvious way. Denote

by C, the set of vectors which are permutations of 1, 2, . . . , 9. Then A ∈ R9×9 is a

completion of S if and only if

A ∈ C1 ∩ C2 ∩ C3 ∩ C4,

where

C1 = {A : A[i, :] ∈ C for each i ∈ I},

C2 = {A : A[:, j] ∈ C for each j ∈ I},

C3 = {A : vecA[3i+ 1 : 3(i+ 1), 3j + 1 : 3(j + 1)] ∈ C for i, j = 0, 1, 2},

C4 = {A : A[i, j] = S[i, j] for each (i, j) ∈ J}.

The projections onto C1, C2, C3 are given by Proposition 5.1, and can be effi-

ciently computed by using the algorithm outlined in Remark 5.2. The projection

onto C4 is given, pointwise, by

(PC4
A)[i, j] =


S[i, j] if (i, j) ∈ J,

A[i, j] otherwise;

for each (i, j) ∈ I2.



Recent Results on Douglas–Rachford Methods for Comb. Optim. Probl. 25

C1 C2 C3 C5

Fig. 9: Visualization of B showing constraints used in Sudoku modelled as a zero-

one program. Green “blocks” are all “0”, save for a single “1”.

6.2 Sudoku Modelled as a Zero-One Program

Denote by C, the set of all n-dimensional standard basis vectors. To model Sudoku

as a binary feasibility problem, we reformulate A ∈ R9×9 as a B ∈ R9×9×9 where

B[i, j, k] =


1 if A[i, j] = k,

0 otherwise.

Let S′ denote the partially filled 9 × 9 × 9 zero-one array representing the

incomplete Sudoku, S, under the reformulation, and let J ′ ⊆ I3 be the set of

indices for which S′ is filled.

The four constraints of the previous section become

C1 = {B : B[i, :, k] ∈ C for each i, k ∈ I},

C2 = {B : B[:, j, k] ∈ C for each j, k ∈ I},

C3 = {B : vecB[3i+ 1 : 3(i+ 1), 3j + 1 : 3(j + 1), k] ∈ C for i, j = 0, 1, 2 and k ∈ I},

C4 = {B : B[i, j, k] = 1 for each (i, j, k) ∈ J ′}.

In addition, since each Sudoku square has precisely one entry, we require

C5 = {B : B[i, j, :] ∈ C for each i, j ∈ I}.



26 F.J. Aragón Artacho et al.

A visualization of the constraints is provided in Fig. 9.

Clearly there is a one-to-one correspondence between completed integer Su-

dokus, and zero-one arrays contained in the intersection of the five constraint sets.

Moreover, B is a completion of S′ if and only if

B ∈ C1 ∩ C2 ∩ C3 ∩ C4 ∩ C5.

The projections onto C1, C2, C3, C5 are given in Remark 5.1. The projection

onto C4 is given, pointwise, by

(PC4
B)[i, j, k] =


S[i, j, k] if (i, j, k) ∈ J ′,

B[i, j, k] otherwise;

for each (i, j, k) ∈ I3.

6.3 Numerical Experiments

We have tested various large suites of Sudoku puzzles on the method of Section

6.2. We give some details regarding our implementation in C++.

– Initialize: Set x0 := (y, y, y, y, y) ∈ D for some random y ∈ [0, 1]9×9×9.

– Iteration: Set xn+1 := TD,Cxn.

– Terminate: Either, if a solution is found, or if 10000 iterations have been per-

formed. More precisely, if round(PDxn) denotes PDxn pointwise rounded to

the nearest integer, then round(PDxn) is a solution if

round(PDxn) ∈ C ∩D. (7)

Remark 6.1 In our implementation condition (7) was used a termination criterion,

instead of the condition

PDxn ∈ C ∩D.



Recent Results on Douglas–Rachford Methods for Comb. Optim. Probl. 27

This improvement is due the following observation: If PDxn is a solution then all

entries are either 0 or 1. ♦

Since the Douglas–Rachford method produces a point whose projection onto

D is a solution, we also consider a variant which sets

xn+1 :=


PDTD,Cxn, if n ∈ {400, 800, 1600, 3200, 6400};

TD,Cxn, otherwise.

We will refer to this variant as DR+Proj.

6.3.1 Test Library Experience

We considered Sudokus from the following libraries:

– Dukuso’s top957 and top14658 – collections containing 95 and 1465 test prob-

lems, respectively. They are frequently used by programmers to test their

solvers. All instances are 9× 9.

– Gordon Royle’s minimum Sudoku9 – a collection containing around 50000 dis-

tinct Sudokus with 17 entries (the best known lower bound on the number

of entries required for a unique solution). All instances are 9 × 9. Our experi-

ments were performed on the first 1000 problems. From herein we refer to these

instances as minimal1000.

– reglib-1.310 – a collection containing around 1000 test problems, each suited

to a particular human-style solving technique. All instances are 9× 9.

7 top95: http://magictour.free.fr/top95

8 top1465: http://magictour.free.fr/top1465

9 Gordon Royle: http://school.maths.uwa.edu.au/~gordon/sudokumin.php

10 reglib-1.3: http://hodoku.sourceforge.net/en/libs.php

http://magictour.free.fr/top95
http://magictour.free.fr/top1465
http://school.maths.uwa.edu.au/~gordon/sudokumin.php
http://hodoku.sourceforge.net/en/libs.php


28 F.J. Aragón Artacho et al.

– ksudoku16 and ksudoku2511 – collections containing around 30 Sudokus, of var-

ious difficulties, which we generated using KSudoku.12 The collections contain

16× 16 and 25× 25 instances, respectively.

6.3.2 Methods Used for Comparison

Our naive binary implementation was compared with various specialized or opti-

mized codes. A brief description of the methods tested follows.

1. Douglas–Rachford in C++ – Our implementation is outlined in Section 6.3. Our

experiments were performed using both the normal Douglas–Rachford method

(DR) and our variant (DR+Proj).

2. Gurobi Binary Program13 – Solves a binary integer program formulation us-

ing Gurobi Optimizer 5.5. The formulation is the same n × n × n binary array

model used in the Douglas–Rachford implementation. Our experiments were

performed using the default settings, and the default settings with the pre-

solver off.

3. YASS14 (Yet Another Sudoku Solver) in C++ – Solves the Sudoku problem

in two phases. In the first phase, a reasoning algorithm determines the pos-

sible candidates for each of the empty Sudoku squares. If the Sudoku is not

completely solved, the second phase uses a deterministic recursive algorithm.

11 ksudoku16/25: http://carma.newcastle.edu.au/DRmethods/comb-opt/

12 KSudoku: http://games.kde.org/game.php?game=ksudoku

13 Gurobi Sudoku model: http://www.gurobi.com/documentation/5.5/example-tour/

node155

14 YASS: http://yasudokusolver.sourceforge.net/

http://carma.newcastle.edu.au/DRmethods/comb-opt/
http://games.kde.org/game.php?game=ksudoku
http://www.gurobi.com/documentation/5.5/example-tour/node155
http://www.gurobi.com/documentation/5.5/example-tour/node155
http://yasudokusolver.sourceforge.net/


Recent Results on Douglas–Rachford Methods for Comb. Optim. Probl. 29

4. DLX 15 in C – Solves an exact cover formulation using the Dancing Links im-

plementation of Knuth’s Algorithm X – a non-deterministic, depth-first, back-

tracking algorithm.

Since YASS and DLX were only designed to be applied to 9 × 9 instances,

their performances on ksudoku16 and ksudoku25 were unable to be included in the

comparison.

6.3.3 Computational Results

Table 1 shows a comparison of the time taken by each of the methods in Sec-

tion 6.3.2, applied to the test libraries of Section 6.3.1. Computations were per-

formed on an Intel Core i5-3210 @ 2.50GHz running 64-bit Ubuntu 12.10. For each

Sudoku puzzle, 10 replications were performed. We make some general comments

about the results.

– All methods easily solved instances from reglib-1.3 – the test library consist-

ing of puzzles suited to human-style techniques. Since human-style technique

usually avoid excessive use of ‘trial-and-error’, less backtracking is required to

solve puzzle aimed at human players. Since all of the algorithms, except the

Douglas–Rachford method, utilize some form of backtracking, this may explain

the observed good performance.

– The Gurobi binary program performed best amongst the methods, regardless

of the test library. Of the methods tested, the Gurobi Optimizer is the most

sophisticated. Whether or not the pre-solver was used did not significantly

effect computational time.

15 DLX: http://cgi.cse.unsw.edu.au/~xche635/dlx_sodoku/

http://cgi.cse.unsw.edu.au/~xche635/dlx_sodoku/


30 F.J. Aragón Artacho et al.

– Our Douglas–Rachford implementation outperformed YASS on top95, top1465

and DLX on minimal1000. For all other algorithm/test library combinations,

the Douglas–Rachford was competitive. The performance of the normal Douglas–

Rachford method appears slightly better than the variant which includes the

additional projection step.

– The Douglas–Rachford solved Sudoku puzzles with a high success rate – no

lower than 84% for any of the test libraries. For most test libraries the success

rate was much higher (see Table 2). Puzzles solved by the method were typically

done so in the first 2000 iterations (see Fig. 10).

6.4 Models that Failed

To our surprise, the integer formulation of Section 6.1 was ineffective, except for 4×

4 Sudoku, while the binary reformulation of the cyclic Douglas–Rachford method

described in Section 2.2 also failed in both the original space and the product

space.

Clearly we have a lot of work to do to understand the model characteristics

which lead to success and those which lead to failure.

We should also like to understand how to diagnose infeasibility in Sudoku via

the binary model. This would give a full treatment of Sudoku as a NP-complete

problem.

6.5 A ‘Nasty’ Sudoku Puzzle and Other Challenges

The incomplete Sudoku on the left of Fig. 11 has proven intractable for Douglas–

Rachford. The unique solution is shown at the right of Fig. 11. As set, it can not be



Recent Results on Douglas–Rachford Methods for Comb. Optim. Probl. 31

T
a
b

le
1
:

M
ea

n
(M

a
x
)

ti
m

e
in

se
co

n
d

s
ov

er
a
ll

in
st

a
n

ce
s.

to
p

9
5

to
p

1
4
6
5

re
g
li
b

-1
.3

m
in

im
a
l1

0
0
0

k
su

d
o
k
u

1
6

k
su

d
o
k
u

2
5

D
R

1
.4

3
2

(6
.0

5
6
)

0
.9

2
9

(6
.0

3
8
)

0
.2

7
9

(5
.9

2
5
)

0
.5

0
9

(5
.9

3
4
)

5
.0

6
4

(3
0
.0

7
9
)

4
.0

1
1

(2
4
.6

2
7
)

D
R

+
P

ro
j

1
.8

9
4

(6
.0

3
8
)

1
.2

6
1

(1
2
.6

4
6
)

0
.3

6
3

(6
.3

9
5
)

0
.9

5
3

(5
.9

0
1
)

6
.7

5
7

(3
1
.9

4
9
)

8
.6

0
8

(8
4
.1

9
0
)

G
u

ro
b

i
(d

ef
a
u

lt
)

0
.0

6
3

(0
.0

9
5
)

0
.0

6
3

(0
.1

7
1
)

0
.0

5
9

(0
.1

2
3
)

0
.0

6
3

(0
.0

9
1
)

0
.1

6
8

(0
.5

2
7
)

0
.4

0
1

(0
.4

9
0
)

G
u

ro
b

i
(p

re
-s

o
lv

e
o
ff

)
0
.0

7
7

(0
.3

2
2
)

0
.0

7
6

(0
.4

0
5
)

0
.0

5
8

(0
.1

0
3
)

0
.0

6
4

(0
.1

0
4
)

0
.6

3
5

(4
.6

2
1
)

0
.4

1
4

(0
.4

9
6
)

Y
A

S
S

2
.2

5
6

(5
8
.8

2
2
)

1
.4

4
0

(1
1
3
.1

9
5
)

0
.0

3
9

(3
.7

9
6
)

0
.6

5
4

(6
1
.4

0
5
)

-
-

D
L

X
1
.3

8
6

(3
8
.4

6
6
)

0
.3

1
0

(3
4
.1

7
9
)

0
.1

0
5

(8
.5

0
0
)

3
.8

7
1

(6
0
.5

4
1
)

-
-

T
a
b

le
2
:

%
o
f

S
u

d
o
k
u

in
st

a
n

ce
s

su
cc

es
sf

u
ll

y
so

lv
ed

.

to
p

9
5

to
p

1
4
6
5

re
g
li
b

-1
.3

m
in

im
a
l1

0
0
0

k
su

d
o
k
u

1
6

k
su

d
o
k
u

2
5

D
R

8
6
.5

3
9
3
.6

9
9
9
.3

5
9
9
.5

9
9
2
.0

0
1
0
0

D
R

+
P

ro
j

8
5
.4

7
9
3
.9

3
9
9
.3

1
9
9
.5

9
8
4
.6

7
1
0
0



32 F.J. Aragón Artacho et al.

0
20

00
40

00
60

00
80

00
10

00
0

M
ea

n 
nu

m
be

r o
f i

te
ra

tio
ns

051015202530354045 Puzzled solved

Di
st

rib
ut

io
n 

of
 it

er
at

io
ns

 to
 s

ol
ve

 to
p9

5 
in

st
an

ce
s

0
20

00
40

00
60

00
80

00
10

00
0

M
ea

n 
nu

m
be

r o
f i

te
ra

tio
ns

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

Puzzled solved

Di
st

rib
ut

io
n 

of
 it

er
at

io
ns

 to
 s

ol
ve

 to
p1

46
5 

in
st

an
ce

s

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00
80

00
90

00
M

ea
n 

nu
m

be
r o

f i
te

ra
tio

ns
0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

Puzzled solved

Di
st

rib
ut

io
n 

of
 it

er
at

io
ns

 to
 s

ol
ve

 re
gl

ib
-1

.3
 in

st
an

ce
s

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00
80

00
90

00
M

ea
n 

nu
m

be
r o

f i
te

ra
tio

ns
0

10
0

20
0

30
0

40
0

50
0

60
0

Puzzled solved

Di
st

rib
ut

io
n 

of
 it

er
at

io
ns

 to
 s

ol
ve

 m
in

im
al

10
00

 in
st

an
ce

s

F
ig

.
1
0
:

F
re

q
u

en
cy

h
is

to
g
ra

m
s

sh
ow

in
g

th
e

d
is

tr
ib

u
ti

o
n

o
f

p
u

zz
le

s
so

lv
ed

b
y

n
u

m
b

er
o
f

it
er

a
ti

o
n

s
fo

r
th

e
D

o
u

g
la

s–
R

a
ch

fo
rd

m
et

h
o
d

.



Recent Results on Douglas–Rachford Methods for Comb. Optim. Probl. 33

7 9 5

1 3

2 3 7

4 5 7

8 2

6 4

9 1

8 6

5 4 7

7 4 3 8 2 9 1 5 6

5 1 8 6 4 7 9 3 2

9 6 2 3 5 1 7 4 8

6 2 4 5 9 8 3 7 1

8 7 9 1 3 4 2 6 5

3 5 1 2 7 6 4 8 9

4 9 6 7 1 5 8 2 3

2 8 7 9 6 3 5 1 4

1 3 5 4 8 2 6 9 7

Fig. 11: The ‘nasty’ Sudoku (left), and its unique solution (right).

solved by Jason Schaad’s Douglas–Rachford based Sudoku solver,16 nor can it be

solved reliably by our implementation. This ‘nasty’ Sudoku is a modified version

of an example due to Veit Elser [37], who found the first puzzle which could not

be solved using Douglas–Rachford methods.

We decided to ask: What happens when we remove one entry from the ‘nasty’

Sudoku? From one hundred random initializations:

– Removing the top-left entry, a “7”, the puzzle was still difficult for the Douglas–

Rachford algorithm: we had a 24% success rate — comparable to the ‘nasty’

Sudoku without any entries removed.

– If any other single entry was removed, the problem could be solved fairly reli-

ably: we had a 99% success rate.

For each of the puzzles with an entry removed, the number of distinct solution

was determined using SudokuSolver,17 and are reported in Table 4. Those with an

16 Schaad’s web-based solver: https://people.ok.ubc.ca/bauschke/Jason/

17 SudokuSolver: http://infohost.nmt.edu/tcc/help/lang/python/examples/sudoku/

https://people.ok.ubc.ca/bauschke/Jason/
http://infohost.nmt.edu/tcc/help/lang/python/examples/sudoku/


34 F.J. Aragón Artacho et al.

Table 3: Number of instances solved from 1000 replications.

AI escargot ‘Nasty’

DR 985 202

DR+Proj 975 172

entry removed, that could be reliably solved all have many solutions — anywhere

from a few hundred to a few thousand; while the puzzle with the top-left entry

removed has relatively few — only five.18 It is possible that this structure that

makes the ‘nasty’ Sudoku difficult to solve, with the Douglas–Rachford algorithm

hindered by an abundance of ‘near’ solutions.

We then asked: What happens when entries from the solution are added to

incomplete ‘nasty’ Sudoku? From one hundred random starts:

– If any single entry was added, the Sudoku could be solved more often, but not

reliably: we had only a 54% success rate.

We also examined how the binary Douglas–Rachford method applied to this

‘nasty’ Sudoku behaves relative to its behaviour on other hard problems (see Ta-

ble 3). Specially, we considered AI escargot, a Sudoku purposely designed by Arto

Inkala to be really difficult. Our Douglas–Rachford implementation could solve AI

escargot fairly reliably: we had a success rate of 99%. In contrast to the ‘nasty’

Sudoku, the number of solutions to AI escargot with one entry removed was no

more than a few hundred; typically much less.

18 For the five solutions: http://carma.newcastle.edu.au/DRmethods/comb-opt/nasty_

nonunique.txt

http://carma.newcastle.edu.au/DRmethods/comb-opt/nasty_nonunique.txt
http://carma.newcastle.edu.au/DRmethods/comb-opt/nasty_nonunique.txt


Recent Results on Douglas–Rachford Methods for Comb. Optim. Probl. 35

0 500 1000 1500 2000 2500
Iterations

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

No
rm

al
iz

ed
 D

is
ta

nc
e 

fro
m

 S
ol

ut
io

n

'Nasty' Sudoku

Fig. 12: Typical behaviour of the Douglas–Rachford algorithm applied to the

‘nasty’ Sudoku, modelled as a zero-one program.

0 200 400 600 800 1000 1200 1400
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
iz

ed
 D

is
ta

nc
e 

fro
m

 S
ol

ut
io

n

AI escargot

Fig. 13: Typical behaviour of the Douglas–Rachford algorithm for AI escargot,

modelled as a zero-one program.

We then asked the question: How does the distances from the solution vary

as a function of the number of iterations? This is plotted in Fig. 12 and 13, for



36 F.J. Aragón Artacho et al.

Table 4: Number of distinct solutions for the ‘nasty’ Sudoku with a single entry

removed.

Entry removed Distinct solutions

None 1

S[1, 1] 5

S[1, 6] 571

S[1, 8] 2528

S[2, 2] 874

S[2, 8] 1504

S[3, 3] 2039

S[3, 4] 1984

S[3, 7] 182

S[4, 3] 2019

S[4, 4] 3799

S[4, 8] 1263

Entry removed Distinct solutions

S[5, 1] 216

S[5, 7] 2487

S[6, 6] 476

S[6, 7] 1315

S[7, 2] 1905

S[7, 5] 966

S[8, 2] 711

S[8, 5] 579

S[9, 3] 1278

S[9, 4] 1368

S[9, 9] 1640

the ‘nasty’ Sudoku and AI escargot, respectively.19 The same for each of the five

solution to the ‘nasty’ Sudoku, with the top-left entry removed, is shown in Fig. 14.

In what follows, denote by (xn) the sequence of iterates obtained from the

Douglas–Rachford algorithm, and by x∗ the Sudoku solution obtained from (xn).

In contrast to the convex setting, Fig. 12 and 13 show that the sequence (‖xn−x∗‖)

need not be monotone decreasing.

19 If xn is the current iterate, x∗ the solution, and m = maxn ‖PDxn−x∗‖, ‖PDxn − x∗‖/m

is plotted against n.



Recent Results on Douglas–Rachford Methods for Comb. Optim. Probl. 37

0 500 1000 1500 2000 2500
Iterations

0.70

0.75

0.80

0.85

0.90

0.95

1.00

No
rm

al
iz

ed
 D

is
ta

nc
e 

fro
m

 S
ol

ut
io

ns

A 'Nasty' Sudoku with Non-unique Solution

Fig. 14: Typical behaviour of Douglas–Rachford applied to ‘nasty’ Sudoku with

top-left entry removed. The five colors represent the possible solutions.

In the convex setting, (xn) is known to have the very useful property of being

Fejér monotone with respect to FixTD,C . That is,

‖xn+1 − c‖ ≤ ‖xn − c‖ for any c ∈ FixTD,C .

When (xn) converged to a solution, ‖xn − x∗‖ decreased rapidly just before the

solution was found (see Fig. 13). This seemed to occur regardless of the behaviour

of earlier iterations. Perhaps this behaviour is due to the Douglas–Rachford iterate

entering a local basin of attraction.

The methods Section 6.3.2, applied to the two difficult Sudoku puzzles, were

also compared (see Table 5). While all solved AI escargot easily, applied to the

‘nasty’ Sudoku, YASS was significantly slower – the Douglas–Rachford method is

not the only algorithm to find the puzzle difficult.



38 F.J. Aragón Artacho et al.

Table 5: Mean (Max) Time in second from 1000 replications.

AI escargot ‘Nasty’

DR 1.232 (6.243) 4.840 (6.629)

DR+Proj 1.623 (6.074) 5.312 (7.689)

Gurobi (default) 0.157 (0.845) 0.111 (0.125)

Gurobi (pre-solve off) 0.094 (0.153) 0.253 (0.365)

YASS 0.162 (0.255) 12.370 (13.612)

DLX 0.020 (0.032) 0.110 (0.126)

7 Solving Nonograms

Recall that a nonogram puzzle consists of a blank m×n grid of pixels (the canvas)

together with (m + n) cluster-size sequences, one for each row and each column

[38]. The goal is to paint the canvas with a picture that satisfies the following

constraints:

– Each pixel must be black or white.

– If a row (resp. column) has cluster-size sequence s1, s2, . . . , sk then it must

contain k clusters of black pixels, separated by at least one white pixel, such

that the ith leftmost (resp. uppermost) cluster contains si black pixels.

An example of a nonogram puzzle is given in Fig. 15. Its solution, found by the

Douglas–Rachford algorithm, is shown in Fig. 17.

We model nonograms as a binary feasibility problem. The m× n grid is repre-

sented as a matrix A ∈ Rm×n. We define

A[i, j] =


0 if the (i, j)-th entry of the grid is white,

1 if the (i, j)-th entry of the grid is black.



Recent Results on Douglas–Rachford Methods for Comb. Optim. Probl. 39

1

2 4 1 2 2

2 3 1 1 5 4 1 5 2 1

1 2

2

1

1

2

2 4

2 6

8

1 1

2 2

Fig. 15: A nonogram whose solution can be found by Douglas–Rachford (see

Fig. 17). Cluster-size sequences for each row and column are given.

Let Ri ⊂ Rm (resp. Cj ⊂ Rn) denote the set of vectors having cluster-size

sequences matching row i (resp. column j).

C1 = {A : A[i, :] ∈ Ri for i = 1, . . . ,m},

C2 = {A : A[:, j] ∈ Cj for j = 1, . . . , n}.

Given an incomplete nonogram puzzle, A is a solution if and only if

A ∈ C1 ∩ C2.

We investigated the viability of the Douglas–Rachford method to solve nono-

gram puzzles, by testing the algorithm on seven puzzles: the puzzle in Fig. 15,

and the six puzzles shown in Fig. 16. Our implementation, written in Python, is,

appropriately modified, the same as the method of Section 6.3.

Applied to nonograms, the Douglas–Rachford algorithm is highly successful.

From 1000 random initializations, all puzzles considered were solved with a 100%

success rate.



40 F.J. Aragón Artacho et al.

0 2 4 6 8

0

2

4

6

8

(a) A spaceman.

0 5 10 15
0

5

10

15

(b) A dragonfly.

0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

(c) A moose.

0 5 10 15
0

5

10

15

20

25

(d) A parrot.

0 5 10 15
0

5

10

15

(e) The number π.

0 5 10 15 20
0

5

10

15

20

(f) “Hello from CARMA”

encoded as a QR code.20

Fig. 16: Solutions to six nonograms found by the Douglas–Rachford algorithm.

Within this model, a difficulty is that the projections onto C1 and C2 have no

simple form. So far, our attempts to find an efficient method to do so have been

unsuccessful. Our current implementation pre-computes Ri and Cj , for all indices

i, j, and at each iteration chooses the nearest point by computing the distance to

each point in the appropriate set.

For nonograms with large canvases, the enumeration of Ri and Cj becomes

intractable. However, the Douglas–Rachford iterations themselves are fast.



Recent Results on Douglas–Rachford Methods for Comb. Optim. Probl. 41

Fig. 17: Solution to the nonogram in Fig. 15 found by Douglas–Rachford in six

iterations: showing the projection onto C1 of these six iterations.

Remark 7.1 (Performance on NP-complete problems) We note that for Sudoku, the

computation of projections is easy but the typical number of (easy) iterative steps

large—as befits an NP complete problem. By contrast for nonograms, the number

of steps is very small but an exponential amount of work is presumably buried in

computing the projections. ♦

8 Conclusions

The message of the list in Section 4.2 and of the previous two sections is the fol-

lowing. When presented with a new combinatorial feasibility problem it is well

worth seeing if Douglas–Rachford can deal with it—it is conceptually very sim-

ple and is usually relatively easy to implement. It would be interesting to apply

Douglas–Rachford to various other classes of problems.

Moreover, this approach allows for the intuition developed in Euclidean space

to be usefully repurposed. This lets one profitably consider non-expansive fixed

point methods in the class of CAT(0) metric spaces — a far ranging concept

20 QR (quick response) codes are two-dimensional bar codes originally designed for use in the

Japanese automobile industry. Their data is typically encoded in either numerical, alphanu-

merical, or binary formats.



42 F.J. Aragón Artacho et al.

introduced twenty years ago in algebraic topology but now finding applications

to optimization and fixed point algorithms. The convergence of various projection

type algorithms to feasible points is under investigation by Searston and Sims

among others in such spaces [39]: thereby broadening the constraint structures

to which projection-type algorithms apply to include metrically rather than only

algebraically convex sets.

Weak convergence of project-project-average has been established [39]. Reflec-

tions have been shown to be well defined in those CAT(0) spaces with extensible

geodesics and curvature bounded below [40]. Examples have been constructed

to show that unlike in Hilbert spaces they need not be nonexpansive unless the

space has constant curvature [40]. None-the-less it appears that the basic Douglas–

Rachford algorithm (reflect-reflect-average) may continue to converge in fair gen-

erality.

Many resources can be found at the paper’s companion website:

http://carma.newcastle.edu.au/DRmethods/comb-opt/

Acknowledgements We wish to thank Heinz Bauschke, Russell Luke, Ian Searston and

Brailey Sims for many useful insights. Example 2.1 was provided by Brailey Sims.

References

1. Douglas, J., Rachford, H.: On the numerical solution of heat conduction problems in two

and three space variables. Trans. Am. Math. Soc. 82(2), 421–439 (1956)

2. Lions, P., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM

J. Numer. Anal. pp. 964–979 (1979)

3. Combettes, P.: Solving monotone inclusions via compositions of nonexpansive averaged

operators. Optim. 53(5–6), 475–504 (2004)

http://carma.newcastle.edu.au/DRmethods/comb-opt/


Recent Results on Douglas–Rachford Methods for Comb. Optim. Probl. 43

4. Borwein, J., Zhu, Q.: Techniques of variational analysis. CMS books in mathematics.

Springer, New York (2005)

5. Borwein, J., Sims, B.: The Douglas–Rachford algorithm in the absence of convexity. In:

Fixed-Point Algorithms for Inverse Problems in Science and Engineering, pp. 93–109.

Springer (2011)

6. Bauschke, H., Combettes, P., Luke, D.: Finding best approximation pairs relative to two

closed convex sets in Hilbert spaces. J. Approx. Theory 127(2), 178–192 (2004)

7. Bauschke, H., Borwein, J.: On the convergence of von Neumann’s alternating projection

algorithm for two sets. Set-Valued Anal. 1(2), 185–212 (1993)

8. Combettes, P., Pesquet, J.: A Douglas–Rachford splitting approach to nonsmooth convex

variational signal recovery. IEEE J. Sel. Top. Signal Process. 1(4), 564–574 (2007)

9. Gandy, S., Yamada, I.: Convex optimization techniques for the efficient recovery of a

sparsely corrupted low-rank matrix. J. Math-for-Industry 2(5), 147–156 (2010)

10. Steidl, G., Teuber, T.: Removing multiplicative noise by Douglas–Rachford splitting meth-

ods. J. Math. Imaging Vis. 36(2), 168–184 (2010)

11. Svaiter, B.F.: On weak convergence of the Douglas-Rachford method. SIAM J. Control

Optim. 49(1), 280–287 (2011)

12. Yamada, I., Gandy, S., Yamagishi, M.: Sparsity-aware adaptive filtering based on a

Douglas–Rachford splitting. In: Proc. EUSIPCO, pp. 1929–1933 (2011)

13. Bauschke, H., Combettes, P.: Convex Analysis and Monotone Operator Theory in Hilbert

Spaces. Springer, New York (2011)

14. Opial, Z.: Weak convergence of the sequence of successive approximations for nonexpansive

mappings. Bull. Amer. Math. Soc. 73(4), 591–597 (1967)

15. Borwein, J., Tam, M.: A cyclic Douglas-Rachford iteration scheme. J. Optim. Theory

Appl. (2013). Doi: 10.1007/s10957-013-0381-x

16. Bauschke, H., Matoušková, E., Reich, S.: Projection and proximal point methods: conver-

gence results and counterexamples. Nonlinear Anal.: Theory, Methods, and Appl. 56(5),

715–738 (2004)

17. Borwein, J., Vanderwerff, J.: Convex functions: constructions, characterizations and coun-

terexamples. Encyclopedia of Mathematics and its Applications. Cambridge University

10.1007/s10957-013-0381-x


44 F.J. Aragón Artacho et al.

Press (2010)

18. Aragón Artacho, F., Borwein, J.: Global convergence of a non-convex Douglas–Rachford

iteration. J. Glob. Optim. pp. 1–17 (2012). Doi: 10.1007/s10898-012-9958-4

19. Hesse, R., Luke, D.: Nonconvex notions of regularity and convergence of fundamental

algorithms for feasibility problems. preprint http://arxiv.org/pdf/1205.0318v1 (2012)

20. Bauschke, H., Luke, D., Phan, H., Wang, X.: Restricted normal cones and sparsity

optimization with affine constraints. Found. Comput. Math. pp. 1–21 (2012). Doi:

10.1007/s10208-013-9161-0

21. Babu, P., Pelckmans, K., Stoica, P., Li, J.: Linear systems, sparse solutions, and Sudoku.

IEEE Signal Process. Lett. 17(1), 40–42 (2010)

22. Aragón Artacho, F., Borwein, J., Tam, M.: Douglas–Rachford feasibility methods for ma-

trix completion problems. preprint http://arxiv.org/abs/1308.4243 (2013)

23. Elser, V., Rankenburg, I.: Deconstructing the energy landscape: constraint-based algo-

rithms for folding heteropolymers. Phys. Rev. E 73(2), 026,702 (2006)

24. Elser, V., Rankenburg, I., Thibault, P.: Searching with iterated maps. Proc. Natl. Acad.

Sci. 104(2), 418–423 (2007)

25. Bauschke, H., Combettes, P., Luke, D.: Phase retrieval, error reduction algorithm, and

Fienup variants: a view from convex optimization. J. Opt. Soc. Am. A 19(7), 1334–1345

(2002)

26. Bauschke, H., Combettes, P., Luke, D.: Hybrid projection–reflection method for phase

retrieval. J. Opt. Soc. Am. A 20(6), 1025–1034 (2003)

27. Johnson, C.: Matirx completion problems: A survey. Proc. Sympos. Appl. Math. pp.

171–198 (1990)

28. Schaad, J.: Modeling the 8-queens problem and sudoku using an algorithm based on pro-

jections onto nonconvex sets. Master’s thesis, Univ. British Columbia (2010)

29. Gravel, S., Elser, V.: Divide and concur: A general approach to constraint satisfaction.

Phys. Rev. E 78(3), 036,706 (2008)

30. Garey, R., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-

Completeness. A Series of Books in the Mathematical Sciences. W. H. Freeman (1979)

31. Takenaga, Y., Walsh, T.: Tetravex is NP-complete. Inf. Process. Lett. 99, 171–174 (2006)

10.1007/s10898-012-9958-4
http://arxiv.org/pdf/1205.0318v1
10.1007/s10208-013-9161-0
http://arxiv.org/abs/1308.4243


Recent Results on Douglas–Rachford Methods for Comb. Optim. Probl. 45

32. Bansal, P.: Code for solving Tetravex using Douglas–Rachford algorithm. http://people.

ok.ubc.ca/bauschke/Pulkit/pulkitreport.pdf (2010)

33. Takayuki, Y., Takahiro, S.: Complexity and completeness of finding another solution and

its application to puzzles. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. (Inst.

Electron. Inf. Commun. En.) 86(5), 1052–1060 (2003)

34. Nagao, T., Ueda, N.: NP-completeness results for nonogram via parsimonious reductions.

Tech. Rep. TR96-0008, Depart. Computer Science, Tokyo Inst. Technol. (2012). CiteSeerX:

doi=10.1.1.57.5277

35. van Rijn, J.: Playing games: The complexity of Klondike, Mahjong, nonograms and animal

chess. Master’s thesis, Leiden Inst. of Advanc. Computer Science, Leiden Univ. (2012)

36. Hardy, G., Littlewood, J., Pólya, G.: Inequalities. Cambridge Mathematical Library. Cam-

bridge University Press (1952)

37. Elser, V.: private communication, August 27th (2012)

38. Bosch, R.: Painting by numbers. Optima 65, 16–17 (2001)

39. Bačák, M., Searston, I., Sims, B.: Alternating projections in CAT(0) spaces. J. Math.

Anal. Appl. 385(2), 599–607 (2012)

40. Searston, I., Sims, B.: Nonlinear analysis in geodesic metric spaces, in particular CAT(0)

spaces. preprint (2013)

http://people.ok.ubc.ca/bauschke/Pulkit/pulkitreport.pdf
http://people.ok.ubc.ca/bauschke/Pulkit/pulkitreport.pdf
doi=10.1.1.57.5277

	Introduction
	Convex Douglas–Rachford Methods
	Feasibility Problems in the Product Space
	Non-convex Douglas–Rachford Methods
	Successful Combinatorial Applications
	Solving Sudoku Puzzles
	Solving Nonograms
	Conclusions

