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1. Introduction

The (2-set) convex feasibility problem asks for a point contained within the in-
tersection of two closed convex sets of a Hilbert space. Projection and reflec-
tion methods represent a class of algorithmic schemes which are commonly used
to solve this problem. Some notable projection and reflection methods include
the method of alternating projections, the Douglas–Rachford method, the cyclic
Douglas–Rachford scheme, and of course many extensions and variants. For de-
tails see [6, 7, 11, 16, 17, 22, 29], and the references therein. Each iteration of
these methods, employes some combination of (nearest point) projections onto the
constraint sets. Their sustained popularity, even in settings without convexity, is
due to their relative simplicity and ease-of-implementation, in addition to observed
good performance [1, 2, 21, 23].

For the majority of projection and reflection methods applied to general closed
convex sets only weak convergence of the iterates can be guaranteed. . Hundal,
relatively recently [26], gave the first explicit example of an alternating projection
iteration which does not converge in norm. A number of variants and extensions to
this example have since been published [8, 27, 31], some of which cover the case of
non-intersecting sets (infeasible problems). These examples consider two sets, the
first being either a closed subspace of finite codimension or one of its half-spaces,
and the second a convex cone “built-up” from three dimensional “building blocks”.
For non-convex sets, the question of convergence is more difficult, and currently
result focus on the finite dimensional setting [12, 13, 24, 25, 28].

In light of these examples, it is natural ask what compatibility conditions on the
two sets are required to ensure norm convergence. This is further motivated by
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the pleasing physical interpretation of norm convergence as the “error” becoming
arbitrarily small [10].

When the constraint sets satisfies certain regularity properties, norm convergence
of the method of alternating projections can be guaranteed [6, 7], and in some cases
a linear rate of converge can also be assured. These regularity conditions are most
easily invoked in the analysis of the method of alternating projections. This is
because each iteration of the method produces a point contained within one of
the two constraint sets for which the regularity properties can be invoked. On
the other hand, the Douglas–Rachford method generates points that need not lie
within the sets, making it more difficult to analyze. Consequently less is known of
its behaviour. Further, to the authors’ knowledge no explicit Hundal-like counter-
example is known for the Douglas–Rachford algorithm. For recent progress, on
convex Douglas–Rachford methods see [5, 25].

An important practicable instance of the feasibility problem occurs when the
space is a Hilbert lattice, one of the sets is the positive Hilbert cone, and the other
is a closed affine subspace with finite codimension. Problems of this kind arise,
for example, in the so called ‘moment problem’ (see [6]). Applied to this type of
feasibility problem, Bauschke and Borwein proved that the method of alternating
projection converges in norm whenever the affine subspace has codimension one
[6]. The same was conjectured to stay true for any finite codimension, but remains
a stubbornly open problem.

The goal of this paper is two-fold. First, to formulate unified sufficient conditions
for norm convergence of fundamental projection and reflection methods when ap-
plied to feasibility problems with finite codimensional affine space and convex cone
constraints, and second, to give examples and counter-examples regarding the con-
vergence rate of these methods.

The remainder of the paper is organized as followed: in Section 2 we recall defi-
nitions and important theory for our analysis; in Section 3 we formulate sufficient
conditions for norm convergence, which we then specialize to Hilbert cones. Fi-
nally, in Section 4 we give various examples and counter-examples regarding the
rate of converge, and the interplay with regularity of the constraints sets, for both
projection and reflection methods.

2. Preliminaries

Throughout, we assume that H is a real Hilbert space equipped with inner product
〈·, ·〉 and induced norm ‖·‖. We denote the range (resp. nullspace) of the a mapping
T by R(T ) (resp. N(T )).

The (nearest point) projection onto a set S ⊆ H is the mapping PS : H → S
given by

PSx := argmin
s∈S

‖x− s‖.

If S is closed and convex, then PS is well defined and has the characterization

〈x− PSx, S − PSx〉 ≤ 0. (1)

The reflection with respect to S is the mapping RS : H → H defined by RS :=
2PS − I.
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Recall that a cone is a set K ⊆ H such that R+K ⊆ K. A cone K is pointed if
K ∩ (−K) = {0}, generating if K −K = H, and (norm) normal if there exist a
(norm) neighbourhood basis, V, of 0 such that

V = (V +K) ∩ (V −K) for all V ∈ V.

Given a set S ⊆ H, its negative polar cone is the convex cone

S	 := {x ∈ H : 〈x, S〉 ≤ 0}.

If S is nonempty, (S	)	 = cl conv(R+S) (see, for example, [18]). In particular, if
K is a closed convex cone then (K	)	 = K. The positive polar cone to S is defined
similarly and S⊕ := −S	.

We have the following useful conic duality results.

Fact 2.1 Let X be a Banach space, and K ⊆ X be a closed convex cone. Then:

(a) K is pointed if and only if K	 −K	 is weak-star dense in X∗.
(b) K	 is pointed if and only if K −K is weakly dense in X.
(c) K	 is normal if and only if K is generating.

Proof. See, for example, [4, Th. 2.13 & Th. 2.40].

A Hilbert space can be expressed as the direct sum of any closed subspace and its
orthogonal complement. The following theorem is a fine analogue for closed convex
cones.

Theorem 2.2 (Moreau decomposition theorem) Suppose K ⊆ H is a nonempty
closed convex cone. For any x ∈ H,

(a) x = PKx+ PK	x.
(b) 〈PKx, PK	x〉 = 0.
(c) ‖x‖2 = d2

K(x) + d2
K	(x).

Proof. See, for example, [9, Th. 6.29]. For extensions see [20].

Let X be a (real) linear space. Recall that a partially ordered linear space is a
pair (X,K) where K ⊆ X is a convex pointed cone and the ordering ≤K on X
induced by K is

x ≤K y ⇐⇒ y − x ∈ K.

In addition, if the ordering defines a lattice we say (X,K) is a linear lattice. In this
case, the supremum (resp. infimum) of the doubleton {x, y} ⊆ X is denoted by
x ∨ y (resp. x ∧ y). The positive part, negative part and modulus of a point x ∈ H
are given by x+ := x ∨ 0, x− := (−x) ∨ 0 and |x| := x ∨ (−x), respectively.

A normed lattice is a linear lattice (X,K) with a norm such that

|x| ≤K |y| =⇒ ‖x‖ ≤ ‖y‖.

A Banach lattice is a complete normed lattice, and a Hilbert lattice a Banach lattice
in which the norm arises from an inner product. In a Hilbert lattice (H,K) the
cone K is characterised by (see, for example, [19, Th. 8])

K = K⊕ = (−K	) = {x ∈ H : 〈x,K〉 ≥ 0}. (2)
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Where there is no ambiguity, we will say that X is a linear/Banach/Hilbert lattice
(i.e., without reference to the cone) and denote the order cone by X+.

Fact 2.3 (Basic properties of linear lattices) Let (X,K) be a (real) linear lattice
and x, y ∈ X. Then

(a) (x ∨ y) + (x ∧ y) = x+ y.
(b) (−x) ∧ (−y) = −(x ∨ y).
(c) (x+ y)+ ≤K x+ + y+

(d) x = x+ − x− and |x| = x+ + x−

Further, when (X,K) is a Hilbert lattice, P+
K = x+.

Proof. See, for example, [32] and [6].

Remark 2.4 In texts on ordered topological vectors spaces, it is common (but not
uniformly so) to define a “cone” to be both pointed and convex, in addition to
being closed under positive scalar multiplication. ♦

The following fact allows one to exploit the order structure induced by a closed
convex pointed cone. We require and so state only the simplest reflexive results.

Fact 2.5 (Normal cones in reflexive space) Let X be a reflexive Banach space, and
K ⊆ X a closed convex pointed cone. The following are equivalent.

(a) If (xn)∞n=1 ⊆ X with xn ≤K xn+1 and supn ‖xn‖ < ∞, then (xn)∞n=1 is norm
convergent.

(b) If (xn)∞n=1 ⊆ X with xn ≤K xn+1 and there exists x ∈ X such that xn ≤K x,
then (xn)∞n=1 is norm convergent.

(c) K is (norm) normal.

Proof. See, for example, [4, Th. 2.45].

3. Sufficient Conditions for Norm Convergence

Suppose we have two sequences (λn)∞n=1 ⊆ H, and (κn)∞n=1 ⊆ K ⊆ H, for some
closed convex cone K. Given an initial point x0 ∈ H, iteratively define the sequence
(xn)∞n=1 by

xn := xn−1 − κn +Qλn, (3)

where Q : H → M is a linear mapping, and M is a finite dimensional subspace of
H. Using the linearity of Q, (3) implies

xn − x0 = −σn +Qαn, (4)

where

σn =

n∑
k=1

κk ∈ K, αn :=

n∑
k=1

λn.
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Henceforth, unless explicitly stated otherwise, (xn)∞n=1 will denote a sequence
of the form given in (3).

We now give two important examples, Examples 3.1 and 3.2, of sequences satis-
fying the above assumptions. In both, we suppose that S is a closed convex cone,
and that A is a closed affine subspace of finite codimension. Later, in Example 3.5,
we supply a unified extension.

In what follows, we denote by Q the projection onto the (finite dimensional)
orthogonal complement of the subspace parallel to A, so that (see Remark 3.4)

PAx = x+Q(x− x), for any x ∈ A.

Example 3.1 (Douglas–Rachford sequences) For any x0 ∈ H the Douglas–Rachford
sequence is defined by

xn+1 := TS,Axn where TS,A :=
I +RARS

2
,

which, for any xn ∈ A, is expressible as

xn+1 = PSxn +Q(xn −RSxn)

= xn − PS	xn +Q(xn −RSxn). (5)

So in this case, K := S	, κn+1 = PS	xn and λn+1 = xn −RSxn. ♦

Example 3.2 (von Neumann sequences) For any x0 ∈ H, the von Neumann se-
quence is defined by

xn+1 := PAPSxn,

which, for any xn ∈ A, is expressible as

xn+1 = PSxn +Q(xn − PSxn),

= xn − PS	xn +Q(xn − PSxn).

So here, again K := S	 and κn+1 = PS	xn while λn+1 = xn − PSxn. ♦

Remark 3.3 (Further properties) Whenever S ∩ A 6= ∅, the Douglas–Rachford
(resp. von Neumann) sequence converges weakly to a point in FixTS,A (resp. S ∩
A), see, for example, [9]), and is Fejér monotone with respect to FixTS,A (resp.
S ∩A). Consequently, the sequence is bounded, and is norm convergent whenever
it contains a norm convergent subsequence. ♦

Remark 3.4 (Computation of Q) Let λ ∈ RN . As in [6, Section 5], define

S := H+, A := T−1λ,

where T : H → RN is a linear, continuous and given by x 7→ (〈ti, x〉)Ni=1 for given
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linearly independent vectors ti ∈ H. Letting Q := T ∗(TT ∗)−1, we have as above

PAx = x+Q(x− x), for any x ∈ A.

Whence,

RAx = x+ 2Q(x− x), RSx = 2x+ − x = |x|.

♦

We give one further example, although many other variants are also possible. It
includes both the von Neumann and Douglas–Rachford sequences as special cases.

Example 3.5 (Relaxed Douglas–Rachford sequences) For any x0 ∈ H, consider the
relaxation of the Douglas–Rachford sequence given by

xn+1 := T cS,Axn

where

T cS,A := cI + (1− c)RbARaS , RaK := aI + (1− a)RS , RbA := bI + (1− b)RA,

for some a, b ∈ [0, 1[ and c ∈ [0, 1[.
That is, we replace each of TS,A, RS and RA in the Douglas–Rachford method,

with a convex combination of itself and the identity. When a = b = 0 and c = 1/2
we recover the Douglas-Rachford iteration, and when a = b = 1/2 and c = 0 we
obtain the von Neumann iteration.

For any xn ∈ A, it is expressible as

xn+1 = xn + (1− c)
(
−xn +RbAR

a
Sxn

)
= xn + (1− c) (−xn + bRaSxn + (1− b) [2PAR

a
Sxn −RaSxn])

= xn + (1− c) (−xn + bRaSxn − (1− b)RaSxn + 2(1− b)PARaSxn)

= xn + (1− c) (−xn + (2b− 1)RaSxn + 2(1− b) [RaSxn +Q(xn −RaSxn)])

= xn + (1− c) (−xn +RaSxn + 2(1− b)Q(xn −RaSxn))

= xn + (1− c) (−xn + axn + (1− a)RSxn + 2(1− b)Q(xn −RaSxn))

= xn + (1− c) (−2(1− a)PS	xn + 2(1− b)Q(xn −RaSxn))

= xn − 2(1− a)(1− c)PS	xn + 2(1− b)(1− c)Q(xn −RaSxn). (6)

That is, K := S	,

κn+1 = 2(1− a)(1− c)PS	xn, λn+1 = 2(1− b)(1− c)(xn −RaSxn).

Both RbA and RaS are averaged operators (for a definition and more, see [9]).
As the composition of averaged operators, RbAR

a
S is averaged, and thus T cS,A is

averaged. Furthermore, FixTS,A 6= ∅ whenever S ∩ A 6= ∅. We may invoke [9,
Pr. 5.15] to see that the sequence (xn)∞n=1 is weakly convergent to a point in
FixT cS,A, and Fejér monotone w.r.t. FixT cS,A. In particular, the latter implies that
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the sequence is bounded, and is norm convergent whenever it contains a norm
convergent subsequence. ♦

The following lemma gives some insight into what might cause the sequence
(xn)∞n=1 to fail to converge in norm.

Lemma 3.6 (Recession directions) Let K ⊆ H be a nonempty closed convex pointed
norm normal cone. Suppose (xn)∞n=1 is bounded sequence of the form given in (3).
Then, either (xn)∞n=1 contains a norm convergent subsequence or the set of norm
cluster points of (Qαn/‖Qαn‖){n:Qαn 6=0} is nonempty and contained in K. In par-
ticular, the latter implies R(Q) ∩K 6= {0}.

Proof. Since (xn)∞n=1 is bounded, by (4), we see that (σn)∞n=1 is bounded if and only
if (Qαn)∞n=1 is bounded. We distinguish two cases: (i) (Qαn)∞n=1 contains a bounded
subsequence, say (Qαnk)

∞
k=1, or (ii) no subsequence of (Qαn)∞n=1 is bounded.

(i) In this case, by passing to a further subsequence if necessary, we may assume
that (Qαnk)

∞
k=1 converges weakly and hence in norm since it is contained within

a finite dimensional subspace. Further, (σnk)
∞
k=1 is bounded, and, along with σn

itself, increasing with respect to the partial order induced by K, so it converges in
norm (by Fact 2.5). Equation (4) now implies that (xnk)

∞
k=1 converges in norm.

(ii) Let qn := Qαn/‖Qαn‖ when ‖Qαn‖ 6= 0. And, let q be an arbitrary norm
cluster point of (qn){n:Qαn 6=0}, which exists because (qn){n:Qαn 6=0} is bounded and
contained within a finite dimensional subspace. Let (qnk)

∞
k=1 be a subsequence

convergent to q, which by passing to a further subsequence if necessary, we may
assume has 0 < ‖Qαnk‖ → +∞. Then,

xnk − x0

‖Qαnk‖
=
−σnk
‖Qαnk‖

+ qnk =⇒ q = lim
k→∞

σnk
‖Qαnk‖

.

This completes the proof.

Remark 3.7 If S ⊆ H is a closed convex generating cone, then S	 is a closed convex
pointed norm normal cone (see, for example, [4, Cor. 2.43]), so Lemma 3.6 applies
with K := S	 and K	 = (S	)	 = S. Further if (xn)∞n=1 is any of the sequences
from Examples 3.1, 3.2, or 3.5 and it admits a convergent subsequence, then as
noted above, it perforce converges in norm. ♦

The following lemma shows that the sequence (xn)∞n=1 converges in norm under
additional ‘compatibility’ assumptions.

Lemma 3.8 (Norm convergence) Let H be a Hilbert lattice with lattice cone S :=
H+, and κn+1 := −x−n . Suppose (λn)∞n=1 ⊆ Λ for some set Λ such that Q(Λ) ⊆
S ∪ (−S), and one of

(a) Qλn+1 ∈ S whenever xn ∈ S,
(b) If xn0

∈ S for some n0 then (Qλn)∞n=1 is eventually zero,

holds. Then (x+
n )∞n=1 converges in norm as soon as (x+

n )∞n=1 remains bounded.

Proof. In this setting equation (3) becomes

xn+1 = x+
n +Qλn+1. (7)

We consider the two possible cases: (i) Qλn ∈ (−S) for all n ≥ 1, or (ii) Qλn0
∈ S
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S := R2
+

A := {(x, y) : x+ y = 2}

x0

x1

x2
x3

x4

x5

y1
y2
y3

Figure 1. A Douglas–Rachford sequence (xn)∞n=1 converges in five iterations, as described in Lemma 3.10.
For the same initial point, the von Neumann sequence (y1)∞n=1 does not terminate finitely.

for some n0 ≥ 1.
(i) For all n ≥ 1,

x+
n+1 = (x+

n +Qλn+1)+ ≤ x+
n + (Qλn+1)+ = x+

n .

Since the sequence (x+
n )∞n=1 is bounded and decreasing, by Fact 2.5 (a) it converges

in norm.
(ii) By (7) Qλn0

∈ S implies that xn0
∈ S. So, if (a) holds we have Qλn0+1 ∈ S

and inductively xn and Qλn ∈ S for n ≥ n0. In which case, for n ≥ n0,

x+
n+1 = xn+1 = x+

n +Qλn+1 ≥ x+
n .

So, (x+
n )∞n=n0

is increasing, and by assumption bounded, hence norm convergent by
Fact 2.5(a).

On the other hand, if (b) holds then there exists k0 such that Qλn = 0 for all
n ≥ k0. This implies that (xn)∞n=1 is positive and constant from n = k0−1 onwards.
A fortiori, (x+

n )∞n=1 converges in norm.

Remark 3.9 Condition (b) of Lemma 3.8 is satisfied, for example, by the von
Neumann sequence of Example 3.2, and under an additional assumption, by the
Douglas–Rachford sequence of Example 3.1 ♦

Consider the sequence (Qλn)∞n=1 in the von Neumann sequence of Example 3.2.
A useful observation of [6] is that as xn ∈ A, one has

Qλn+1 = Q(xn − PSxn) = Q(PS	xn).

Hence if xn0
∈ S then PS	xn0

= 0, so Qλn0+1 = 0. Thus, inductively we see that
condition (b) of Lemma 3.8 is satisfied provided xn0

∈ S for some n0. In which
case the Von Neumann sequence is eventually constant.

For the Douglas–Rachford sequence it is not as straightforward to select a point
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in A. Nevertheless, a similar argument can be performed, under an additional
assumption, using the point given in the following lemma (see also, Figure 1).

Lemma 3.10 Let (xn)∞n=1 be the Douglas–Rachford sequence defined by xn+1 :=
TS,Axn where S ⊆ H is a nonempty closed convex cone, and A ⊆ H is a closed affine
subspace with finite codimension. (i.e., κn+1 := PS	xn and λn+1 := xn − RSxn
where xn ∈ A). Then

xn+1 − PS	xn ∈ A.

Furthermore, if Q(−S	) ⊆ S and xn0
∈ S, for some n0 ≥ 1, then Qλk = 0 for all

k ≥ n0 + 1, and hence the Douglas–Rachford sequence is eventually constant.

Proof. Apply Q to both sides of (5) and use Theorem 2.2 to obtain

Q(xn+1 − PS	xn) = Qxn for xn ∈ A.

Suppose further that Q(−S	) ⊆ S and xn0
∈ S for some n0 ≥ 1. Then RSxn0

= xn0

and xn0+1 = PAxn0
∈ A. Since xn0

− PS	xn0−1 ∈ A, we have

Qλn0+1 = Q((xn0
− PS	xn0−1)− xn0

) = Q(−PS	xn0−1) ∈ S,

and therefore xn0+1 = xn0
+ Qλn0+1 ∈ S. That is, xn0+1 ∈ S ∩ A ⊆ FixTS,A and

Qλk = 0 for all k ≥ n0 + 1.

Lemma 3.11 (Iteration for a hyperplane) Let H be a Hilbert lattice with Hilbert
cone S := H+, κn+1 := −x−n , and Q be the projection onto a 1-dimensional sub-
space. If (xn)∞n=1 is bounded. and (xn)∞n=1 fails to converge in norm, then Q(S) ⊆ S
and R(Q) ⊆ S ∪ (−S).

Proof. Since the range of Q has dimension 1, we may write Q = 〈a, ·〉a for some a
with ‖a‖ = 1. Since, for any αn with Qαn 6= 0,

〈a, αn〉a
‖〈a, αn〉a‖

=
〈a, αn〉a
|〈a, αn〉|

∈ {±a},

we see that the only possible cluster points of (Qλn/‖Qλn‖)n∈{n∈N:Qλn 6=0} are ±a.
Hence, by Lemma 3.6, if (xn)∞n=1 fails to converge in norm then a ∈ S ∪ (−S).
Since H is a Hilbert lattice, it follows that Q(S) ⊆ S and that, for any x ∈ H,
Qx = 〈a, x〉a ∈ Ra ⊆ S ∪ (−S).

We now specialize our results to projection/reflection methods.

Theorem 3.12 (Norm convergence of Douglas–Rachford sequences) Let H be a
Hilbert lattice, S := H+, let A be a closed affine subspace with finite codimension,
and suppose S ∩ A 6= ∅. For any x0 ∈ H define xn+1 := TS,Axn. Then (xn)∞n=1

converges in norm to a point x with x+ ∈ S ∩ A whenever one of the following
conditions holds:

(a) R(Q) ∩ S = {0}.
(b) Q(A− S) ⊆ S ∪ (−S) and Q(S) ⊆ S.
(c) A has codimension 1.
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Proof. (a) Follows directly from Lemma 3.6. (b) By the definition of the Douglas–
Rachford sequence, we have (λn)∞n=1 ⊆ Λ := A − S. By Lemma 3.10, we may
express

λn+1 = (xn + x−n−1)− |xn| = x−n−1 − 2x−n .

Thus if xn ∈ S, for some n ≥ 1, then Qλn+1 = Qx−n−1 ∈ Q(S) ⊆ S. We therefore
have that Lemma 3.8(a) holds, and thus that (x+

n )∞n=1 converges in norm. Since
(xn)∞n=1 is bounded (being weakly convergent) from (5) we see that (Qλn)∞n=1 is
also bounded. As it is contained in a finite dimensional subspace, it contains a norm
convergent subsequence (Qλnk)

∞
k=1. Again by (5) we see that (xnk)

∞
k=1 converges.

Fejér monotonicity now implies norm convergence. (c) If (xn)∞n=1 fails to converge in
norm, then Lemma 3.11 implies Q(S) ⊆ S and Q(A−S) ⊆ S∪ (−S). But then (b)
implies that (xn)∞n=1 was actually norm convergent, which is a contradiction.

Within this framework, we also recover the the corresponding results relating to
von Neumann sequences originally derived in [6].

Theorem 3.13 (Norm convergence of von Neumann sequences) Let H be a Hilbert
lattice, S := H+, A an affine subspace with finite codimension, and S ∩A 6= ∅. For
any x0 ∈ H define xn+1 := PAPSxn. Then (xn)∞n=1 converges in norm to a point
x ∈ A ∩ S whenever one of the following conditions holds:

(a) R(Q) ∩ S = {0}.
(b) Q(S) ⊆ S ∪ (−S).
(c) A has codimension 1.

Proof. (a) Follows directly from Lemma 3.6. (b) By the remarks preceding
Lemma 3.10, we see that (λn)∞n=1 ⊆ Λ := S, Lemma 3.8(b) holds, and thus
that (xn)∞n=1 converges in norm. (c) If (xn)∞n=1 fails to converge in norm, then
Lemma 3.11 implies Q(S) ⊆ S. But then (b) implies that (xn)∞n=1 was actually
norm convergent, which is a contradiction.

The following lemma is an analogue of Lemma 3.10 for the relaxed Douglas–
Rachford sequences.

Lemma 3.14 Let (xn)∞n=1 be the relaxed Douglas–Rachford sequence defined by
xn+1 := T cS,Axn where S ⊆ H is a nonempty closed convex cone, and A ⊆ H
is an affine subspace with finite codimension. That is,

κn+1 = 2(1− a)(1− c)PS	xn, λn+1 = 2(1− b)(1− c)(xn −RaSxn),

where xn is some point selected from A. Then

xn+1 + (τ − 1)xn − (1− a)τPS	xn
τ

∈ A,

where τ := 2(1−b)(1−c). Further suppose that (1−a)(1−c) = (1−b)(1−c) = 1/2
and Q(−S	) ⊆ S. If xn0

∈ S, for some n0 ≥ 1, then Qλk = 0 for all k ≥ n0 + 1,
and hence the relaxed Douglas–Rachford sequence is eventually constant.

Proof. The proof is similar to Lemma 3.10. To prove the first claim, apply Q to
both sides of (6) use Theorem 2.2.

10
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Suppose further that (1− a)(1− c) = (1− b)(1− c) = 1/2 and Q(−S	) ⊆ S. In
particular, we have τ = 1 so that

xn+1 = PSxn +Q(xn −RaSxn),

and the expression for the point in A reduces to xn+1 − (1− a)PS	xn ∈ A.
If xn0

∈ S then RSxn0
= xn0

, xn0+1 = PAxn0
∈ A, and

Qλn0+1 = Q ((xn0
− (1− a)PS	xn0−1)− xn0

) = Q(−(1− a)PS	xn0−1) ∈ S.

As before, this implies xn0+1 = xn0
+Qλn0+1 ∈ S. That is, xn0

+1 ∈ S∩A ⊆ FixTS,A
and so Qλk = 0 for k ≥ n0 + 1.

The following result simultaneously generalizes Theorem 3.12 and Theorem 3.13
to a one-parameter family of relaxed Douglas–Rachford sequences. When a = b = 0
and c = 1/2 we recover the Douglas-Rachford iteration, and when a = b = 1/2 and
c = 0 we obtain the von Neumann iteration.

Theorem 3.15 (Norm convergence of relaxed Douglas–Rachford sequences) Let
H be a Hilbert lattice, S := H+, let A be a closed affine subspace with finite codi-
mension, and suppose A ∩ S 6= ∅. For any x0 ∈ H, define xn+1 := T cS,Axn. Then

(xn)∞n=1 converges in norm whenever one of the following conditions holds:

(a) R(Q) ∩ S = {0}.
(b) Q(A − S) ⊆ S ∪ (−S), Q(S) ⊆ S, (1 − a)(1 − c) = (1 − b)(1 − c) = 1/2 and

a ∈ [0, 1/2].
(c) A has codimension 1, and (1− a)(1− c) = (1− b)(1− c) = 1/2.

Proof. (a) Follows immediately from Lemma 3.6. (b) Since 0 ≤ a ≤ 1/2 and

RaSxn = axn + (1− a)|xn| = x+
n + (1− 2a)x−n ,

we have RaSxn ∈ S and λn+1 ∈ Λ := A − S for all n ≥ 1. By Lemma 3.10, we
express

λn+1 = (xn + x−n−1)− (x+
n + (1− 2a)x−n ) = x−n−1 − 2(1− a)x−n .

Thus if xn ∈ S, for some n ≥ 1, then Qλn+1 = Qx−n−1 ∈ Q(S) ⊆ S. We therefore
have that Lemma 3.8(a) holds, and thus (x+

n )∞n=1 converges in norm. Arguing as
before, since (xn)∞n=1 is bounded (being weakly convergent) from (5) we see that
(Qλn)∞n=1 is also bounded. As it is contained in a finite dimensional subspace, it con-
tains a norm convergent subsequence (Qλnk)

∞
k=1. Again by (5) we see that (xnk)

∞
k=1

converges. Fejér monotonicity now implies norm convergence. (c) If (xn)∞n=1 fails to
converge in norm, then Lemma 3.11 implies Q(S) ⊆ S and Q(A− S) ⊆ S ∪ (−S).
But then (b) implies that (xn)∞n=1 was actually norm convergent, which is a con-
tradiction.

Remark 3.16 One may interpret the conditions (b) and (c) of Theorem 3.15 as
follows. If c (resp. a and b) is increased, then a and b (resp. c) must decrease. ♦

Remark 3.17 (Inequality constraints) In a Hilbert lattice, suppose that the affine

11
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constraint A is replaced with the half-space constraint

A′ := {x ∈ H : 〈a, x〉 ≤ b}.

That is, we consider the problem of finding a point in A′ ∩ S where S := H+.
We reformulated A′ as an equality constrained problem in H×R by introducing

a slack variable. That is, we have the sets

Â := {(x, y) ∈ H × R : 〈a, x〉H + y = b}, Ŝ := H+ × R+.

One may now consider the problem of finding a point in Â ∩ Ŝ. ♦

The following equivalence applies to case (a) of Theorems 3.12 and 3.13, and
shows that its hypothesis coincides with bounded linear regularity of (S,A) (see
Section 4 and [6, Th. 5.3]), as we describe below in Corollary 3.19.

Theorem 3.18 Suppose T : H → H is a linear mapping with finite rank, and
K ⊆ H a convex cone. Then

N(T ) +K = H ⇐⇒ N(T )⊥ ∩K	 = {0}.

Proof. (“=⇒”) Clearly, 0 ∈ N(T )⊥ ∩ K	. Suppose there exists a non-zero z ∈
N(T )⊥ ∩K	. Then

〈z,H〉 = 〈z,N(T )〉+ 〈z,K〉 ≤ 0.

In particular, since z ∈ H we have ‖z‖ ≤ 0, and hence z = 0.
(“⇐=”) Suppose N(T )⊥ ∩K	 = {0}. Then

N(T ) +K = (N(T ) +K)		 = (N(T )⊥ ∩K	)	 = {0}	 = H.

Thus N(T ) +K is a convex cone which is norm dense in H, and hence T (K) is a
convex cone which is norm dense in R(T ). Further since T has finite rank, R(T ) is
a Euclidean space. Since the only dense convex cone in a finite dimensional space
is the entire space (see, for example, [3, p. 269]), T (K) = R(T ). Whence

K +N(T ) = T−1T (K) = T−1R(T ) = H.

This completes the proof.

Corollary 3.19 Let H be a Hilbert lattice with lattice cone S := H+, and Q be a
projection onto a finite dimensional subspace. Then

N(Q) + S = H ⇐⇒ R(Q) ∩ S = {0}.

Proof. Since R(Q) it is a closed subspace, −R(Q) = R(Q) = N(Q)⊥. Since S is
the Hilbert lattice cone, S	 = −S. Altogether,

N(Q)⊥ ∩ S	 = {0} ⇐⇒ R(Q) ∩ S = {0}.

The result now follows from the previous Theorem.

12
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4. Rate of Convergence

In this section we gives various examples and counter-examples regarding conver-
gence rates of projection and reflection algorithms.

Recall that a pair (A,B) of closed convex sets with nonempty intersection, are
boundedly linearly regular if for each bounded set C ⊆ H, there exists κ > 0 such
that for all x ∈ C,

max{d(x,A), d(x,B)} ≤ κd(x,A ∩B).

For a pair of cones, (A,B), the formally weaker notations of regularity and lin-
early regularity, as defined in [6], coincide with bounded linear regularity (see [6,
Th. 3.17]).

The following example shows that even for a hyperplane, when the transversality
condition N(Q)+S = H, of Corollary 3.19, fails, the alternating projection method
need not have a uniform linear rate of convergence in any neighbourhood of the
intersection.

Example 4.1 (Failure of (bounded) linear regular for the hyperplane) Consider the
Hilbert lattice H := `2(N) with lattice cone H+ := {x ∈ H : xk ≥ 0 for k ∈ N},
and the constraint sets

A := {x ∈ H : 〈a, x〉 = 0}, S := H+,

where a ∈ H+, ‖a‖ = 1 and am ∈]0, 1[ for all m ∈ N.
For any initial point x0 ∈ H, consider the von Neumann sequence given by

xn+1 := PAPSxn = x+
n − a〈a, x+

n 〉.

Since A ∩ S = {0}, and A has codimension 1, Theorem 3.12 implies that xn → 0
in norm.

For any fixed m ∈ N, choose α0 > 0 and recursively define

αn+1 := (1− a2
m)αn, βn := αnam.

Let x0 := α0em − β0a = α0(em − ama) ∈ A.
We show that the formulae xn = αnem − βna holds for all n. We proceed by

induction on n. Observe that

x+
n = (αn − βnam)em = αn(1− a2

m)em = αn+1em.

Hence 〈a, x+
n 〉 = αn+1am = βn+1, and thus xn+1 = αn+1em − βn+1a. We have now

shown that

xn = α0(1− a2
m)n(em − ama).

For each initial point (choice of α0 and m) we see that the iterates converge
linearly to 0 ∈ S ∩ A. However, by choosing α0 sufficiently small and m large
enough so 1 − a2

m) is as near to 1 as we please, we see that there is no uniform
linear rate of convergence over all initial points in any neighborhood of the solution.

♦

13
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By contrast, we now show the same problem is often solved by the Douglas–
Rachford method in finitely many steps. We note in the Euclidean case that we
always have finite convergence, as shown in Figure 1, if the iteration converges to
a point in the interior of K.

Example 4.2 (Douglas–Rachford sequences for Example 4.1) For A, S, a and x0 =
α0(em − ama) as in Example 4.1 we consider the Douglas–Rachford sequence

xn+1 := TS,Axn = x+
n − a〈a, |xn|〉.

If xn has the form xn = αnem − βna with αn, βn > 0 and αn − βnam > 0, then
xn+1 = αn+1em − βn+1a where

αn+1 := αn − amβn, βn+1 := amαn + (1− 2a2
m)βn. (8)

Thus βn+1 > 0 provided m is chosen sufficiently large to ensure a2
m < 1/2 and

so (αn) is strictly decreasing. However, there is no guarantee that αn+1 remains
positive. Indeed, we show that αn0

≤ 0 for some (smallest) n0 ∈ N, in which case
xn0+1 = x+

n0+1 = 0 at which point the Douglas-Rachford sequence terminates.
Suppose by way of a contradiction, that αn > 0 for all n. Note that this implies

also that βn > 0 for all n.
Eliminating (βn)∞n=1 from (8) and rearranging gives the two-term recurrence

αn+2 = 2(1− a2
m)αn+1 − (1− a2

m)αn, (9)

from which we deduce that the generating function for (αn)∞n=1, valid for |z| ≤ 1,
is

g(z) :=

∞∑
n=0

αn (x) zn =
α0 + (α1 − 2xα0)z

1− 2 zx+ xz2
= α0

1− xz
1− 2 zx+ xz2

(10)

where x := 1− a2
m, on noting that α1 = xα0. Hence

g′(1) =

∞∑
n=1

nαn (x) = −α0
x (1− x)

(1− x)2 < 0. (11)

This shows that at least one αn is strictly negative, a contradiction. ♦

Remark 4.3 We may solve (9) to show αn = C(
√
x)n cos(nθ + φ) where θ :=

arccos
√
x ≈ π/2 −

√
2(1− am)s and so deduce that αn ‘typically’ exhibits oscil-

latory behaviour around zero. That is, the solution is a superposition of scaled
Chebyshev polynomials. We conclude that for sufficiently large m, the iteration
always terminates finitely.

The following Maple 16 code

with(gfun):

DR:=rectoproc({z(n+1)=2*x*z(n)-x*z(n-1),z(0)=alpha[0],z(1)=alpha[1]},z(n)):

guessgf([seq((DR(m)),m=0..10)],z)[1]:latex(%);

14
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produces the requisite ordinary generating function

−(2xα0 − α1) z − α0

xz2 − 2 zx+ 1
,

quite painlessly. ♦

We have not yet exhibited an example of a Douglas-Rachford iteration for a
simplicial cone and an affine subspace that does not terminate finitely. We now
remedy the situation. To do so we start with a useful technical result.

Example 4.4 (Condition for two Douglas–Rachford sequences to agree) Let I 6= ∅
be finite, and let {si ∈ H : i ∈ I} be linearly independent unit vectors in H. Let
S ⊆ H denote the simplicial cone

S := {x ∈ H : x =
∑
i∈I

λisi, λj ≥ 0, ∀j ∈ I},

and set

Ŝ := S − S = span{si : i ∈ I} = {x ∈ H : x =
∑
i∈I

λisi, λj ∈ R,∀j ∈ I}.

Consider any affine subspace A not containing the origin such that S∩A 6= ∅. Fix
x∗ ∈ S ∩A and set ε := inf{λj : x∗ =

∑
i∈I λisi, λj 6= 0, j ∈ I}. This is well-defined

because 0 6∈ A, and as A is closed ε is strictly positive.
We claim that

Bε(x
∗) ∩ S = Bε(x

∗) ∩ Ŝ, (12)

from which it follows that PS |Bε(x∗) = PŜ |Bε(x∗).

To prove (12), suppose there exists x ∈ Bε(x
∗) ∩ Ŝ but x 6∈ Bε(x

∗) ∩ S. If x
is represented as x =

∑
i∈I αisi then there must exists an index j ∈ I such that

αj < 0 (otherwise x would be in Bε(x
∗) ∩ S). Then

ε ≥ ‖x∗ − x‖ =

∥∥∥∥∥∑
i∈I

(λi − αi)si

∥∥∥∥∥ ≥ λj − αj > λj .

But this contradicts the definition of ε, and the claim follows.
If x ∈ Bε(x∗), nonexpansivity of all the following operators implies that

PSx, PAx,RSx,RSx, TS,Ax ∈ Bε(x∗).

Since the projections onto S and Ŝ coincide within this ball, we have shown that
when the initial point is chosen sufficiently close to a point in S ∩A, the Douglas–
Rachford iteration for the sets S and A coincides with that for Ŝ and A. ♦

Example 4.5 (Infinite Douglas–Rachford sequences) We begin with the case of two
affine subspaces and using Example 4.4 show how this can encompas the case of
an affine subspace and a cone.

15
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(a) In [5, Sec. 2.3] it is observed that the Douglas-Rachford method applied to
two lines L1 and L2 making an angle strictly between 0 and π/2 produces
an infinite sequence which converges at a linear rate given by the cosine of
the angle. Thus, typically for linear subspaces the method does not terminate
finitely.

(b) Consider a finite dimensional subspace Ŝ and a closed affine subspace A of
the form given in Example 4.4, and an initial point which yields a Douglas–
Rachford sequence (xn)∞n=1 converging in norm to the point x∗ =

∑
i∈I αisi

which does not terminate finitely. By replacing each sj with −sj if necessary,
we may assume that αi ≥ 0 for all i ∈ I. We then have that

x∗ ∈ A ∩ S.

For sufficiently large n, the Douglas–Rachford sequence for the sets A and S
and initial point xn coincide with Douglas–Rachford sequence applied to the
sets A and Ŝ. In particular, we may start with two lines as in (a) : for instance
A := {(x, 1) : x ∈ R} and S := {(x, x) : x ≥ 0}.
If instead, the set A contained the origin one may satisfy the above condi-
tions by replacing A (respectively, initial point) by the set (respectively, point)

obtained by translating by the non-zero vector ŝ ∈ Ŝ \A.

♦

Remark 4.6 To our chagrin we have not yet found an example for the Hilbert cone
and an affine subspace for which the Douglas-Rachford iteration does not terminate
finitely. The cone S above is a lattice for the subspace it spans but this is not the
whole space. However, at least in infinite dimensions it seems likely such sequences
exist. ♦

5. Conclusion

Our analysis shows that issues about the strength and rate of convergence for
relaxed Douglas–Rachford methods are indeed subtle. We repeat that we are still
unable to resolve case (c) of our main result, Theorem 3.12, even for codimension
2 in the von Neumann case.

We hope, nonetheless, that we have set the foundation for a resolution of the
following conjecture.

Conjecture 5.1 Let K be a Hilbert lattice cone and A a finite codimension closed
affine manifold. Then, for 0 ≤ a, b, c < 1 the relaxed Douglas–Rachford iteration of
Theorem 3.15 converges in norm as soon as

(1− a) = (1− b) =
1

2(1− c)
.

So, in particular, the corresponding methods of von Neumann and Douglas-
Rachford always converge in norm.

16



May 8, 2014 Optimization DRrealistic-08-05-14

Acknowledgements

The authors wish to thank the helpful comments of the two anonymous referees.
JMB is supported, in part, by the Australia Research Council. BS is supported,
in part, by the Australia Research Council. MKT is supported, in part, by an
Australian Postgraduate Award.

References

[1] F.J. Aragón Artacho, J.M. Borwein and M.K. Tam. Recent results on Douglas–
Rachford methods for combinatorial optimization problems. J. Optim. Theory Appl.,
in press (2013). DOI: 10.1007/s10957-013-0488-0

[2] F.J. Aragón Artacho, J.M. Borwein and M.K. Tam. Douglas–Rachford feasibility
methods for matrix completion problems. Preprint: arXiv:1308.4243 (2013).

[3] C.D. Aliprantis and K.C. Border. Infinite dimensional analysis: A hitch-hiker’s guide.
Springer (2007).

[4] C.D. Aliprantis and R. Tourky. Cones and duality. Graduate Studies in Mathematics
84, American Mathematical Society (2007).

[5] H.H. Bauschke, J.Y. Bello Cruz, H.M. Phan, X. Wang. The rate of linear convergence
of the Douglas–Rachford algorithm for subspaces is the cosine of the Friedrichs angle.
Preprint arXiv:1309.4709 (2013).

[6] H.H. Bauschke and J.M. Borwein. On the convergence of von Neumann’s alternating
projection algorithm for two sets. Set-Valued Analysis, 1:185–212 (1993).

[7] H.H. Bauschke and J.M. Borwein. On projection algorithms for solving convex feasi-
bility problems. SIAM Rev., 38(3):367–426 (1996).

[8] H.H. Bauschke, J.V. Burke, F.R. Deutsch, H.S. Hundal and J.D. Vanderwerff. A new
proximal point iteration that converges weakly but not in norm. Proc. Amer. Math.
Soc., 133:1829–1835 (2005).

[9] H.H. Bauschke and P.L. Combettes. Convex analysis and monotone operator theory
in Hilbert spaces. Springer (2011).

[10] H.H.Bauschke and P.L. Combettes. A weak-to-strong convergence principle for Fejér
monotone methods in Hilbert space. Math. Oper. Res., 26(2):248–264 (2001).

[11] H.H. Bauschke, P.L. Combettes, and D.R. Luke. Finding best approximation pairs
relative to two closed convex sets in Hilbert space. J. Approx. Theory, 127:178–192
(2004).

[12] H.H. Bauschke, D.R. Luke, H.M. Phan and X. Wang. Restricted normal cones and the
method of alternating projections: theory. J. Set-Valued Variational Anal., 21:431–
473, 2013.

[13] H.H. Bauschke and D. Noll. On the local convergence of the Douglas–Rachford algo-
rithm. Preprint arXiv:1401.6188 (2014).

[14] J.M. Borwein. Adjoint process duality. Math. Oper. Res., 8(3):403–434 (1983).
[15] J.M. Borwein. Continuity and differentiability properties of convex operators. Proc.

London Math. Soc., 3(3):420–444 (1982).
[16] J.M. Borwein and M.K. Tam. A cyclic Douglas–Rachford iteration scheme. J. Optim.

Theory. Appl. (2013). DOI: 10.1007/s10957-013-0381-x
[17] J.M. Borwein and M.K. Tam The cyclic Douglas–Rachford method for inconsis-

tent feasibility problems. J. Nonlinear Convex Anal., accepted March 2014. Preprint
arXiv:1310.2195

[18] J.M. Borwein and J.D. Vanderwerff. Convex functions: constructions, characteriza-
tions and counterexamples. Cambridge University Press (2010).

[19] J.M. Borwein and D.T. Yost. Absolute norms on vector lattices. Proc. Edinburgh
Math. Soc., 27:215–222 (1984).

[20] P.L. Combettes and N.N. Reyes. Moreau’s decomposition in Banach spaces. Math.
Program., 139(1):103–114 (2013).

17

http://link.springer.com/article/10.1007%2Fs10957-013-0488-0
http://arxiv.org/abs/1308.4243
http://arxiv.org/abs/1309.4709
http://arxiv.org/abs/1401.6188
http://link.springer.com/article/10.1007/s10957-013-0381-x
http://arxiv.org/abs/1310.2195


May 8, 2014 Optimization DRrealistic-08-05-14

[21] V. Elser, I. Rankenburg and P. Thibault. Searching with iterated maps. Proc. Nation
Acad. Sci., 104(2):418–423 (2007).

[22] R. Escalante and M. Raydan. Alternating projection methods. SIAM (2011).
[23] S. Gravel and V. Elser. Divide and concur: A general approach to constraint satisfac-

tion. Phys. Rev. E, 78(3):036706 (2008).
[24] R. Hesse and D.R. Luke. Nonconvex notions of regularity and convergence of funda-

mental algorithms for feasibility problems. SIAM J. Optim., 23(4):2397–2419 (2013).
[25] R. Hesse, D.R. Luke and P. Neumann. Projection methods for sparse affine feasibility:

results and counterexamples. Preprint arXiv:1212.3349 (2013).
[26] H.S. Hundal. An alternating projection that does not converge in norm. Nonlinear

Anal.: Theory, Methods & Appl., 57(1):35–61 (2004).
[27] E. Kopecká. Spokes, mirros and alternating projections. Nonlinear Anal.: Theory,

Methods & Appl., 68(6):1759–1764 (2008).
[28] A.S. Lewis, D.R. Luke and J. Malick. Local linear convergence for alternating and

averaged nonconvex projections. Found. Comput. Math. 9:485–513, 2009.
[29] P.-L. Lions and B. Mercier. Splitting algorithms for the sum of two nonlinear opera-

tors. SIAM J. Numer. Anal., 16:964–979 (1979).
[30] J. Lindenstrauss and L. Tzafriri. Classical Banach Spaces I and II. Springer (1996).
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