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COMPUTATION AND THEORY OF EXTENDED

MORDELL-TORNHEIM-WITTEN SUMS

DAVID H. BAILEY, JONATHAN M. BORWEIN, AND RICHARD E. CRANDALL

Abstract. We consider some fundamental generalized Mordell–Tornheim–Witten (MTW)
zeta-function values along with their derivatives, and explore connections with multiple-
zeta values (MZVs). To achieve this, we make use of symbolic integration, high precision
numerical integration, and some interesting combinatorics and special-function theory.
Our original motivation was to represent unresolved constructs such as Eulerian log-
gamma integrals. We are able to resolve all such integrals in terms of a MTW basis. We
also present, for a substantial subset of MTW values, explicit closed-form expressions. In
the process, we significantly extend methods for high-precision numerical computation of
polylogarithms and their derivatives with respect to order.

1. Introduction

We define an ensemble of extended Mordell–Tornheim–Witten (MTW) zeta function
values [17, 33, 21, 22, 4, 11, 34, 35]. There is by now a huge literature on these sums; in
part because of the many connections with fields such as combinatorics, number theory,
and mathematical physics.

Unlike previous authors we include derivatives with respect to the order of the terms.
We also investigate interrelations between MTW evaluations, and explore some deeper
connections with multiple-zeta values (MZVs). To achieve these results, we make use of
symbolic and numerical integration, special function theory and some less-than-obvious
combinatorics and generating function analysis.

Our original motivation was that of representing unresolved constructs such as Eulerian
log-gamma integrals. We consider an algebra having an MTW basis together with the
constants π, 1/π, γ, log 2π and the rationals, and show that every log-gamma integral

LGn :=

∫ 1

0
logn Γ(x) dx.

is an element of said algebra (that is, a finite superposition of MTW values with fundamental-
constant coefficients). That said, the focus of our paper is the relation between MTW sums
and classical polylogarithms. It is the adumbration of these relationships that makes the
study significant.
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The organization of the paper is as follows. In Section 2 we introduce an ensemble D
capturing the values we wish to study and we provide some effective integral representations
in terms of polylogarithms on the unit circle. In Section 2.1 we introduce a subensemble
D1 sufficient for the study log gamma integrals, while in Section 2.2 we provide a first few
accessible closed forms. In Section 3 we provide generating functions for various derivative
free MTW sums and provide proofs of results first suggested by numerical experiments
described in the sequel. In Section 4 we provide the necessary polylogarithmic algorithms
for computation of our sums/integrals to high precision (400 digits up to 3100 digits). To
do so we have to first provide similar tools for the zeta function and its derivatives at
integer points. These methods are of substantial independent value and will be pursued in
a future paper.

In Section 5 we prove various reductions and interrelations of our MTW values (see
Theorems 7, 8, 9 and 10). In Theorem 11 of Section 6, we show how to evaluate all log
gamma integrals LGn for n = 1, 2, 3 . . ., in terms of our special ensemble of MTW values,
and we confirm our expressions to at least 400-digit precision. In Section 7 we describe
two rigorous experiments designed to use integer relation methods [12] to first explore the
structure of the ensemble D1 and then to begin to study D. Finally, in Section 8 we make
some summary remarks.

2. Mordell–Tornheim–Witten ensembles

The multidimensional Mordell–Tornheim–Witten (MTW) zeta function

ω(s1, . . . , sK+1) =
∑

m1,...,mK > 0

1

ms1
1 · · ·m

sK
K (m1 + · · ·+mK)sK+1

(1)

enjoys known relations [27], but remains mysterious with respect to many combinatorial
phenomena, especially when we contemplate derivatives with respect to the si parameters.

We refer to K + 1 as the depth and
∑k+1

j=1 sj as the weight of ω.

A previous work [4] introduced and discussed an apparently-novel generalized MTW
zeta function for positive integers M,N and nonnegative integers si, tj—with constraints
M ≥ N ≥ 1—together with a polylogarithm-integral representation:

ω(s1, . . . , sM | t1, . . . , tN ) :=
∑

m1,...,mM,n1,...,nN > 0∑M
j=1

mj=
∑N

k=1
nk

M∏
j=1

1

mj
sj

N∏
k=1

1

nktk
(2)

=
1

2π

∫ 2π

0

M∏
j=1

Lisj

(
eiθ
) N∏
k=1

Litk

(
e−iθ

)
dθ.(3)

Here the polylogarithm of order s denotes Lis(z) :=
∑

n≥1 z
n/ns and its analytic extensions

[26] and the (complex) number s is its order.
Note that if parameters are zero, there are convergence issues with this integral repre-

sentation. One may use principal-value calculus, or an alternative representation such as
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(11) below. When N = 1 the representation (3) devolves to the classic MTW form, in that

ω(s1, . . . , sM+1) = ω(s1, . . . , sM | sM+1).(4)

We need a wider MTW ensemble involving outer derivatives, according to

ω

(
s1, . . . , sM | t1, . . . , tN
d1, . . . , dM | e1, . . . eN

)
:=

∑
m1,...,mM,n1,...,nN > 0∑M

j=1
mj=

∑N
k=1

nk

M∏
j=1

(− logmj)
dj

mj
sj

N∏
k=1

(− log nk)
ek

nktk

=
1

2π

∫ 2π

0

M∏
j=1

Li
(dj)
sj

(
eiθ
) N∏
k=1

Li
(ek)
tk

(
e−iθ

)
dθ,(5)

where the s-th outer derivative of a polylogarithm is denoted Li
(d)
s (z) :=

(
∂
∂s

)d
Lis(z). We

emphasize that all ω are real since we integrate over a full period or more directly since
the summand is real. Consistent with earlier usage, we now refer to M + N as the depth
and

∑M
j=1(sj + dj) +

∑N
k=1(tk + ek) as the weight of ω.

To summarize, we consider an MTW ensemble comprising the set
(6)

D :=

{
ω

(
s1, . . . , sM | t1, . . . , tN
d1, . . . , dM | e1, . . . eN

)
: si, di, tj , ej ≥ 0; M ≥ N ≥ 1,M,N ∈ Z+

}
.

2.1. Important subensembles. We shall, in our resolution of log-gamma integrals espe-
cially, engage MTW constructs using only parameters 1 or 0. We define U(m,n, p, q) to
vanish if mn = 0; otherwise if m ≥ n we define

U(m,n, p, q) :=
1

2π

∫ 2π

0
Li1

(
eiθ
)m−p

Li
(1)
1

(
eiθ
)p

Li1

(
e−iθ

)n−q
Li

(1)
1

(
e−iθ

)q
dθ

= ω

(
1m | 1n

1p0m−p | 1q0n−q

)
,(7)

while for m < n we swap both (m,n) and (p, q) in the integral and the ω-generator. We then
denote a particular subensembleD1 ⊂ D as the setD1 := {U(m,n, p, q) : p ≤ m ≥ n ≥ q }.
Another subensemble D0 ⊂ D1 ⊂ D is a derivative-free set of MTWs of the form D0 :=
{U(M,N, 0, 0) : M ≥ N ≥ 1}, that is to say, an element of D0 has the form ω(1M | 1N ),
which can be thought of as an ensemble member as in (5) with all 1’s across the top and
all 0’s across the bottom.

As this work progressed it became clear that we should also treat

D0(s) := {Us(M,N, 0, 0) : M ≥ N ≥ 1} ,

in which an element of D0(s) has the form ω(sM | sN ), for s = 1, 2, . . ., and D0(1) = D0.
For economy of notation, we shall sometimes write Us(M,N) := Us(M,N, 0, 0).
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2.2. Closed forms for certain MTWs. For N = 1 in definition (2) we have:

ω(r | s) = ζ(r + s),(8)

ω(r1, . . . , rM | 0) =
M∏
j=1

ζ(rj)(9)

ω(r, 0 | s) = ω(0, r | s) = ζ(s, r),(10)

where this last entity is a multiple-zeta value (MZV), some instances of which—such as
ζ(6, 2) have never been resolved in closed form [13] and are believed irreducible, see also
[9, 34, 35]. Such beginning evaluations use simple combinatorics; later in Section 5 we shall
see much more sophisticated combinatorics come into play.

This is the classic MTW (1), with a useful pure-real integral alternative to (3). The
incomplete gamma function integral [20], lets one write

ω(s1, s2, . . . , sM | t) =
1

Γ(t)

∫ ∞
0

xt−1
M∏
j=1

Lisj (e
−x) dx.(11)

=
1

Γ(t)

∫ λ

0
xt−1

M∏
j=1

Lisj (e
−x) dx(12)

+
1

Γ(t)

∑
m1,...,mM≥1

Γ(t, λ(m1 + · · ·+mM ))

ms1
1 · · ·m

sM
M (m1 +m2 + · · ·mM )t

,

which recovers the full integral as λ→∞ (11).
There are interesting symbolic machinations that employ (11). For example, since

Li0(z) = z
1−z , we have a 1-parameter MTW value

ω(0, 0, 0, 0 | t) =
1

Γ(t)

∫ ∞
0

xt−1

(ex − 1)4
dx = − ζ(t) +

11

6
ζ(t− 1)− ζ(t− 2) +

1

6
ζ(t− 3),

certainly valid for t > 4. Multidimensional analytic continuation is patently nontrivial.

Indeed, the continuation for t→ 0 here appears to be ω(0, 0, 0, 0 | 0)
?
= 251

720 , and yet from

the zeta-product formula we might infer ω(0, 0, 0, 0 | 0) = ζ(0)4
?
= 1

16 . This shows hat
analytic continuation of MTWs (even MZVs) must be performed carefully [24, 27, 31]. Via
these definite-integration techniques or sheer combinatorics, for t in its region of absolute
convergence, we have the closed form

ω(0M | t) =
1

(M − 1)!

M∑
q=1

s(M, q) ζ(t− q + 1),(13)

where the s(M, q) are the Stirling numbers of the first kind [30] as discussed prior to (72).
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3. Resolution of all U(M,N) and more

Whereas our previous section exhibits closed forms for N = 1 (i.e., classic MTW forms
of type (4)), we now address the important class of resolvable MTWs for general N > 1.

3.1. An exponential generating function for U(M,N). Consider the subensemble
D0 from Section 2.1; that is, the MTW is derivative-free with all 1’s across the top row.
The following results, which were experimentally motivated as we see later—provide a
remarkably elegant generating function for U(m,n) := U(m,n, 0, 0).

Theorem 1 (Generating function for U). We have a formal generating function for U as
defined by (7) with p, q = 0; namely,

V(x, y) :=
∑
m,n≥0

U(m,n)
xm yn

m!n!
=

Γ(1− x− y)

Γ(1− x)Γ(1− y)
.(14)

Proof. To see this starting with the integral form in (7), we exchange integral and summa-
tion and then make an obvious change of variables to arrive at

V(x, y) =
2−x−y+1

π

∫ π/2

0
(cos θ)−x−y cos ((x− y) θ) dθ.(15)

However, for Re a > 0 [30, Equation (5.12.5)] records the beta function evaluation:∫ π/2

0
(cos θ)a−1 cos(bθ) dθ =

π

2a
1

aB
(
1
2(a+ b+ 1), 12(a− b+ 1)

) .(16)

On setting a = 1− x− y, b = x− y in (16) we obtain (14). �

Note that setting y = ±x in (14) leads to two natural one dimensional generating
functions. For instance

V(x,−x) =
∑
m,n≥1

(−1)n
(
m+ n

n

)
U(m,n)

xm+n

(m+ n)!
=

sin(πx)

πx
.(17)

Example 1. Theorem 1 makes it very easy to evaluate U(m,n) symbolically as the fol-
lowing Maple squib illustrates.

UU := proc (m, n) local x, y, H;

H := proc (x,y) ->GAMMA(x+y+1)/(GAMMA(x+1)*GAMMA(y+1));

subs(y=0,diff(subs(x=0,diff(H(-x,-y),‘$‘(x, n))),‘$‘(y, m)));

value(%) end proc

For instance, UU(5,5) returns:

9600π2ζ (5) ζ (3) + 600 ζ2 (3)π4 +
77587

8316
π10 + 144000 ζ (7) ζ (3) + 72000 ζ2 (5) .(18)

This can be done in Maple on a current Lenovo in a fraction of a second, while the 61
terms of U(12, 12) were obtained in 1.31 seconds and the 159 term expression for U(15, 15)
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took 14.71 seconds and to 100 digits has numerical value of

8.8107918187787369046490206727767666673532562235899290819291620963(19)

95561049543747340201380539725128849× 1031.

This was fully in agreement with our numerical integration scheme of the next section. ♦

The log-sine-cosine integrals given by

(20) Lscm,n (σ) :=

∫ σ

0
logm−1

∣∣∣∣2 sin
θ

2

∣∣∣∣ logn−1
∣∣∣∣2 cos

θ

2

∣∣∣∣ dθ

have been considered by Lewin, [25, 26] and in physical applications, see for instance [23].
From the form given in [10], Lewin’s result can be restated as

L(x, y) :=
∞∑

m,n=0

2m+n Lscm+1,n+1 (π)
xm

m!

yn

n!
= π

(
2x

x

)(
2y

y

)
Γ (1 + x) Γ (1 + y)

Γ (1 + x+ y)
.(21)

This is closely linked to (14), see also [32]. Indeed, we may rewrite (21) as

L(x, y)V(−x,−y) = π

(
2x

x

)(
2y

y

)
.(22)

3.2. An exponential-series representation of the generating function V. To ad-
dress the generating function V(x, y), we recall expansions of the Gamma function itself.
In [25, 30] is the classical formula

log Γ(1− z) = γz +
∑
n>1

ζ(n)
zn

n
, or e−γzΓ(1− z) = exp

{∑
n>1

ζ(n)zn

n

}
,(23)

everything being convergent for |z| < 1. This leads immediately to a powerful exponential-
series representation for our generating function

V(x, y) =
Γ(1− x− y)

Γ(1− x)Γ(1− y)
= exp

{∑
n>1

ζ(n)

n
((x+ y)n − xn − yn)

}

= exp

{∑
n>1

ζ(n)

n

n−1∑
k=1

(
n

k

)
xkyn−k

}
.(24)

These combinatorics lead directly to a resolution of the D0 ensemble, in the sense of casting
every U(M,N) in a finite, closed form:

Theorem 2 (Evaluation of U(M,N)). For any integers M ≥ N ≥ 1 we have that
U(M,N) = ω(1M | 1N ) ∈ D0 lies in the ring R := 〈Q ∪ {π} ∪ {ζ(3), ζ(5), ζ(7), . . . }〉 .
In particular, for M ≥ N , and setting U(M, 0) := 1, the general expression is:

U(M,N) = M !N !
N∑
n=1

1

n!

∑
j1,··· ,jn,k1···kn≥1

j1+···+jn=M,k1+···+kn=N

n∏
i=1

(ji + ki − 1)!

ji! ki!
ζ(ji + ki).
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Hence, any such U element is expressible in terms of odd zeta values, rationals, and the
constant π, with every zeta product involved having weight M +N .1

Proof. All results follow from symbolic Taylor expansion of the exponential form (24); that
is, denote by Q the quantity in the braces { } of the exponent in (24). Then inspection of
exp{Q} = 1 +Q+Q2/2! + . . . gives a finite form for a coefficient U(M,N). �

A second proof again connects the present theory with log-sine integrals:

Proof. (Alternative proof of Theorem 2) From the logarithmic form of Li1 (55), we have

U(M,N) =
(−1)M+N

2π
×(25) ∫ 2π

0

(
log

(
2 sin

t

2

)
− (π − t)

2
i

)M (
log

(
2 sin

t

2

)
+

(π − t)
2

i

)N
dt.

Now, upon expanding the integrand we can cast this U as a finite superposition of log-sine
integrals. Specifically, from [15] we employ

Ls
(k)
n+k+1(2π) := −

∫ 2π

0
tk logn

(
2 sin

(
t

2

))
dt.

Indeed, Borwein and Straub [15] provide a full generating function:

Ls
(k)
n+k+1(2π) = −2π(−i)k

(
∂

∂u

)k ( ∂
∂λ

)n+k+1

eiπu
(

λ

λ/2 + u

)
|{u,λ}={0,0},

from which provably closed form computation becomes possible. The rest of the proof can
follow along the lines of the first proof; namely, one only need inspect the exponential-series
expansion for the combinatorial bracket. �

Example 2 (Sample U values). Exemplary evaluations are

U(4, 2) = ω(1, 1, 1, 1 |1, 1) = 204 ζ(6) + 24 ζ(3)2,

U(4, 3) = ω(1, 1, 1, 1 |1, 1, 1) = 6π4ζ(3) + 48π2ζ(5) + 720 ζ(7),

U(6, 1) = ω(1, 1, 1, 1, 1, 1 |1) = 720 ζ(7),

the latter consistent with a general evaluation that can be achieved in various ways,

U(M, 1) = ω(1M | 1) = M ! ζ(M + 1),(26)

valid for all M = 1, 2, . . .. Note that all terms in each decomposition have the same weight
M +N (seven in the final two cases). ♦

1We refer to a ring, not a vector space over ζ values, as it can happen that powers of a ζ can appear;
thus we need closure under multiplication of any generators.
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3.3. Sum rule for U functions. Remarkably, extreme-precision numerical experiments,
as detailed later, discovered a unique sum rule amongst U functions with a fixed even order
M +N . Eventually, we were led to by such numerical discoveries to prove:

Theorem 3. (Sum rule for U of even weight) For even p > 2 we have

p−2∑
m=2

(−1)m
(
p

m

)
U(m, p−m) = 2p

(
1− 1

2p(p+ 1)Bp

)
U(p− 1, 1),(27)

where Bp is the p-th Bernoulli number.

Proof. Equating powers of x on each side of the contraction V(x,−x) (relation (17)), and
using the known evaluation U(p− 1, 1) = (p− 1)! ζ(p) together with the Bernoulli form of
ζ(p) (given as relation (60)), the sum rule is obtained. �

Example 3 (Theorem 3 for weight M + N = 20). For M + N = 20, the theorem gives
precisely the numerically discovered relation (105). As we shall see, empirically it is the
unique such relation at that weight. An idea as to the rapid growth of the sum-rule
coefficients is this: For weight M +N = 100, the integer relation coefficient of U(50, 50) is
even, and exceeds 7× 10140; note also (26). ♦

3.4. Further conditions for ring membership. For more general real c > b, the form

ω(1a 0b | c) =
(−1)a+c−1

Γ(c)

∫ 1

0

(1− u)b−1

ub
logc−1(1− u) loga udu,(28)

is finite and we remind ourselves that the a ones and b zeros can be permuted in any way.
While such integrals are covered by Theorem 10 below, its special form allows us to show
there is a reduction of (28) entirely to sums of one-dimensional zeta products—despite the
comment in [26, §7.4.2]—since we may use the partial derivatives of the beta function,
denoted Ba,c−1, to arrive at:

Theorem 4. For non-negative integers a, b, c with c > b, the number ω(1a 0b | c) lies in
the ring R from Theorem 2, and so reduces to combinations of ζ values.

Proof. One could proceed using exponential-series methods as for Theorem 2 previous, but
this time we choose to use Gamma-derivative methods, in a spirit of revealing equivalence
between such approaches. From (28) we have, formally,

(−1)a+c−1Γ(c)ω(1a 0b | c) = lim
u→−b

∂

∂v(c−1)

{
∂

∂ua
Γ(u+ 1)Γ(v)

Γ(u+ v + 1)

}
v=b

(29)

The analysis simplifies somewhat on expanding (1−u)b−1/ub by the binomial theorem. so
that the ω value in question is a finite superposition of terms

I(a, b, c) :=

∫ 1

0

logc(1− u) loga u

ub
du = lim

u→−b

∂

∂vc

{
∂

∂ua
Γ(u+ 1)Γ(v)

Γ(u+ v + 1)

}
v=1

.(30)

Thence, we obtain the asserted complete reduction to sums of products of one-dimensional
zeta functions via the exponential-series arguments of the previous section or by appealing
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to known properties of poly-gamma functions [15], [25, §7.9.5] and [29, §5.15]. More details
can be found in [9, pp. 281–282] and [25, §7.9.2]. �

Remark 1. We note that [25, (7.128)] give I(2, 1, 2) = 8 ζ (5)− 2
3 ζ (3)π2 and an incorrect

value for I(3, 1, 2) = 6 ζ2 (3)− 1
105 π

6. ♦

3.5. The subensemble D0(s). Given the successful discovery of V in Section 3.2, we
turn to D0(s) from §2.1. We define Us(0, 0) = 1 , Us(m,n) for s = 1, 2, 3, . . . to vanish if
m > n = 0; otherwise if m ≥ n we set

Us(m,n) :=
1

2π

∫ 2π

0
Lis

(
eiθ
)m

Lis

(
e−iθ

)n
dθ = ω

(
sm | sn
0m | 0n

0

)
.(31)

That is, we consider derivative-free elements of D of the form ω(sM | sN ). An obvious
identity is Us(1, 1) = ζ(2s). Likewise Us(2, 1) = ω(s, s, s), which is evaluable by Theorem 7
and for which classical closed forms are recorded in [21, Eqns (1.20) and (1.21)]. Likewise,
Us(n, 1) is evaluable for positive integer n.

For s = 2, we obtain a corresponding exponential generating function

V2(x, y) :=
∑
m,n≥0

U2(m,n)
xm yn

m!n!
.(32)

Whence, summing and exchanging integral and sum as with p = 1, we get

V2(ix, iy) :=
1

2π

∫ 2π

0
e(y−x))Cl2(θ) cos

((
2π2 + 3 θ2 − 6π θ

)
12

(y + x)

)
dθ(33)

+ i
1

2π

∫ 2π

0
e(y−x))Cl2(θ) sin

((
2π2 + 3 θ2 − 6π θ

)
12

(y + x)

)
dθ

where Cl2(θ) := −
∫ θ
0 log

(
2
∣∣sin t

2

∣∣) dt is the Clausen function [26, Ch. 4].
While it seems daunting to place this in fully closed form, we can evaluate V2(x, x). It

transpires, in terms of the Fresnel integrals S and C [30, §7.2(iii)], to be

2π V2(ix, ix) = 2

√
π

x

(
cos

(
xπ2

6

)
C
(√
πx
)

+ sin

(
xπ2

6

)
S
(√
πx
))

(34)

+ i 2

√
π

x

(
cos

(
xπ2

6

)
S
(√
πx
)
− sin

(
xπ2

6

)
C
(√
πx
))

.
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On using the series representations [30, Eq. (7.6.4) & (7.6.6)] we arrive at:

Re V2(ix, ix) = cos

(
xπ2

6

) ∞∑
n=0

(−1)n π4n

22n+2 (2n)! (4n+ 1)
x2n(35)

+ sin

(
xπ2

6

) ∞∑
n=0

(−1)n π4n+2

22n+3 (2n+ 1)! (4n+ 3)
x2n+1,

Im V2(ix, ix) = − sin

(
xπ2

6

) ∞∑
n=0

(−1)n π4n

22n+2 (2n)! (4n+ 1)
x2n(36)

+ cos

(
xπ2

6

) ∞∑
n=0

(−1)n π4n+2

22n+3 (2n+ 1)! (4n+ 3)
x2n+1.

We note that ReV2(ix, ix) is an even function and ImV2(ix, ix) is odd. Then, on comparing
(32) with ix = iy to (35) or (36) we arrive that:

Theorem 5. (Sum rule for U2) For each integer p ≥ 1, there are explicit positive rational
numbers qp such that

2p−1∑
m=1

(
2p

m

)
U2(m, 2p−m) = (−1)p q2p π

4p,(37)

2p∑
m=1

(
2p+ 1

m

)
U2(m, 2p+ 1−m) = (−1)p q2p+1 π

4p+2.(38)

3.5.1. The Us sums when s ≥ 3. It is possible to undertake the same analysis generally.

Example 4. From the evaluation Gl3 [26, Eqn (22), p. 297] may deduce that

V3(x,−x) =
1

π

∫ π

0
cos

((
π2 − θ2

) θ
6
x

)
dθ.(39)

The Taylor series commences

V3(x,−x) = 1− 1

945
π6x2 +

1

3648645
π12x4 − 1

31819833045
π18x6 +O

(
x8
)
.

Then 6U3(2, 1) is the next coefficient and all terms have the weight one would predict. ♦

We exploit the Glaisher functions, given by Gl2n(θ) := Re Li2n
(
eiθ
)

and Gl2n+1(θ) :=

Im Li2n+1

(
eiθ
)
. They possess closed forms:

Gln (θ) = (−1)1+bn/2c2n−1
πn

n!
Bn

(
θ

2π

)
(40)

for n > 1 where Bn is the n-th Bernoulli polynomial [26, Eqn. (22), p 300 ] and 0 ≤ θ ≤ 2π.
Thus, Gl5 (θ) = 1

720 t (π − t) (2π − t)
(
4π2 + 6π t− 3 t2

)
.
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We then observe that:

V2n+1(x,−x) =
1

2π

∫ 2π

0
cos (Gl2n+1 (θ)x) dθ,(41)

V2n(ix, ix) =
1

2π

∫ 2π

0
exp (iGl2n (θ)x) dθ.(42)

In each case substitution of (40) and term-by-term expansion of cos or sin leads to an ex-
pression for the coefficients—note that Gln (θ) is an homogeneous two-variable polynomial
in π and θ with each monomial of degree n. Indeed, we are thus led to explicit formulas

rm(s) := (−1)m
4m−1

(2m)!π

∫ 2π

0

(
(−1)1+bs/2c

s!
(2π)sBn

(
θ

2π

))2m

dθ(43)

im(s) := (−1)m
2 4m−1

(2m+ 1)!π

∫ 2π

0

(
(−1)1+bs/2c

s!
(2π)sBn

(
θ

2π

))2m+1

dθ.(44)

for the real and imaginary coefficients of order 2m. (These expand as finite sums, but may
painlessly be integrated symbolically.) The imaginary part is zero for s odd.

Thence, we have established:

Theorem 6 (Sum relations for Us). Let s be a positive integer. There is an analogue of
Theorem 3 when s is odd and of Theorem 5 when s is even.

4. Fundamental computational expedients

To numerically study the ensemble D intensively, we must be able to differentiate poly-
logarithms with respect to their order. Even for our primary goal herein—-the study of
D1—we need access to the first derivative of Li1.

4.1. Polylogarithms and their derivatives with respect to order. In regard to the
needed polylogarithm values [4] gives formulas such as: when s = n is a positive integer,

Lin(z) =

∞ ′∑
m=0

ζ(n−m)
logm z

m!
+

logn−1 z

(n− 1)!
(Hn−1 − log(− log z)) ,(45)

valid for | log z| < 2π. Here Hn := 1 + 1
2 + 1

3 + · · ·+ 1
n , and the primed sum

∑′
means to

avoid the singularity at ζ(1). For any complex order s not a positive integer,

Lis(z) =
∑
m≥0

ζ(s−m)
logm z

m!
+ Γ(1− s)(− log z)s−1.(46)

Note in formula (45), the condition | log z| < 2π precludes the usage of this formula for
computation when |z| < e−2π ≈ 0.0018674. For such small |z|, however, it suffices to use
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the definition

Lis(z) =
∞∑
k=1

zk

ks
.(47)

In fact, we found that formula (47) is generally faster than (45) whenever |z| < 1/4, at
least for precision levels in the range of 100 to 4000 digits.

4.1.1. Derivatives of general order polylogarithms. For integer k > 0 we have [20, §9, eqn.
(51)]: for | log z| < 2π and τ ∈ [0, 1):

Lik+1+τ (z) =
∑

0≤n6=k
ζ(k + 1 + τ − n)

logn z

n!
+

logk z

k!

∞∑
j=0

ck,j(L) τ j ,(48)

where L := log(− log z) and the c coefficients engage the Stieltjes constants [20, §7.1]:

ck,j(L) =
(−1)j

j!
γj − bk,j+1(L).(49)

Here the bk,j terms—corrected from [20, §7.1]—are given by

bk,j(L) :=
∑

p+t+q=j
p,t,q≥0

L p

p!

Γ(t)(1)

t!
(−1)tfk(q),(50)

where fk,q is the coefficient of xq in
∏k
m=1

1
1+x/m , calculable via fk,0 = 1 and the recursion

fk,q =

q∑
h=0

(−1)h

kh
fk−1,q−h.(51)

We give an effective algorithm for Γ(t)(1) in (67).

Then, fk,1 = −Hk and fk,2 = 1
2H

2
k + 1

2H
(2)
k , in terms of generalized harmonic numbers,

while ck,0 = Hk − L. With k = τ = 0 this yields (45).

Example 5 (Data for (48) and (52)).

[fk,q]
5
k,q=0 =



1 0 0 0 0 0

1 −1 1 −1 1 −1

1 −3
2

7
4 −15

8
31
16 −63

32

1 −11
6

85
36 −575

216
3661
1296 −22631

7776

1 −25
12

415
144 −5845

1728
76111
20736 −952525

248832

1 −137
60

12019
3600 −874853

216000
58067611
12960000 −3673451957

777600000


♦
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To obtain the first derivative Li
(1)
k+1(z), we differentiate (48) at zero and so require the

evaluation ck,1. With k = 0 and j = 1 this supplies (54) below. More generally, for
| log z| < 2π and L, ck,m(L) as above:

Li
(m)
k+1(z) =

∑
0≤n6=k

ζ(m)(k + 1− n)
logn z

n!
+ ((−1)mγm +m! bk,m+1(L))

logk z

k!
.(52)

4.1.2. The special case s = 1 and z = eiθ. Most importantly, we may write, for 0 < θ < 2π,

Li1(e
iθ) = − log

(
2 sin

(
θ

2

))
+

(π − θ)
2

i.(53)

As described above, the order derivatives Li′s(z) = d(Lis(z))/ ds for integer s, can be
computed with formulas such as

L′1(z) =
∞∑
n=1

ζ ′ (1− n)
logn z

n!
− γ1 −

1

12
π2 − 1

2
(γ + log (− log z))2 ,(54)

which, as before, is valid whenever | log z| < 2π. Here γ1 is the second Stieltjes constant
[2, 20]. For small |z|, it again suffices to use the elementary form

Li′s(z) = −
∞∑
n=1

zk log k

ks
.(55)

Relation (54) can be applied to yield the formula

Li′1(e
iθ) =

∞∑
n=1

ζ ′ (1− n)
(iθ)n

n!
− γ1 −

1

12
π2 − 1

2
(γ + log (−iθ))2 ,(56)

valid and convergent for |θ| < 2π.
With such formulas as above, to evaluate U values one has the option of contemplating

either pure quadrature to resolve an element, a convergent series for same, or a combination
of quadrature and series. All of these are gainfully exploited in the MTW examples of [20].

4.2. ζ at integer arguments. Using formulas (45) and (46) requires precomputed values
of the zeta function and its derivatives at integer arguments, see [2, 18]. One fairly efficient
algorithm for computing ζ(n) for integer n > 1 is the following given by Peter Borwein
[16]: Choose N > 1.2 ·D, where D is the number of correct digits required. Then

ζ(s) ≈ −2−N (1− 21−s)−1
2N−1∑
i=0

(−1)i
∑i−1

j=−1 uj

(i+ 1)s
,(57)

where u−1 = −2N , uj = 0 for 0 ≤ j < N−1, uN−1 = 1, and uj = uj−1 ·(2N−j)/(j+1−N)
for j ≥ N .
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4.2.1. ζ at positive even integer arguments. As we require ζ(n) for many integers, the
following approach, used in [5], is more efficient. First, to compute ζ(2n), observe that

coth(πx) =
−2

πx

∞∑
k=0

ζ(2k)(−1)kx2k = cosh(πx)/ sinh(πx)

=
1

πx
· 1 + (πx)2/2! + (πx)4/4! + (πx)6/6! + · · ·

1 + (πx)2/3! + (πx)4/5! + (πx)6/7! + · · ·
.(58)

Let P (x) and Q(x) be the numerator and denominator polynomials obtained by truncating
these series to n terms. The approximate reciprocal R(x) of Q(x) can be obtained by
applying the Newton iteration

Rk+1(x) := Rk(x) + [1−Q(x) ·Rk(x)] ·Rk(x),(59)

where the degree of the polynomial and the numeric precision of the coefficients are dy-
namically increased, approximately doubling whenever convergence has been achieved at a
given degree and precision, until the final desired degree and precision are achieved. When
complete, the quotient P/Q is simply the product P (x) ·R(x). The required values ζ(2k)
can then be obtained from the coefficients of this product polynomial as in [5]. Note that
ζ(0) = −1/2.

4.2.2. ζ at positive odd integer arguments. The Bernoulli numbers B2k are also needed.
They now can be obtained from [30, Eqn. (25.6.2)]

B2k = (−1)k+1 2(2k)!ζ(2k)

(2π)2k
.(60)

The positive odd-indexed zeta values can be efficiently computed using these two Ramanujan-
style formulas [5, 14]:

ζ(4N + 3) = −2
∞∑
k=1

1

k4N+3(exp(2kπ)− 1)
− π(2π)4N+2

2N+2∑
k=0

(−1)k
B2kB4N+4−2k

(2k)!(4N + 4− 2k)!
,

ζ(4N + 1) = − 1

N

∞∑
k=1

(2πk + 2N) exp(2πk)− 2N

k4N+1(exp(2kπ)− 1)2

− 1

2N
π(2π)4N

2N+1∑
k=1

(−1)k
B2kB4N+2−2k

(2k − 1)!(4N + 2− 2k)!
.(61)

4.2.3. ζ at negative integer arguments. Finally, the zeta function can be evaluated at neg-
ative integers by the following well-known formulas [30, (25.6.3),(25.6.4)]:

ζ(−2n+ 1) = −B2n

2n
and ζ(−2n) = 0.(62)

4.3. ζ ′ at integer arguments. Precomputed values of the zeta derivative function are
prerequisite for the efficient use of formulas (54) and (56).
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4.3.1. ζ ′ at positive integer arguments. For positive integer arguments, the derivative zeta is
well computed via a series-accelerated algorithm for the derivative of the eta or alternating
zeta function. The scheme is illustrated in the following Mathematica code (for argument
ss and precision prec digits)—see [20] and more general acceleration methods in [19]:

zetaprime[ss_] :=

Module[{s, n, d, a, b, c}, n = Floor[1.5*prec]; d = (3 + Sqrt[8])^n;

d = 1/2*(d + 1/d);

{b, c, s} = {-1, -d, 0};

Do[c = b - c;

a = 1/(k + 1)^ss *(-Log[k + 1]);

s = s + c*a;

b = (k + n)*(k - n)*b/((k + 1)*(k + 1/2)), {k, 0, n - 1}];

(s/d - 2^(1 - ss)*Log[2]*Zeta[ss])/(1 - 2^(1 - ss))]

Note that in this algorithm, the logarithm and zeta values can be precalculated, and so do
not significantly add to the run time. Similar techniques apply to derivatives of η.

4.3.2. ζ
′

at nonpositive integer arguments. The functional equation ζ(s) = 2(2π)s−1 sin πs
2

Γ(1− s) ζ(1− s) lets one extract ζ ′(0) = −1
2 log 2π and for even m = 2, 4, 6, . . .

ζ ′(−m) :=
d

ds
ζ(s)|s=−m =

(−1)m/2m!

2m+1πm
ζ(m+ 1)(63)

[20, p. 15], while for odd m = 1, 3, 5 . . . on the other hand,

ζ ′(−m) = ζ(−m)

(
γ + log 2π −Hm −

ζ ′(m+ 1)

ζ(m+ 1)

)
.(64)

We shall examine different methods more suited to higher derivatives in the sequel.

4.4. Higher derivatives of ζ. To approach these we first need to attack the Gamma
function.

4.4.1. Derivatives of Γ at positive integers. Let gn := Γ(n)(1). Now it is well known [30,
(5.7.1) and (5.7.2)] that

Γ(z + 1) C(z) = z Γ(z) C(z) = z(65)

where C(z) :=
∑∞

k=1 ckz
k with c0 = 0, c1 = 1, c2 = γ and

(k − 1)ck = γck−1 − ζ(2) ck−2 + ζ(3) ck−3 − · · ·+ (−1)k ζ(k − 1) c1,(66)

Thus, differentiating (65) by Leibniz’ formula, for n ≥ 1 we have

gn = −
n−1∑
k=0

n!

k!
gk cn+1−k.(67)

More generally, for positive integer m we have

Γ(z +m) C(z) = (z)m(68)
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where (z)m := z(z + 1) · · · (z + m − 1) is the rising factorial. Whence, letting gn(m) :=

Γ(n)(m) so that gn(1) = gn, we may apply the product rule to (68) and obtain

gn(m) = −
n−1∑
k=0

n!

k!
gk(m) cn+1−k +

Dn+1
m

n+ 1
.(69)

Here Dn
m is the n-th derivative of (x)m evaluated at x = 0; zero for n > m. For n ≤ m

values are easily obtained symbolically or in terms of Stirling numbers of the first kind:

Dn
m =

m−n∑
k=0

s (m, k + n) (k + 1)n (m− 1)k = (n+ 1)! (−1)m+n+1s (m, 1 + n) .(70)

Thus, Dn
m

(n+1) = n!|s(m, 1 + n)| and so for n,m > 1 we obtain the recursion

gn(m)

n!
= −

n−1∑
k=0

gk(m)

k!
cn+1−k + |s(m, 1 + n)|.(71)

where for integer n, k ≥ 0

s(n, k) = s(n− 1, k − 1)− (n− 1) s(n− 1, k) ,(72)

see [30, Equation (26.8.18)].

4.4.2. Apostol’s formulas for ζ(k)(m) at negative integers. For n = 0, 1, 2, . . ., and with
κ := − log(2π)− 1

2πi, we have Apostol’s explicit formulas [30, (25.6.13) and (25.6.14)]:

(−1)kζ(k)(1− 2n) =
2(−1)n

(2π)2n

k∑
m=0

m∑
r=0

(
k

m

)(
m

r

)
Re(κk−m) Γ(r)(2n) ζ(m−r)(2n) ,

(73)

(−1)kζ(k)(−2n) =
2(−1)n

(2π)2n+1

k∑
m=0

m∑
r=0

(
k

m

)(
m

r

)
Im(κk−m) Γ(r)(2n+ 1) ζ(m−r)(2n+ 1) .

(74)

Since in (69) only the initial conditions rely on m, equations (73) and (74) are well fitted
to work with (69) (along with (72), and (66)).

4.5. Tanh-sinh quadrature. We address efficient performance of quadrature as needed,
e.g., for the U constants (7). Since integrands in (7) are typically rather badly behaved,
we recommend tanh-sinh quadrature, which is remarkably insensitive to singularities at
endpoints of the interval of integration. We approximate the integral of f(x) on (−1, 1) as∫ 1

−1
f(x) dx =

∫ ∞
−∞

f(g(t))g′(t) dt ≈ h

N∑
j=−N

wjf(xj),(75)
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for gven h > 0, where abscissas xj and weights wj are given by

xj = g(hj) = tanh (π/2 · sinh(hj))

wj = g′(hj) = π/2 · cosh(hj)/ cosh (π/2 · sinh(hj))2 ,(76)

where N is chosen so terms of the summation beyond N are smaller in absolute value
than the “epsilon” of the numeric precision being used. The abscissas xj and weights wj
can be precomputed, and then applied to all quadrature calculations. For many integrand
functions, including those in (7), reducing h by half in (75) and (76) roughly doubles the
number of correct digits, provided calculations are done to a precision level at least that
desired for the final result. Full details are given in [8].

For our U calculations, it suffices to integrate from 0 to π, divided by π, provided
we integrate the real part of the integrand. Also, when computing U(m,n, p, q) for many
values of m,n, p and q, it is much faster to precompute the polylog functions and derivative
functions (sans the exponents) at each of the tanh-sinh abscissa points xj . Thence, during a
quadrature, an evaluation in (7) merely consists of table look-ups and a few multiplications
for each function evaluation. In our implementations, quadrature calculations were thus
accelerated by a factor of over 1000.

5. More recondite MTW interrelations

We now return to our objects of central interest.

5.1. Reduction of classical MTW values and derivatives. Partial fraction manip-
ulations allow one to relate partial derivatives of MTWs. Such a relation in the classical
three parameter setting is:

Theorem 7 (Reduction of classical MTW derivatives [4]). Let nonnegative integers a, b, c
and r, s, t be given. Set N := r + s+ t. Define the shorthand notation

ωa,b,c(r, s, t) := ω

(
r , s | t
a , b | c

)
.

Then for δ := ωa,b,c we have

δ(r, s, t) =
r∑
i=1

(
r + s− i− 1

s− 1

)
δ (i, 0, N − i) +

s∑
i=1

(
r + s− i− 1

r − 1

)
δ (0, i, N − i) .(77)

In the case that δ = ω this shows that each classical MTW value is a finite positive
integer combination of MZVs.

Proof. 1. For non-negative integers r, s, t, v, with r + s+ t = v, and v fixed, we induct on
s. Both sides satisfy the same recursion:

d(r, s, t− 1) = d(r − 1, s, t) + d(r, s− 1, t)(78)

and the same initial conditions (r + s = 1).
Proof. 2. Alternatively, note that the recurrence produces terms of the same weight, N .
We will keep the weight N fixed and just write d (a, b) for d (a, b,N − a− b).
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By applying the recurrence (78) to d (r, s) repeatedly until one of the variables r, s
reaches 0, one ends up with summands of the form d (k, 0) or d (0, k). As the problem
is symmetric, we focus on the multiplicity with which d (k, 0) occurs. Note that, d (k, 0)
is obtained from (78) if and only if one previously had d (k, 1). Thus, the multiplicity of
d (k, 0) is the number of zig-zag paths from (k, 1) to (r, s) in which each step of a path adds
either (1, 0) or (0, 1). The number of such paths is given by

(
(r − k) + (s− 1)

s− 1

)
=

(
r + s− k − 1

s− 1

)
.

This again proves the claim. �

Of course (77) holds for any δ satisfying the recursion (without being restricted to partial
derivatives). This argument generalizes to arbitrary depth. We illustrate the next case from
which the general case will be obvious if a tad inelegant.

Theorem 8 (Partial reduction of ω (q, r, s | t)). For non-negative integer q, r, s, t, assume
that d (q, r, s, t) satisfies the recurrence

(79) d (q, r, s, t) = d (q − 1, r, s, t+ 1) + d (q, r − 1, s, t+ 1) + d (r, s− 1, t+ 1) .

Let N := q + r + s+ t. Then

d (q, r, s, t) =

r∑
k=1

s∑
j=1

(
N − t− k − j − 1

q − 1, r − k, s− j

)
d (0, k, j,N − k − j)

+

q∑
k=1

s∑
j=1

(
N − t− k − j − 1

q − k, r − 1, s− j

)
d (k, 0, j,N − k − j)

+

q∑
k=1

r∑
j=1

(
N − t− k − j − 1

q − k, r − j, s− 1

)
d (k, j, 0, N − k − j) .

Example 6 (Values of δ). Again we use the shorthand notation

ωa,b,c(r, s, t) := ω

(
r , s | t
a , b | c

)
.
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The techniques in [20] provide:

ω1,1,0(1, 0, 3) = 0.07233828360935031113948057244763953352659776102642...

ω1,1,0(2, 0, 2) = 0.29482179736664239559157187114891977101838854886937848122804...

ω1,1,0(1, 1, 2) = 0.14467656721870062227896114489527906705319552205284127904072...

while

ω1,0,1(1, 0, 3) = 0.14042163138773371925054281123123563768136197000104827665935...

ω1,0,1(2, 0, 2) = 0.40696928390140268694035563517591371639834128770661373815447...

ω1,0,1(1, 1, 2) = 0.4309725339488831694224817651103896397107720158191215752309...

and

ω0,1,1(2, 1, 1) = 3.002971213556680050792115093515342259958798283743200459879...

We note that ω1,1,0(1, 1, 2) = 2ω1,1,0(1, 0, 3) and ω1,0,1(1, 0, 3)+ω1,0,1(0, 1, 3)−ω1,0,1(1, 1, 2)

= 0.140421631387733719247 + 0.29055090256114945012− 0.43097253394888316942

= 0.00000000000000000000...,

both in accord with Theorem 7. Also, PSLQ run on the above data predicts that

ζ
′′
(4)

?
= 4ω1,1,0(1, 0, 3) + 2ω1,1,0(2, 0, 2)− 2ω1,0,1(2, 0, 2),(80)

which discovery also validates the effectiveness of our high-precision techniques. ♦

From (80) we see less trivial derivative relations lie within D than within D1. As noted

U(1, 1, 1, 1) = ω

(
1 | 1
1 | 1

)
= ζ

′′
(2).(81)

More generally, with ζa,b denoting partial derivatives, it is immediate that

ω

(
s, 0 | t
a, 0 | b

)
= ζa,b(t, s)(82)

ω

(
s, t | 0
a, b | 0

)
= ζ(a)(s) ζ(b)(t).(83)

We may now prove (80):

Proposition 1.

ζ
′′
(4) = 4ω1,1,0(1, 0, 3) + 2ω1,1,0(2, 0, 2)− 2ω1,0,1(2, 0, 2).(84)

Proof. First note that by (83)

ω1,1,0(2, 2, 0) = ζ
′
(2)2.

Next the MZV reflection formula ζ(s, t) + ζ(t, s) = ζ(s)ζ(t) − ζ(s + t), see [9], valid for

real s, t > 1 yields ζ1,1(s, t) + ζ1,1(t, s) = ζ ′(s)ζ ′(t) − ζ(2)(s + t). Hence 2ω1,0,1(2, 0, 2) =
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2ζ1,1(2, 2) = ζ ′(2)2− ζ ′′(4) where the first equality follows from (82). Since ω1,1,0(2, 0, 2) =
2ω1,0,1(2, 1, 1) by Theorem 7, our desired formula (84) is

ζ
′′
(4) + 2ω1,0,1(2, 0, 2) = 4ω1,1,0(1, 0, 3) + 2ω1,1,0(2, 0, 2),(85)

which is equivalent to

ζ
′
(2)2 = ω1,1,0(2, 2, 0) = 4ω1,1,0(1, 0, 3) + 2ω1,1,0(2, 0, 2).(86)

The final equality is another easy case of Theorem 7. �

5.2. Relations when M ≥ N ≥ 2. Since
∑
tk =

∑
sj , we deduce from (2), by a partial

fraction argument that

Theorem 9 (Relations for general ω).

N∑
k=1

ω

(
s1, . . . , sM | t1, . . . , tk−1, tk − 1, tk+1, . . . , tN
d1, . . . , dM | e1, . . . eN

)

=

M∑
j=1

ω

(
s1, . . . , sj−1, sj − 1, sj+1, . . . , sM | t1, . . . , tN

d1, . . . , dM | e1, . . . eN

)
.(87)

When N = 1 and M = 2 this is precisely (78). For N = 1 and general M there is a
result like Theorem 8. For N > 1 we find relations but have found no such reduction.

5.3. Complete reduction of MTW values when N = 1. When N = 1 it is possible
to use Theorem 9 to show that every MTW value (without derivatives) is a finite sum of
MZV’s. The basic tool is the partial fraction

m1 +m2 + . . .+mk

ma1
1 m

a2
1 · · ·m

ak
k

=
1

ma1−1
1 ma2

1 · · ·m
ak
k

+
1

ma1
1 m

a2−1
1 · · ·mak

k

+
1

ma1
1 m

a2
1 · · ·m

ak−1
k

.

We arrive at:

Theorem 10 (Complete reduction of ω(a1, a2, . . . , aM | b)). For nonnegative values of
a1, a2, . . . , aM , b the following holds:

a) Each ω(a1, a2, . . . , aM | b) is a finite sum of values of MZVs of depth M and weight
a1 + a2 + · · ·+ aM + b.

b) In particular, if the weight is even and the depth odd or the weight is odd and the
depth is even then the sum reduces to a superposition of sums of products of that
weight of lower weight MZVs.

Proof. For (a), let us define Nj := n1 + n2 + · · ·nj and set

κ(a1, . . . an | b1, . . . bn) :=
∑
ni>0

1∏n
i=1 ni

ai
∏n
j=1Nj

bj
,(88)

for positive integers ai and non negative bj (with bn large enough to assure convergence).
Thence κ(a1, . . . an | b1) = ω(a1, . . . an | b1). Noting that κ is symmetric in the ai we denote
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−→a to be the non-increasing rearrangement of a := (a1, a2, · · · , an). Let k be the largest
index of a non-zero element in −→a . The partial fraction above gives

κ(a | b) = κ(−→a | b) =
k∑
j=1

κ(−→a − ej , | b+ ek).

We repeat this step until there are only k − 1 no zero entries. Each step leaves the weight
of the sum invariant. Continuing this process (observing that the repeated rearrangements

leave the Nj terms invariant) we arrive at a superposition of sums of the form κ(
−→
0 | b) =

ζ(bn, bn−1, . . . , b1). Moreover, the process assures that each variable is reduced to zero and
so each final bj > 0. In particular, we may start with κ such that each ai > 0 and bj = 0
except for j = n. This captures all our ω sums and other intermediate structures.

Part (b) follows from recent results in the MZV literature [34]. �

Tsimura [35] provides a reduction theorem for exactly our MTWs with N = 1 to lower
weight MTWs. In light of Theorem 10, this result is subsumed by his earlier paper [34]. As
we discovered later, Theorem 10 was recently proven very neatly by explicit combinatorial
methods in [17], which do not lend themselves to our algorithmic needs.

5.4. Degenerate MTW derivatives with zero numerator values. In Theorem 10 we
include no derivative values—a zero value may still have a log term in the corresponding
variable—nor about N ≥ 2. For example, it appears unlikely that

ω

(
1 , 0 | 2
0 , 1 | 0

)
=
∞∑
n=1

1

n2

n−1∑
m=1

log(n−m)

m
(89)

is reducible to derivatives of MZVs. Likewise, for s > 2 we have

ω

(
0 , 0 | s
0 , 1 | 0

)
= −

∞∑
n=2

log Γ(n)

ns
.(90)

We observe that such ω values with terms of order zero cannot be computed directly
from the integral form of (5) without special attention to convergence at the singularities.
Instead we may recast such degenerate derivative cases as:

ω

(
q , r | s
0 , 1 | 0

)
=

1

Γ(s)

∫ ∞
0

xs−1Liq(e
−x) Li(1)r (e−x) dx.(91)

Though unlikely that MTW derivatives are finite superpositions of MZV derivatives,
it is possible to go some distance in establishing (non-finitary) relations. Consider the
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development

ω

(
r , 0 | s
0 , 1 | 0

)
= −

∑
m,n≥1

1

mr
log n

1

(m+ n)s
(92)

= −
∑
N≥1

1

N s

N−1∑
M=1

log(N −M)

M r

= ζ(1,0)(s, r) +
∑
k≥1

1

k
ζ(s+ k, r − k).

Here, ζ(1,0)(s, r) is the first parametric derivative ∂ζ(s, r)/∂s. What is unsatisfactory about
this expression is that the k-sum is not a finite superposition—although it does converge.

6. MTW resolution of the log-gamma problem

As a larger example of our interest in such MTW sums we shall show that the subensem-
ble D1 from Section 2.1 completely resolves of the log-gamma integral problem [4]—in that
our log-gamma integrals LGn lies in a specific algebra.

6.1. Log-gamma representation. We start, as in [4] with the Kummer series, see [1, p.
28], or [28, (15) p. 201]:

log Γ(x)− 1

2
log(2π) =− 1

2
log (2 sin(πx)) +

1

2
(1− 2x) (γ + log(2π))

+
1

π

∞∑
k=2

log k

k
sin(2πkx)(93)

for 0 < x < 1. With a view toward polylogarithm use, this can be written as:

log Γ
( z

2π

)
− 1

2
log 2π = ALi1(e

iz) +B Li1(e
−iz) + C Li

(1)
1 (eiz) +D Li

(1)
1 (e−iz),(94)

where the absolute constants are

A :=
1

4
+

1

2πi
(γ + log 2π), C := − 1

2πi
, B := A∗, D := C∗.(95)

Here ′∗′ denotes the complex conjugate. We define a vector space V1 whose basis is D1,
with coefficients generated by the rationals Q and four fundamental constants {π, 1π , γ, g :=
log 2π}. Specifically, V1 := {

∑
ciωi : ωi ∈ D1} , where any sum therein is finite.

These observations lead to a resolution of the integrals

LGn :=

∫ 1

0
logn Γ(x) dx.

As foreshadowed in [4]:

Theorem 11. For integer n ≥ 0, the log-gamma integral is resolvable in that LGn ∈ V1.2

2The proof exhibits an explicit form for the requisite superposition
∑
ciωi for any n.
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Proof. By induction. It is enough to show that generally

Gn :=

∫ 1

0

(
log Γ(z) − g

2

)n
dz(96)

is in V1, because it is a classic Eulerian result that LG1 = g
2 (i.e. G1 = 0), so that for

n > 1 we may use recursion in the ring to resolve LGn. By formula (94), we write Gn as

Gn := n!
∑

a+b+c+d=n

AaBbCcDd

a!b!c!d!
U(a+ c, b+ d, c, d),

where U has been defined by (7). This finite sum for Gn is in the vector space V1. �

Example 7 (Examples of G). For n = 1, we have Euler’s evaluation [4]

G1 =

∫ 1

0

(
log Γ(z) − g

2

)
dz = 0.(97)

For n = 2 and n = 3 these evaluations lead to those previously published in [4]. For
n = a+ b+ c+ d = 4, 5, 6 . . . we extract previously unresolved evaluations. For instance

G5 =

∫ 1

0

(
log Γ(z) − g

2

)5
dz =

5
(
4h2 + π2

)2
256π4

U(3, 2, 0, 0)−
5h
(
4h2 + π2

)
16π4

U(3, 2, 0, 1)

+
15
(
4h2 + π2

)
32π4

U(3, 2, 1, 1)−
15
(
4h2 + π2

)
64π4

U(3, 2, 2, 0)

+
5
(
π2 − 12h2

) (
4h2 + π2

)
512π4

U(4, 1, 0, 0) +
5h
(
4h2 + π2

)
16π4

U(4, 1, 1, 0)

−
15
(
4h2 + π2

)
64π4

U(4, 1, 2, 0) +
5
(
12h2 − π2

)
64π4

U(3, 2, 0, 2)− 15h

8π4
U(3, 2, 1, 2)

+
5h

8π4
U(3, 2, 3, 0) +

5
(
π2 − 12h2

)
32π4

U(4, 1, 1, 1) +
15h

8π4
U(4, 1, 2, 1)

+
5h
(
4h2 − π2

)
32π4

U(4, 1, 0, 1) +
15

16π4
U(3, 2, 2, 2)− 5

8π4
U(3, 2, 3, 1)

− 5

8π4
U(4, 1, 3, 1) +

5

32π4
U(4, 1, 4, 0).

(98)

To clarify notation in these recondite expressions, we show two example terms—namely
the last U-value above for G5, which is

U(4, 1, 4, 0) = ω

(
1, 1, 1, 1 | 1
1, 1, 1, 1 | 0

)
=

∑
m,n,p,q

logm log n log p log q

mnp q (m+ n+ p+ q)
.(99)

and the double MTW sum:

U(3, 2, 3, 0) = ω

(
1, 1, 1 | 1, 1
1, 1, 1 | 0, 0

)
=

′∑
m,n,p,q

logm log n log p

mnp q (m+ n+ p− q)
.(100)
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Here the ‘′’ indicates we avoid the poles. It is a triumph of the integral representations that
these very slowly convergent sums (of weight nine and eight respectively) can be calculated
to extreme precision in short time. ♦

Remark 2. In all the examples above πn−1LGN is realized with no occurrence of 1/π;
with more care it should be possible to adduce this in the proof of Theorem 11. ♦

6.2. An exponential generating function for the LGn. To conclude this analysis, we
again turn to generating functions. Let us define:

Y(x) :=
∑
n≥0
LGn

xn

n!
=

∫ 1

0
Γx(1− t) dt.(101)

Now, from the exponential-series form for Γ given in (23), we obtain

Theorem 12. For n = 1, 2, . . .

LGn =
∑

m1,...,mn≥1

ζ∗(m1) ζ
∗(m2) · · · ζ∗(mn)

m1m2 · · ·mn(m1 + . . .mn + 1)
,(102)

where ζ∗(1) := γ and ζ∗(n) := ζ(n) for n ≥ 2.

In particular, Euler’s evaluation of LG1 leads to

log
√

2π =
∑
m≥1

ζ∗(m)

m(m+ 1)
=

1

2
+ γ +

∑
m≥2

ζ(m)− 1

m(m+ 1)
,

a rapidly convergent rational zeta-series. It is fascinating—and not completely understood—
how the higher LGn can be finite superpositions of derivative MTWs, and yet for any n
these log-gamma integrals as infinite sums engage only ζ-function convolutions as above.

7. Numerical experiments

In an effort both to check our theory and evaluations above, and also to further explore
the constants and functions being analyzed, we performed several numerical computations.

7.1. Computations of the G constants. Our first computation obtained G(2), G(3),
G(4) and G(5) to 400-digit precision, using Mathematica and the integral formulas above.
Then we separately computed these constants using closed forms such as (98). This second
set of computations was performed with a combination of the ARPREC arbitrary precision
software [7] and our implementation of tanh-sinh quadrature (75) to find the numerous U
constants that appear in formulas such as (98). We employed formulas (45), (46), (54) and
(56) to evaluate the underlying polylog and polylog derivatives; and formulas (57), (58),
(60), (61) and (62) to evaluate the underlying zeta and zeta derivatives.

The results of these two sets of calculations matched to 400-digit accuracy.
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7.2. Computation of the U constants in D1. In a subsequent calculation, we computed,
to 3100-digit precision, all of the U constants in D1 up to degree 10 (i.e., whose indices
sum to 10 or less), according to the defining formula (7) and the rules given for D1 in
Section 2.1. In particular, we calculated U(m,n, p, q) with m,n ≥ 1, m ≥ n, m ≥ p, n ≥
q, m+ n+ p+ q ≤ 10. Our program found that there are 149 constants in this class.

These computations, as above, were performed using the ARPREC arbitrary precision
software [7] and the tanh-sinh quadrature algorithm (75), employing formulas (45), (46),
(54) and (56) to evaluate the underlying polylog and polylog derivatives; and formulas
(57), (58), (60), (61) and (62) to evaluate the underlying zeta and zeta derivatives.

We then searched among this set of numerical values for linear relations, using the
multipair “PSLQ” integer relation algorithm [6], [12, pg. 230–234]. Our program first
found the following relations, confirmed to over 3000-digit precision:

0 = U(M,M, p, q)− U(M,M, q, p),(103)

for M ∈ [1, 4] and 2M + p+ q ∈ [2, 10], a total of 11 relations. The fact that the programs
uncover these simple symmetry relations gave us some measure of confidence that software
was working properly.

The programs then produced the following more sophisticated set of relations:

0 = 6U(2, 2, 0, 0)− 11U(3, 1, 0, 0)

0 = 160U(3, 3, 0, 0)− 240U(4, 2, 0, 0) + 87U(5, 1, 0, 0)

0 = 1680U(4, 4, 0, 0)− 2688U(5, 3, 0, 0) + 1344U(6, 2, 0, 0)− 389U(7, 1, 0, 0)

0 = 32256U(5, 5, 0, 0)− 53760U(6, 4, 0, 0) + 30720U(7, 3, 0, 0)− 11520U(8, 2, 0, 0)

+ 2557U(9, 1, 0, 0).(104)

Upon completion, our PSLQ program reported an exclusion bound of 2.351 × 1019. This
means that in any integer linear relation among the set of 149 constants that is not listed
above, the Euclidean norm of the corresponding vector of coefficients must exceed 2.351×
1019. Under the hypothesis that linear relations only are found among constants of the
same degree, we obtained exclusion bounds of at least 3.198× 1073 for each degree in the
tested range (degree 4 through 10).

The entire computation, including quadrature and PSLQ calculations, required 94,727
seconds run time on one core of a 2012-era Apple MacPro workstation. Of this run time,
initialization (including the computation of zeta and zeta derivative values, as well as pre-
calculating values of Li1(e

iθ) and Li′1(e
iθ) at abscissa points specified by the tanh-sinh

quadrature algorithm [8]) required 82074 seconds. After initialization, the 149 quadra-
ture calculations completed rather quickly (a total of 6894 seconds), as did the 16 PSLQ
calculations (a total of 5760 seconds).

These relations can be established by using Maple to symbolically evaluate the righthand
side of (25) as described in the second proof of Theorem 2 or as in Example 1. For instance,
U(3, 1, 0, 0) = 6 ζ(4), and U(2, 2, 0, 0) = 11 ζ(4), which establishes the first relation in (104).
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Similarly, the third relation in (104) follows from

U(4, 4, 0, 0) = 11103 ζ(8) + 2304 ζ (5) ζ (3) + 576 ζ (3)2 ζ(2)

U(5, 3, 0, 0) = 10350 ζ(8) + 2160 ζ (5) ζ (3) + 360 ζ (3)2 ζ(2)

U(6, 2, 0, 0) = 8280 ζ(8) + 1440 ζ (5) ζ (3)

U(7, 1, 0, 0) = 5040 ζ(8).

7.3. A conjecture posited, then proven. From the equations in (104) we conjectured
that (i) there is one such relation at each even weight (4, 6, 8, . . .) and none at odd weight,
and (ii) in each case p = q = 0. Thus, there appear to be no nontrivial relations between
derivatives outside D0 but in D1. Any negative results must perforce be empirical as one
cannot at the present prove things even as “simple” as the irrationality of ζ(5). Accord-
ingly, we performed a second computation, :using 780-digit arithmetic and only computing
elements of a given weight d, where 4 ≤ d ≤ 20, with m+n = d and p = q = 0. The PSLQ
search then quickly returned the additional relations culminating with:

0 = − 69888034078720U(9, 9, 0, 0) + 125798461341696U(10, 8, 0, 0)

− 91489790066688U(11, 7, 0, 0) + 53369044205568U(12, 6, 0, 0)

− 24631866556416U(13, 5, 0, 0) + 8797095198720U(14, 4, 0, 0)

− 2345892052992U(15, 3, 0, 0) + 439854759936U(16, 2, 0, 0)

− 51747618627U(17, 1, 0, 0)

0 = − 14799536744824832U(10, 10, 0, 0) + 26908248626954240U(11, 9, 0, 0)

− 20181186470215680U(12, 8, 0, 0) + 12419191673978880U(13, 7, 0, 0)

− 6209595836989440U(14, 6, 0, 0) + 2483838334795776U(15, 5, 0, 0)

− 776199479623680U(16, 4, 0, 0) + 182635171676160U(17, 3, 0, 0)

− 30439195279360U(18, 2, 0, 0) + 3204125819155U(19, 1, 0, 0)(105)

No relations were found when the degree was odd, aside from trivial relations such as
U(7, 8, 0, 0) = U(8, 7, 0, 0). For all weights, except for the above-conjectured relations, no
others were found, with exclusion bounds of at least 2.481× 1075.

Remark 3. As noted the suggested conjecture (at least the even-weight part) has been
proven as our Theorem 3; we repeat that even the generating-function algebra was moti-
vated by numerics—i.e. we had to seek some kind of unifying structure for the U functions.
This in turn made the results for Us accessible. ♦

7.4. Computational notes. We should add that this exercise has underscored the need
for additional research and development in the arena of highly efficient software to compute
a wide range of special functions to arbitrarily high precision, across the full range of
complex arguments (not just for a limited range of real arguments). We relied on our own
computer programs and the ARPREC arbitrary precision software in this study in part
because we were unable to obtain the needed functionality in commercial software.
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For instance, neither Maple nor Mathematica was able to numerically evaluate the U1
constants to high precision in reasonable run time, in part because of the challenge of com-
puting polylog and polylog derivatives at complex arguments. The version of Mathematica
that we were using was able to numerically evaluate ∂Lis(z)/∂s to high precision, which is
required in (7), but such evaluations were hundreds of times slower than the evaluation of
Lis(z) itself, and, in some cases, did not return the expected number of correct digits.

8. Future research directions

One modest research issue is further simplification of log-gamma integrals, say by re-
ducing in some fashion the examples of Theorem 11. Note that we have optimally reduced
U(M,N) := U(M,N, 0, 0), in the form of explicit ζ-superpositions in a specific ring, and
we have excluded order-preserving linear relations when p, q are non-zero.

Along the same lines, a natural and fairly accessible computational experiment would
venture further outside of D1, motivated by (80). Any exhaustive study of the ensemble D is
impractical pending a reliable arbitrary-precision implementation of high-order derivatives
for Lis(x) with respect to s. Hence, in light of (81), (82) and (83) it makes sense to hunt
for relations of weight at most 20 with total derivative weight 2, say.

This study has underscored the need for high-precision evaluations of special functions
in such research. This spurred one of us (Crandall) to compile a set of unified and rapidly
convergent algorithms (some new, some gleaned from existing literature) for a variety of
special functions, suitable for practical implementation and efficient for very high-precision
computation [20]. Since, as we have illustrated, the polylogarithms and their relatives are
central to a great deal of mathematics and mathematical physics [3, 15, 26], such an effort
is bound to pay off in the near future.

We conclude by re-emphasising the remarkable effectiveness of our computational strat-
egy. The innocent looking sum U(50, 50, 0, 0) mentioned inter alia can be generalized to an
MTW sum having 100 arbitrary parameters:

ω(s1, . . . , s50 | t1, . . . , t50) :=
∑

m1,...,m50,n1,...,n50 > 0∑50
i=1

mi=
∑50

j=1
nj

50∏
i=1

1

mi
si

50∏
j=1

1

njtj
.(106)

We challenge readers to directly evaluate this sum.
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