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Introduction Expectations Densities 3 and 4 steps

The random walk integrals

Definition

Wn(s) :=

∫
[0,1]n

∣∣∣∣∣
n∑
k=1

e2πxki

∣∣∣∣∣
s

dx

for complex s. Wn := Wn(1).

Definition

Let pn be the (unique) function that satisfies

Wn(s) =

∫ n

0
pn(x)xsdx.

Work in progress. . .

Makes heavy use of experimental mathematics.
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Introduction Expectations Densities 3 and 4 steps

What we know

W1(s) = 1, W2(s) =
(
s
s/2

)
. So p1(x) = δ1(x),

p2(x) = 2
π
√
4−x2 .

W3(±1) have closed form, rest follows by recursion.

Later: part of derivation for W4(±1).

pn is unique as all moments are known and the interval of
integration is finite.

We shift focus from Wn to pn, in particular p3 and p4.
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Introduction Expectations Densities 3 and 4 steps Experimental maths 1

Closed forms

Theorem (1)

W4(−1) =
π

4
7F6

(
5
4 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2

1
4 , 1, 1, 1, 1, 1

∣∣∣∣1
)
.

Theorem (2)

Both of the following are equal to W4(1):

3π

4
7F6

(
7
4 ,

3
2 ,

3
2 ,

3
2 ,

1
2 ,

1
2 ,

1
2

3
4 , 2, 2, 2, 1, 1

∣∣∣∣1
)
− 3π

8
7F6

(
7
4 ,

3
2 ,

3
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2

3
4 , 2, 2, 2, 2, 1

∣∣∣∣1
)

=
9π

4
7F6

(
7
4 ,

3
2 ,

3
2 ,

3
2 ,

1
2 ,

1
2 ,

1
2

3
4 , 2, 2, 2, 1, 1

∣∣∣∣1
)
− 2π7F6

(
5
4 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2

1
4 , 1, 1, 1, 1, 1

∣∣∣∣1
)
.
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Introduction Expectations Densities 3 and 4 steps Experimental maths 1

Proof of Theorem (1)

The proof uses Bailey’s identity connecting G2,4
4,4 to 7F6.

But recall that W4(−1) is a G2,2
4,4.

Fear not! For we use the definition of Meijer G-functions to obtain
the integrand for W4(−1) :

Γ(12 − t)
2Γ(t)2

Γ(12 + t)2Γ(1− t)2
xt =

Γ(12 − t)
2Γ(t)4

Γ(12 + t)2
· sin2(πt)

π2
xt,

using Γ(t)Γ(1− t) = π/ sin(πt).

We choose the contour to enclose the poles of Γ(12 − t).
sin2(πt) does not interfere with the residues, for it equals 1 at half
integers, so it can be ignored. Then the right-hand side is the
integrand of a G2,4

4,4.
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Introduction Expectations Densities 3 and 4 steps Experimental maths 1

Proof of Theorem (2), first equality

Nesterenko’s theorem connects G2,4
4,4 to a triple integral. The

entries in the G2,4
4,4 need to satisfy special properties. In particular,

a(z) := G2,2
4,4

(
0,1,1,1

− 1
2
, 1
2
,− 1

2
,− 1

2

∣∣z) does not satisfy these properties.

But a(1) = −2πW4(1).

However, c := −G2,2
4,4

(
0,1,1,1

1
2
, 1
2
,− 1

2
,− 1

2

∣∣1) does. Experimentally we

observed a(1) = 4c.

We use these easy identities:

d

dz

(
z−b1G2,2

4,4

(
a1, a2, a3, a4
b1, b2, b3, b4

∣∣∣∣z)) =
−1

z1+b1
G2,2

4,4

(
a1, a2, a3, a4

b1 + 1, b2, b3, b4

∣∣∣∣z)
d

dz

(
z1−a1G2,2

4,4

(
a1, a2, a3, a4
b1, b2, b3, b4

∣∣∣∣z)) =
1

za1
G2,2

4,4

(
a1 − 1, a2, a3, a4
b1, b2, b3, b4

∣∣∣∣z)
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Introduction Expectations Densities 3 and 4 steps Experimental maths 1

Applying the first identity to a(z) and using the product rule, we
get 1

2a(1) + a′(1) = c.

Applying the second identity to a(z), we obtain a′(1) = −c after
simplifications. Hence a(1) = 4c.

Using Nesterenko’s theorem:

W4(1) =
4

π3

∫ 1

0

∫ 1

0

∫ 1

0

√
x(1− y)(1− z)

(1− x)yz(1− x(1− yz))
dxdydz.

Change of variable z′ = 1− z, then use
(z′)

1
2 = (z′)−

1
2 (1− (1− z′)) = (z′)−

1
2 − (z′)−

1
2 (1− z′) to split it

into two integrals.

Each integral satisfies Zudilin’s theorem, which converts such
integrals into 7F6’s.
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Introduction Expectations Densities 3 and 4 steps Experimental maths 1

Proof of Theorem (2), second equality

We convert all hypergeometric terms into triple integrals,
judiciously using Bailey’s identity, Nesterenko’s theorem, and
Zudilin’s theorem (for they produce multiple equivalent forms).

We also use Zudilin’s result which gives a non-trivial permutation
of the exponents of x, y, z in the triple integral, while leaving its
value unchanged.

These integrals are nice enough that they can be reduced to 1D
integrals of E and K.

When we pick the “right” integrals, the integrands (as functions of
E and K) on both sides equal.

9 / 23
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Introduction Expectations Densities 3 and 4 steps

J. Kluyver

For n ≥ 4,

pn(t) =

∫ ∞
0

xtJ0(xt)J
n
0 (x)dx

So probability of returning to the unit disk is

∫ 1

0
pn(t)dt =

∫ ∞
0

J1(x)Jn0 (x)dx =

[
−J0(x)n+1

n+ 1

]∞
0

=
1

n+ 1
.

For n = 2 and 3 the probability is elementary.

pn is smooth for n ≥ 6.
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Introduction Expectations Densities 3 and 4 steps

Lord Rayleigh

Our definition of pn takes advantage of radial symmetry. A
true 2D probability density ψn requires

Wn(s) =

∫ n

0
ψn(x)xs 2πxdx.

That is, pn(x) = 2πxψn(x).

Rayleigh gave approximate ψn for large n, first by
approximating the problem in 1D using the central limit
theorem (for Bernoulli trials: 1√

nπ/2
e−2x

2/n).

He then allowed the walks to be on a lattice, finally relaxing it
to the plane, modifying his approximation.

ψn(x) ≈ 1
nπe
−x2/n, like a 2D central limit theorem.

This is very accurate even for moderate n.
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pn with approximations superimposed.
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Introduction Expectations Densities 3 and 4 steps

Recursion for Wn

We condition the distance z of an (n+m)-step walk on x (first n
steps), followed by y (remaining m steps).

By the cosine rule,

z2 = x2 + y2 + 2xy cos(θ).

\θx

zjjjjjjjjjjjjj

jjjjjjjjjjjjj y
�����

�����

The moments are worked out by CAS:

gs(x, y) :=
1

π

∫ π

0
zs dθ = ys Re 2F1

(
− s

2 ,−
s
2

1

∣∣∣∣x2y2
)
.

Therefore Wn+m(s) =

∫ n

0

∫ m

0
gs(x, y) pn(x)pm(y)dydx. (1)
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Introduction Expectations Densities 3 and 4 steps

Recursion for ψn

Let r be the position vector after n steps, and s be the position
vector of the nth step.

Then, upon using polar coordinates and the cosine rule,

ψn(r) =

∫
δ1(|s|)

2π
ψn−1(|r−s|)ds =

∫ 2π

0

ψn−1
(√
r2 + 1− 2r cos t

)
2π

dt.

Combined with ψ2, this gives

p3(x) =

√
x

π2
Re K

(√
(x+ 1)3(3− x)

16x

)
.

Put r = 0, we get ψn(0) = ψn−1(1) = pn−1(1)
2π = p′n(0)

2π = Res−2Wn

2π .
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Introduction Expectations Densities 3 and 4 steps

Alternative form for pn

We now use the sine rule to make a change variable, so the last
integral in (1) becomes dz instead of dx:

Wn+m(s) =

∫ n+m

0
zs
{∫ n

0

∫ π

0

z

πy
pn(x)pm(y)dtdx

}
dz,

where y =
√
x2 + z2 − 2xz cos t.

By uniqueness, the expression inside the braces is pn+m.

Combined with p3, we have

p4(t) =
8t

π3

∫ 2

0
Re

 K
(√

16xt
(x+t)2(4−(x−t)2)

)
√

(x+ t)2(4− (x− t)2)

 dx√
4− x2

,

which is better numerically than its Bessel counterpart.
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Introduction Expectations Densities 3 and 4 steps Experimental maths 2

Poles of W3 via p3

In p3, we have K
(√

16x3

(3−x)3(1+x)

)
= 3−x

3+3x K
(√

16x
(3−x)(1+x)3

)
,

as both sides satisfy the same differential equation.

So we can write p3 cleanly in terms of the AGM, enabling us to use
a result of Borwein et al. So on [0, 1)

p3(x) =
2√
3π
x
∞∑
k=0

W3(2k)
(x

3

)2k
.

Using this series, we compute (with lots of care), for small a > 0,∫ a

0
p3(x)xsdx =

2as+2

√
3π(s+ 2)

+
2as+4

3
√

3π(s+ 4)
+ · · ·

so the residues of W3 can be read off, namely,
Res(−2k−2) W3 = 2

π
√
3

W3(2k)
9k

.

But if p4 admits a similar series, how can this reconcile with the
double poles of W4?
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Functional equation for p3

As Re K(x) = 1
xK

(
1
x

)
for x > 1, we split p3 over [0, 1] and [1, 3],

obtaining W3(−1) =
∫ 3
0
p3(x)
x dx =

4

π2

∫ 1

0

K
(√

16x
(3−x)(1+x)3

)
√

(3− x)(1 + x)3
dx+

1

π2

∫ 3

1

K

(√
(3−x)(1+x)3

16x

)
√
x

dx.

Numerically we noted the two integrals equal. Proof: change of
variable x→ 3−t

1+t in the second integral.

This leads to a modular property: with the involution σ(x) = 3−x
1+x ,

p3(x) =
4x

(3− x)(x+ 1)
p3(σ(x)).

Also, W3(−1) = 4√
3π

∑∞
k=0

W3(2k)
9k(2k+1)

.
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Introduction Expectations Densities 3 and 4 steps Experimental maths 2

Series for p4

Jon asked us to plot p′4(x) for small x. Armin correctly used the
true formula,

lim
h→0

p4(x+ h)− p4(x)

h
,

I, however, foolishly used the “formula”,

lim
h→0

p4(x+ h)− p4(h)

x
.

Amazingly, we produced almost the same plot, except mine was
vertically translated up by a ≈ 0.14.
Unfazed by my failure to find a derivative from first principles, this
means, very nearly, p4 satisfies the differential equation

f ′(x) + a =
f(x)

x
,

which even I can solve: f(x) = bx− ax log x, where b ≈ 0.33 as∫ 1
0 f(x)dx = 1

5 .
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f ′(x) + a =
f(x)

x
,

which even I can solve: f(x) = bx− ax log x, where b ≈ 0.33 as∫ 1
0 f(x)dx = 1

5 .
18 / 23



Introduction Expectations Densities 3 and 4 steps Experimental maths 2

This explains the double pole!

In fact, if the series were to be consistent with the residues and
coefficients of the double pole, then we must have:

p4(x) =
∞∑
n=1

(
a4(n)− r4(n) log x

)
x2n−1,

where a4(n) are the residues at −2n and r4(n) are the coefficients
of the double pole at −2n.

The first approximation is(
9 log 2

2π2
− 3

2π2
log x

)
x.

r4(n) may be obtained in closed form by recursion.
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p4 versus conjectured expansion on [0, 2].

Like p3, p4 also has a clean AGM form.

p4 can also be written in terms of the Domb numbers,

W4(2n) =
n∑
k=0

(
n

k

)2(2k

k

)(
2n− 2k

n− k

)
.
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Closed forms

From our series for p3, Zudilin (using modular tools) deduced the
closed form

p3(x) =
2
√

3x

π(3 + x2)
2F1

( 1
3 ,

2
3

1

∣∣∣∣x2(9− x2)2(3 + x2)3

)
,

as well as a closed formed for p4 on [2, 4]:

p4(x) =
2
√

16− x2
π2x

3F2

(
1
2 ,

1
2 ,

1
2

5
6 ,

7
6

∣∣∣∣(16− x2)3

108x4

)
.

Numerically, this works on [0, 4] by taking the real part.

We get eerie connections with W3(s), for instance

p4(2) =
√
3
π W3(−1) and p3(

√
3)2 = 4p3(2

√
3− 3)2 = 3

2π2W3(−1).
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Future work

Prove expansion for p4, and prove closed form on all of [0, 4].

Other properties of p4, for instance any functional equations,
or points of inflection.

Properties of W5 and p5, for example, why is p5 almost linear
on [0, 1]?

Links to Calabi-Yau differential equations?

More closed forms for derivatives and residues for W3 and W4.
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Thank you!

Comments?

Questions?

Criticisms?
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