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Definition

Lambert W is the inverse of
x 7→ x exp(x). The real inverse is
two-valued, as shown in Figure 1.

We are interested in the principal
branch with Taylor series

W (x) =
∞∑
k=1

(−k)k−1

k!
xk

with radius of convergence 1/e.
Figure: The real branches of
the Lambert W function.
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Basic Properties

1 Implicit differentiation leads to

W ′(x) =
W (x)

x (1 + W (x))
.

2 W is concave on (−1/e,∞) and positive on (0,∞).

3 (log ◦W )(z) = log(z)−W (z) is concave; since W is log
concave on (0,∞).

4 exp(W (z)) = z/W (z) is concave.
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The Power of Naming

Besides it is an error to believe
that rigor in the proof is the
enemy of simplicity. – David
Hilbert

W is an excellent counter-example
to Stigler’s Law of Eponymy
(which asserts that an idea is
always named after the last person
to discover it). Figure: Johann Heinrich

Lambert (1728–1777)
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Trefethen’s Problem
Random Walks

Trefethen’s Problem

In 2002 Nick Trefethen published ten numerical challenge
problems in SIAM Review [3]. Several are in optimization.

Example (Trefethen’s ninth problem [3])

The problem is posed as follows.

The integral

I (α) =

∫ 2

0
[2 + sin(10α)]xα sin

(
α

2− x

)
dx

depends on the parameter α. What is the value α ∈ [0, 5]
at which I (α) achieves its maximum?
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The Computer Informs the Scientist

What we know about a
function often matters less
than what our CAS (say
Maple, Mathematica, or
SAGE) does.

At left: what Maple knows
about Meijer-G.
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A Solution to Trefethen’s Problem

I (α) is expressible in terms of a Meijer-G function.

Unlike most humans, Mathematica and Maple will figure this
out.

Help files or a web search then inform the scientist.
This is a measure of the changing environment.

Below: the exact form of I (α) as given by Maple.
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Short Random Walks

Assuming the Meier-G function is well implemented, one can
now use any good numerical optimiser.

The Meijer-G function has also been instrumental in
producing new results on a hundred-year-old topic:

Example (Moments of random walks [10])

The moment function of an n−step random walk in the plane is:

Mn(s) =

∫
[0,1]n

∣∣∣∣ n∑
k=1

e2πxk i

∣∣∣∣sd(x1, . . . , xn−1, xn).
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A Moment Function

The first breakthrough in [10] makes use of Meijer-G:

Theorem (Meijer-G form for M3)

For s not an odd integer,

M3(s) =
Γ(1 + s

2 )
√
π Γ(− s

2 )
G 21

33

(
1, 1, 1

1
2 ,−

s
2 ,−

s
2

∣∣∣∣14
)
. (1)

Equation (1) was first found by Crandall via CAS and proven
in [10] using residue calculus methods.

M3(s) is among the first non-trivial higher order Meijer-G
functions to be placed in closed form. (Also M4(s).)
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A New Result on an Old Topic

Theorem (Meijer-G form for M4)

For <s > −2 and s not an odd integer

M4(s) =
2s

π

Γ(1 + s
2 )

Γ(− s
2 )

G 22
44

(
1, 1−s

2 , 1, 1
1
2 −

s
2 ,−

s
2 ,−

s
2

∣∣∣∣1
)
. (2)

This, together with the first result, led to useful results, including:

Closed hypergeometric form for the radial density of a 3-step walk:

p3(α) =
2
√

3α

π (3 + α2)
2F1

(
1
3 ,

2
3

1

∣∣∣∣α2
(
9− α2

)2

( 3 + α2)3

)
(3)
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Trefethen’s Problem
Random Walks

The moment function
M4 drawn from (2) in
the Calendar Complex
Beauties 2016.
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Knuth’s Series Problem
An Open Question

Knuth’s Series Problem

We continue with an account of the solution in [5], to a problem
posed by Donald E. Knuth in the November 2000 issues of the
American Mathematical Monthly.

Problem 10832

Evaluate

S =
∞∑
k=1

(
kk

k!ek
− 1√

2πk

)
.

See [18] for the published solution.
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Knuth’s Series Problem
An Open Question

A Numerical Solution

Problem 10832

S =
∞∑
k=1

(
kk

k!ek
− 1√

2πk

)
.

Maple produced the approximation

S ≈ −0.08406950872765599646.

With “Smart Lookup” feature, the Inverse Symbolic Calculator*
yielded:

S ≈ −2

3
− 1√

2π
ζ

(
1

2

)
. (4)

Available at http://isc.carma.newcastle.edu.au/
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Knuth’s Series Problem
An Open Question

A CAS Solution

Calculations to higher precision (50 decimal digits) confirmed
this approximation. Are we done?

Why would such an identity hold?

One clue was the speed with which Maple calculated the
precise value of this slowly convergent sum. Maple clearly
knew something we did not ...
We discovered Maple was using the Lambert W function.

Another clue was the appearance of ζ(1/2) in the above
experimental identity, together with an obvious allusion to
Stirling’s formula in the original problem.
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Knuth’s Series Problem
An Open Question

A Conjectured Identity

We Conjectured the Identity

∞∑
k=1

(
1√
2πk

− P(1/2, k − 1)

(k − 1)!
√

2

)
=

1√
2π
ζ

(
1

2

)

Here P(x , n) denotes the Pochhammer symbol
x(x + 1) · · · (x + n − 1), and the binomial coefficients on the
left hand side are the same as those of the function
1/
√

2− 2x .

Maple successfully evaluated this summation as shown on the
right hand side.
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Knuth’s Series Problem
An Open Question

We now needed to establish that

∞∑
k=1

(
kk

k!ek
− P(1/2, k − 1)

(k − 1)!
√

2

)
= −2

3
.

Guided by the presence of the Lambert W function,

W (z) =
∞∑
k=1

(−k)k−1zk

k!
,

an appeal to Abel’s limit theorem suggested

lim
z→1

(
dW (−z/e)

dz
+

1√
2− 2z

)
=

2

3
.

Maple was able to evaluate this limit and so establish the identity.
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Knuth’s Series Problem
An Open Question

Proving the Identity

The identity relies on the following reversion [16]. Let
p =

√
2(1 + ez) with z = WeW , so that

p2

2
− 1 = W exp(1 + W ) = −1 +

∑
k≥1

(
1

k!
− 1

(k − 1)!

)
(1 + W )k

and revert to 1 + W = p − p2

3 + 11
72 p

3 + . . . for |p| <
√

2.

This combines with W ′(x) = W (x)
x (1+W (x)) to prove the identity.
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Knuth’s Series Problem
An Open Question

Remark on Generalisation

Proposition. (ζ(s) for 0 < s <∞, s 6= 1)

For 0 < Re s < 1 in the complex plane,

∞∑
k=1

(
1

ks
− Γ (k − s)

Γ (k)

)
= ζ (s) . (5)

Now Maple’s summation tools can reduce this to

N∑
k=1

1

ks
− Γ (N + 1− s)

(1− s) Γ (N)
→ ζ(s). (6)

For any given rational s ∈ (0,∞) Maple will evaluate the limit by
the Euler-Maclaurin method.
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Knuth’s Series Problem
An Open Question

Remark on Generalisation

Now Maple’s summation tools can reduce this to

N∑
k=1

1

ks
− Γ (N + 1− s)

(1− s) Γ (N)
→ ζ(s). (7)

For any given rational s ∈ (0,∞) Maple will evaluate the limit by
the Euler-Maclaurin method. Consulting the DLMF* we discover

ζ (s) =
N∑

k=1

1

ks
+

N1−s

s − 1
− s

∫ ∞
N

x − bxc
x s+1

dx .

*Found at http://www.dlmf.gov.
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Knuth’s Series Problem
An Open Question

Remark on Generalisation

For any given rational s ∈ (0,∞) Maple will evaluate the limit by
the Euler-Maclaurin method. Consulting the DLMF* we discover

ζ(s) =
N∑

k=1

1

ks
+

N1−s

s − 1
− s

∫ ∞
N

x − bxc
x s+1

dx .

Since the integral tends to zero for s > 0 and

lim
N→∞

Γ (N + 1− s)

(1− s) Γ (N)
− N1−s

1− s
= 0,

we can also produce an explicit human proof.

*Found at http://www.dlmf.gov
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An Open Question

An Open Question

Can one find a solution for general s 6= 1
2 ∈ (0, 1)?

Based on (5) and the Stirling approximation for
Γ(k + s) ≈

√
2π e−kkk+s−1/2 we obtain

∞∑
k=1

(
1√

2πks
− kk+1/2−s

k! ek

)
− ζ (s)√

2π
= κ (s) . (8)

We have κ(1/2) = 2/3, but it remains to evaluate κ(s) ∈ R more
generally. Our question is closely allied to that of asking if

Ws(x) =
∞∑
k=1

kk+1/2−s

k!
xk (9)

for s 6= 1/2 can be analysed in terms of W .
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Knuth’s Series Problem
An Open Question

A Plot of the Function in Question

Figure: The function κ to the left and right of s = 1/2.

.
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Preliminaries on Convex Conjugates
W in Conjugation of Log Convex Functions
Occurrences in Composition
Occurrences in Infimal Convolution
Occurrences in Homotopy

Definition of Convex Conjugate

For a function f : X → [−∞,∞] the convex conjugate is

the function f ∗ : X ∗ → [−∞,∞] given by

f ∗(y) = sup
x∈X
〈y , x〉 − f (x). (10)

Here X is a Euclidean, Hilbert, or Banach space.

The function f ∗ is always convex (if possibly always infinite).

If f is lower semicontinuous, convex, proper, (f ∗)∗ = f .

In particular if we show (by CAS) a function g = f ∗ for some
alertf , then g is necessarily convex.
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Preliminaries on Convex Conjugates
W in Conjugation of Log Convex Functions
Occurrences in Composition
Occurrences in Infimal Convolution
Occurrences in Homotopy

Visualizing Convex Conjugates

Figure: The construction of f ∗ is shown for a blue function f . The inputs of f ∗ may
be thought of as slopes of the lines through the origin. For each input, we obtain the
corresponding output by taking a parallel line and sliding it down as far away from the
original line as as it can go while still touching the curve of the function f . The output
is the vertical distance between the two lines [19]

.
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Computing a Closed Form

Let f : R→ R by f (x) = x2.
Then

f ∗(y) = sup
x∈R
{〈y , x〉 − f (x)}

= sup
x∈R
{yx − x2}.

Differentiating yx − x2 and
using y − 2x = 0, we find
that yx − x2 attains its
supremum when x = y

2 .

We substitute to obtain
f ∗(y) = y( y2 )− ( y2 )2 = y2

4 .

Figure: The function f (x) = x2 and

its conjugate f ∗(y) = y2

4 [19].
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Some Important Examples

For 1/p + 1/q = 1 with p, q > 1,(
| · |p

p

)∗
=
| · |q

q
.

The energy function |·|
2

2 is the only self-conjugate function.

The log barrier f (x) = − log x for x > 0 has conjugate
conjugate f ∗(y) = −1− log y for x < 0.

The Boltzmann-Shannon entropy y log(y)− y is the convex
conjugate of exp(x) (and vice-versa since exp(x) is convex).

Our Maple packages SCAT & CCAT [7] automate all this and
more subtle ideas such as iterated conjugation: see http:

//carma.newcastle.edu.au/ConvexFunctions/SCAT.ZIP.
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Addition and Convolution

The convex conjugate
exchanges addition of
functions with their infimal
convolution

(f � g)(y) = inf
x∈X

f (y − x) + g(x).

Indeed (f � g)∗ = f ∗ + g∗

always holds and under mild
hypotheses

(f + g)∗ = f ∗� g∗.

Figure: The energy, log barrier and negative
entropy (L) and duals (R).
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Variable Separability

Suppose f is variable separable. That is to say that

f (x1, x2, . . . , xn) =
n∑

j=1

fj(xj)

where each fj is convex. Then f is convex and

f ∗(y1, y2, . . . yn) =
n∑

j=1

f ∗j (yj).

From such building blocks, and the Fenchel duality theorem – for
f + g ◦ A – [8] or Theorem 5 below, many other convex conjugates
engaging W are accessible.
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Matrix Functions

It is also possible to induce functions of matrices as follows.

Let f be a symmetric proper and lower semicontinuous convex
function of n variables, and let A be a symmetric matrix with
real spectrum λ(A).

Then
f̂ (A) = f (λ(A))

induces a proper and lower semicontinuous convex matrix
function.

So f (x) = −
∑n

k=1 log(xk) induces f̂ (A) = − log(det(A)).

Moreover,

f̂ ∗(A) =
(
f̂ (A)

)∗
.
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A Note on Closed Forms

The notion of a closed form for a given function is an
always-changing issue.

While x exp x is elementary W (x) is not, since arbitrary
inversion is not permitted in the definition of elementary.

We consider a closed form roughly to be a form which is
finitary and computationally effective. See, for example, [6]
available at https:
//www.carma.newcastle.edu.au/jon/closed-form.pdf.

Once a computationally effective closed form is available, all
of classical convex duality theory is accessible.
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Log Convex Functions

Definition

A log convex function g is a positive function such that f = log g
is convex. Thence

g(x) = ef (x).

log convexity – useful in statistics – may be thought of as a
strengthening of convexity and is implied by 1/g > 0 being
concave.

We are interested in the convex conjugates of such functions:

g∗(y) = sup
x∈X
{yx − ef (x)}
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Convex Conjugates of Log Convex Functions

Given the function f , we may solve, as before, by taking the
derivative and setting it equal to zero to obtain

y = f ′(x)ef (x).

If we can solve this equation for x = s(y), we can express the
conjugate in closed form as

g∗(y) = y · s(y)− g(s(y)).

We will explore a useful class of functions for which W shows up
quite naturally in their closed forms.
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Two Examples with W

Our Maple package SCAT provides two such examples which we
can also easily verify by the methods above.

For g(x) = ee
x
, we have

g∗(y) =


y
(

log (y)−W (y)− 1
W (y)

)
if y > 0

−1 if y = 0

∞ if y < 0

.

For g(x) = e
x2

2 , we have

g∗(y) = |y |

(√
W (y2)− 1√

W (y2)

)
for all y .
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Seeking a General Closed Form

If we can first solve the equation

f ′(x)α+1 = γf (x) (11)

for some α and nonzero γ, we will be able to express g∗ in closed
form using W .

Indeed, since

y = f ′(x)ef (x),

we raise both sides to the α + 1 power to obtain

yα+1 = f ′(x)α+1e(α+1)f (x) = γf (x)e(α+1)f (x).

Finally, we multiply both sides by α+1
γ and can use W to write:

(α + 1)f (x) = W

(
(α + 1)

yα+1

γ

)
.
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We obtain the following closed forms for (exp ◦f )∗(y): we write

f (x) =
W
(

(α + 1) yα+1

γ

)
α + 1

x = b

W
(

(α + 1) yα+1

γ

)
α + 1

, y


Here b(x , y) = f −1(x) in the invertible case and b(x , y) is the

pre-image choice in f −1(x) such that x · y is maximized otherwise.

These yield the closed form for g∗:

g∗(y) = y · b(d(y), y)− exp(d(y)) where

d(y) =
W
(

(α + 1) y
α+1

γ

)
α + 1

.
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Comparing to our Previous Examples

We can see quite nicely how this relates to our previous examples.

In the case of our example g(x) = exp(exp(x)), we have

b(x , y) = f −1(x) = log(x).

In the case of our example g(x) = exp
(
|x |p
p

)
, we have

b(x , y) =

{
(p · x)

1
p if y ≥ 0

−(p · x)
1
p if y < 0

. (12)
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A Simplified General Form

Using the fact that exp(W (x)) = x/W (x), we can further simplify
the expression of our general closed form to:

Closed form when (11) holds

g∗(y) = y ·b

W
(

(α + 1) y
α+1

γ

)
α + 1

, y

−
 (α + 1) y

α+1

γ

W
(

(α + 1) y
α+1

γ

)
 1

α+1

.

While this isn’t especially nice to look at, it simplifies greatly for
certain choices of f (ergo, choices of γ, α). More importantly, it is
very clean from a computational standpoint.

66 / 111



Meeting with Lambert W
Meeting with Meijer-G

Experimental Mathematics and W
Convex Analysis

Homotopy and Entropy Solutions of Inverse Problems
Conclusion

Preliminaries on Convex Conjugates
W in Conjugation of Log Convex Functions
Occurrences in Composition
Occurrences in Infimal Convolution
Occurrences in Homotopy

A Class of Functions

Since our use of W relies upon being able to solve

f ′(x)α+1 = γf (x),

we ask for what kind of function f this is possible.

With initial condition f (0) = β, Maple’s built-in ODE solver returns

f (x) =

(
1

α + 1

(
αγ

1
α+1 x + (α + 1)e

α ln(β)
α+1

))α+1
α

.

As α→ 0, we retrieve the familiar f (x) = β(exp(γx)).

Also, for α = 1, γ = 2, when β → 0, we recover f (x) = x2

2 .

Thus, we obtain a large class of closed forms from which our
previous examples emerge as limiting cases.
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Simplified Closed Forms

The closed form of the convex conjugates for functions of form
β · exp(x) simplifies to

g∗(y) =


y
(

log (y)−W (y)− 1
W (y) − log(β)

)
if y > 0

−1 if y = 0

∞ if y < 0

.

Where 1
q + 1

p = 1, the closed form of the convex conjugates for

functions of form f (x) = |x|p
p , (p > 1) simplifies to

g∗(y) = |y |

((
p

q
W

(
q

p
|y |q

)) 1
p

−
(
p

q
W

(
q

p
|y |q

))− 1
q

)
.

Compare the former to the case β = 1 and the latter to the case
p = q = 2, both of which we have seen before.
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Conjugates of Compositions

Theorem (Conjugates of Compositions)

Consider the convex composition h ◦ g of a nondecreasing convex
function h : (−∞,∞]→ (−∞,∞] with a convex function
f : X → (−∞,∞]. We interpret f (+∞) = +∞, and we assume
there is a point x̂ in X satisfying f (x̂) ∈ int dom(h).
For y in X ∗,

(h ◦ f )∗(y) = inf
t≥0

{
h∗(t) + tf ∗

(y
t

)}
.

Here 0f ∗
(y

0

)
= ι∗domf (y) in terms of the convex indicator

function ι∗dom f which is zero on domf and is +∞ otherwise.
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An Example with Composition

We may use Theorem 5 with

h(t) = exp(t), h∗(t) = t log t − t (the Shannon entropy)

to compute the conjugate for g(x) = exp ◦f (x) for various f .

For example, with f (x) = |x |p
p , we may obtain g∗ by evaluating

(h ◦ f )∗. From Theorem 5 we have that, for y 6= 0,

(h◦f )∗(y) = inf
t≥0

{
h∗(t)+tf ∗

(y
t

)}
= inf

t≥0

{
t log t−t+t

(
|y |
t

)q

/q
}
.

Differentiating, setting equal to zero, and solving for t, we arrive
at

t = exp

(
W ((q − 1)|y |q)

q

)
which we substitute to obtain the same answer as before.
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Infimal Convolution

Consider for µ > 0 the convolutions

gµ = (x → x log(x)− x)�µ

(
x → x2

2

)
.

This family – of everywhere continuous
functions – is also called the Moreau
envelope of x log(x)− x .

SCAT provides:

gµ(y) =
µ

2
y2 − 1

µ
W (µeµy )− 1

2µ
W (µeµy )2.

gµ is fully explicit in terms of W .

Figure: Convolution
of entropy x log x − x
and energy µ x2/2 for
µ = 1/10, 10, 100.
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Homotopy

Consider for 0 ≤ t ≤ 1 the combination

ft(x) = (1− t)(x log x − x) + t
x2

2
(13)

so that f0 is the Shannon entropy and f1 the energy.

The conjugate of (13) is

f ∗t (y) =
(1− t)2

2t

W

 t

1− t
e

y

1− t

+ 2

W

 t

1− t
e

y

1− t

 .

In the limit at t = 1 we recover the positive energy which is infinite
for y < 0 and at t = 0 we reobtain x log(x)− x .
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Minimization with Constraints

Consider the (negative) entropy functional If : L1([0, 1], λ)→ R
defined as follows:

If (x) =

∫ 1

0
f (x(s)) ds

where λ is Lebesgue measure and f is a proper, closed convex
function.
Suppose we wish to minimize If subject to finitely many
continuous linear constraints of the form

〈ak , x〉 =

∫ 1

0
ak(s)x(s) ds = bk

for 1 ≤ k ≤ n. We may write this for A : L1([0, 1])→ Rn with

Ax =

(∫ 1

0
a1(s)x(s) ds, . . . ,

∫ 1

0
an(s)x(s) ds

)
= b.
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Reformulation as Dual Problem

When f ∗ is smooth and everywhere finite on the real line, our
problem

inf
x∈L1
{If (x)|Ax = b}

reduces – via subtle Fenchel duality – to solving a finite nonlinear
equation.

Solve for λ1, λ2, . . . , λn

∫ 1

0

primal solution x(s)︷ ︸︸ ︷
(f ∗)′

 n∑
j=1

λjaj(s)

 ak(s) ds = bk (1 ≤ k ≤ n). (14)

Details are reprised in the paper accompanying this talk. More information – including
the matter of primal attainment and constraint qualification – can be found in [9].
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The Role of Lambert W

To illustrate the role of for W , we choose f in our optimization
problem to be of the form

ft(x) = (1− t)(x log x − x) + t
x2

2
.

Then we have the following:

f0 is the Shannon Entropy

f1 is the energy

(f ∗t )′ (y) =
(1− t)

t
W

(
t

1−t exp

(
y

1− t

))
limt→0 (f ∗t )′ (y) = exp(y)

limt→1 (f ∗t )′ (y) = max{y , 0}.
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A Computational Example

We illustrate by implementing a program with m algebraic
moments of the form

ak(s) = sk−1 (k = 1 . . .m).

Our subgradient (dual problem) is represented more explicitly by
following the set of equations for k = 1 . . . 10:∫ 1

0

(1− t)

t
W

(
t

1− t
exp

(∑n
j=1 λjs

j−1

1− t

))
sk−1ds − bk = 0.

(15)
We can solve for λ using any standard numerical solver or, say, by

a Newton-type method.
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Cost-Effective Computing

Newton’s method is cost-effective for this formulation. The
Hessian is a Hankel matrix:

H(λ) = (hi ,k)

hi ,k =

∫ 1

0

(1− t)

t
W

(
t

1− t
exp

(∑n
j=1 λjaj(s)

1− t

))
ak(s)ai (s)ds

=

∫ 1

0

(1− t)

t
W

(
t

1− t
exp

(∑n
j=1 λjs

j−1

1− t

))
sk+i−2ds.

When m is the number of moments specified, for each
iteration we need only to compute the 2m − 1 cases
k + i = 2 . . . 2m.
The gradient G (λ) may be obtained by taking the first row (or
column) of the Hessian and subtracting bk from the kth entry.
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Saving Computation on the Quadrature

We adopt a Gaussian quadrature rule with weights {al}ml=1 and
abcissas {xl}ml=1. Then, where

F (xl) =
(1− t)

t
W

(
t

1− t
exp

(∑n
j=1 λjx

j−1
l

1− t

))
,

for a single iteration we need only use numerical integration on
the W function m times rather than order m · n times.

To see more clearly why this is the case, notice that we can
reuse the values alF (xl), l = 1 . . .m as follows:

h1,1 =
m∑
l=0

alF (xl), h(i+k=α) =
m∑
l=0

alF (xl)x
α−2
l .

Thus, we need only compute each once for each iteration. We
can also reuse xα−2

l for l = 1 . . .m, α = 2 . . . 20.
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Complete Optimized Process

Our full method for computing with minimal cost is as follows:

1 Precompute the weights {al}ml=1, and the abscissas raised to
various powers xαl , l = 1 . . .m, α = 0 . . . 18, storing the
weights in a vector and the powers of the abscissas in a
matrix.

2 At each step compute the function values alF (xl), l = 1 . . .m,
storing them in a vector.

3 Compute the necessary 19 Hessian values
∑m

l=0 alF (xl)x
α−2
l ,

α = 2 . . . 20. If we properly create our matrix – of stored
abscissa values raised to powers – we will be able to compute
the Hessian values by simply multiplying our vector from Step
2 by this matrix.

4 Use the resultant 19 values to build the Hessian and gradient
and then solve for the next iterate.
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2 by this matrix.

4 Use the resultant 19 values to build the Hessian and gradient
and then solve for the next iterate.
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For consistency, all examples in this subsection used:

24 digits of precision

20 abscissas

A Newton step size of 1/2

8 moments unless otherwise specified

A t value of 1
2 unless otherwise specified

The objective function of s → 6
10 + sin(3πs2) unless otherwise

specified.

This reduced step dramatically improved convergence for t near 1.
While this precision is higher than would be used in production
code, it allows us to see the optimal performance of the algorithm.
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Visualizing Accuracy

We ask Maple to compute until
the error, as measured by the
norm of the gradient, is less than
10−10. At 46 iterations we obtain
λ values:

−0.7079161355,

10.64405426,

−126.5979784,

656.6020449,

−1458.868219,

1329.347874

−299.1180785,

−112.3114246

where the error is about
6.84330e − 11. Figure: The primal solutions for

iterates 6, 12, and 46.
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Variation of t

We consider five different
possible values for t:
0, .25, .5, .75, 1.

We run Newton’s Method for
each case until meeting the
requirement that the norm of
the gradient is less than or
equal to 10−10.

Notice that as t increases the
visual fit increases
substantially. One cannot
determine this from looking at
the numerical error alone. Figure: The associated primal

solutions for various choices of t.
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Solutions for Various Choices of t

t 0 .25 .5 .75 1
λ1 -.707916 -.404828 -.101065 .204002 .512307
λ2 10.6440 9.46383 8.23003 6.90162 5.36009
λ3 -126.597 -114.651 -101.923 -87.8556 -70.8919
λ4 656.602 605.686 550.755 488.934 412.561
λ5 -1458.86 -1368.32 -1269.02 -1154.26 -1007.13
λ6 1329.34 1282.68 1227.95 1157.70 1054.85
λ7 -299.118 -329.937 -358.596 -381.447 -391.764
λ8 -112.311 -85.1887 -57.6202 -30.1516 -3.12491
Error 6.84330e-11 9.81661e-11 8.26865e-11 9.6666e-11 7.05698e-11
Iterates 46 46 47 47 47

Dual solutions
corresponding to various
choices of t are shown in
the Table while primal
solutions are shown to the
right.
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Varying the Number of Moments

We consider the choice of 4, 8,
12, and 20 moments.

We run Newton’s Method for
each case until meeting the
requirement that the norm of
the gradient is less than or
equal to 10−10.

While we used 26 digits of
precision for all of these
examples (for consistency), this
was the only case wherein we
used 20 moments and so
exploited the employment of
such high precision.

Figure: The primal solutions for
various numbers of moments
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Changing the Objective Function: A Pulse

We compute with the pulse:
x(s) = χ[0, 1

2 ](s).

The pulse is a more
computationally challenging
example because of its jump
discontinuity and constancy on
an open interval.

This slowed the convergence of
the gradient to zero with more
moments, especially for values
of t nearer to 1.

The desired properties can still
be seen visually.

Figure: The primal solutions for
various numbers of moments
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Changing the Objective Function: A Pulse

t 0 .25 .5 .75 1
Error 6.87225e-11 7.45516e-11 9.69259e-11 1.9136e-11 .21252e-5
Iterates 70 62 55 48 200

We instruct Maple to stop computing
once the norm of the gradient is less than
10−10 or after reaching 200 iterates.

For t = 1, we reached 200 iterates before
the norm of the gradient was less than
10−10, but the primal solution we
obtained is still a good proxy for the pulse.
This can be seen in the Figure, where the
Gibbs Phenomenon may also be clearly
observed for the the other values of t.
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When a Closed Form is not Forthcoming

Even when one is not able to
produce a closed form, SCAT and
its numerical partner CCAT may
still help.

Example: f := (0,∞)→ R by

f (x) =
(x
e

)x
SCAT does not return a closed
form but still produces the plot
shown.

Figure: The Conjugate of f
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Another Example: log Γ

For the conjugate, SCAT returns:

RootOf (−Ψ ( Z ) + x) x − log (Γ (RootOf (−Ψ ( Z ) + x))) .

where Ψ is the Psi function.

Maple’s root finder struggles, leaving the plot incomplete. This
can be obviated by a Newton solver for x > 0 of Ψ(x) = y . Set

x0 =

{
exp(y) + 1/2 if y ≥ −2.2

−1/(y −Ψ(1)) otherwise

xn+1 = xn −
Ψ(xn)− y

Ψ′(xn)
.

– Ψ and Ψ′ are also known as digamma and trigamma functions.
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Another Example: log Γ

Figure: The function log Γ (L) and its conjugate (R).

We hope that we have made a good advertisement for the
value of W in optimisation and elsewhere.
We also hope we have highlighted the usefulness of SCAT and
its numerical partner CCAT.
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