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Abstract

This paper extends tools developed in [10, 8] to study character polylogarithms.
These objects are used to compute Mordell-Tornheim-Witten character sums and to
explore their connections with multiple-zeta values (MZVs) and with their character
analogues [17].

1 Introduction

In [10] we defined an ensemble of extended Mordell–Tornheim–Witten (MTW) zeta func-
tion values [18, 34, 24, 25, 7, 12, 36, 38, 32]. There is by now a huge literature on these
sums; in part because of the many connections with fields such as combinatorics, number
theory, and mathematical physics. Unlike previous authors we included derivatives with re-
spect to the order of the terms. We investigated interrelations amongst MTW evaluations,
and explored some deeper connections with multiple-zeta values (MZVs).

In this article we continue the research in [8, 10] by studying character polylogarithms
and applying them to analyze the relations between MTW character sums defined by

µd1,d2(q, r, s) :=
∑
n,m>0

χd1(m)

mq

χd2(n)

nr
1

(m+ n)s
, (1)

where for d > 2, χ±d(n) :=
(±d
n

)
, and χ−2(n) := (−1)n−1, χ1(n) = 1. When d1 = d2 = 1

these devolve to classical Mordell–Tornheim–Witten (MTW) sums, as defined in (2) below
for K = 2.
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1.1 Organization

The organization of the paper is as follows. In Section 2 we record necessary preliminaries
regarding (generalized) MTW sums. In Section 3 we examine derivatives of the classical
polylogarithm and zeta function. In Section 4 we introduce character polylogarithms (based
on classical Dirichlet characters) and in Section 5 we use them to initiate the computational
study of character MTW sums. In Section 6 we deduce various reductions, interrelations,
and evaluations of our character MTW sums. Finally, in Section 7 we make some concluding
remarks.

2 Mordell–Tornheim–Witten sums

We first recall the definitions of Mordell–Tornheim–Witten (MTW) sums also called Mordell–
Tornheim–Witten zeta function values.

2.1 Classical MTW sums

The multidimensional Mordell–Tornheim–Witten (MTW) zeta function

ω(s1, . . . , sK+1) :=
∑

m1,...,mK > 0

1

ms1
1 · · ·m

sK
K (m1 + · · ·+mK)sK+1

(2)

enjoys known relations [29], but remains mysterious with respect to many combinatorial
phenomena, especially when we contemplate derivatives with respect to the si parameters.
We shall refer to K + 1 as the depth and

∑k+1
j=1 sj as the weight of ω.

The paper [7] introduced and discussed a novel generalized MTW zeta function for
positive integers M,N and nonnegative integers si, tj , with constraints M ≥ N ≥ 1,
together with a polylogarithm-integral representation:

ω(s1, . . . , sM | t1, . . . , tN ) :=
∑

m1,...,mM,n1,...,nN > 0∑M
j=1

mj=
∑N

k=1
nk

M∏
j=1

1

mj
sj

N∏
k=1

1

nktk
(3)

=
1

2π

∫ 2π

0

M∏
j=1

Lisj

(
eiθ
) N∏
k=1

Litk

(
e−iθ

)
dθ. (4)

Here the polylogarithm of order s denotes Lis(z) :=
∑

n≥1 z
n/ns and its analytic extensions

[28] and the (complex) number s is its order.
When some s-parameters are zero, there are convergence issues with this integral rep-

resentation. One may, however, use principal-value calculus, or alternative representations
given in [10] and expanded upon in Section 5.3.

When N = 1 the representation (4) devolves to the classic MTW form, in that

ω(s1, . . . , sM+1) = ω(s1, . . . , sM | sM+1). (5)
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2.2 Generalized MTW sums

We also explored a wider MTW ensemble involving outer derivatives, introduced in [7],
according to

ω

(
s1, . . . , sM | t1, . . . , tN
d1, . . . , dM | e1, . . . eN

)
:=

∑
m1,...,mM,n1,...,nN > 0∑M

j=1
mj=

∑N
k=1

nk

M∏
j=1

(− logmj)
dj

mj
sj

N∏
k=1

(− log nk)
ek

nktk

(6)

=
1

2π

∫ 2π

0

M∏
j=1

Li
(dj)
sj

(
eiθ
) N∏
k=1

Li
(ek)
tk

(
e−iθ

)
dθ, (7)

=
1

π
Re

∫ π

0

M∏
j=1

Li
(dj)
sj

(
eiθ
) N∏
k=1

Li
(ek)
tk

(
e−iθ

)
dθ (8)

where the s-th outer derivative of a polylogarithm is denoted Li
(d)
s (z) :=

(
∂
∂s

)d
Lis(z). Thus,

the effective computation of (7) requires really robust and efficient methods for computing

Li
(d)
s as were developed in [8, 10].

3 Underlying special function tools

We turn to the building blocks of our work:

3.1 Polylogarithms and their derivatives with respect to order

In regard to the needed polylogarithm values, [8] gives formulas such as below.

Proposition 1. When s = n is a positive integer,

Lin(z) =
∞ ′∑
m=0

ζ(n−m)
logm z

m!
+

logn−1 z

(n− 1)!
(Hn−1 − log(− log z)) , (9)

valid for | log z| < 2π. Here Hn := 1 + 1
2 + 1

3 + · · ·+ 1
n , and the primed sum

∑′
means to

avoid the singularity at ζ(1). For any complex order s not a positive integer,

Lis(z) =
∑
m≥0

ζ(s−m)
logm z

m!
+ Γ(1− s)(− log z)s−1. (10)

(This formula is valid for s = 0.)

3



In formula (9), the condition | log z| < 2π precludes its use when |z| < e−2π ≈ 0.0018674.
For such small |z|, however, it typically suffices to use the definition

Lis(z) =
∞∑
k=1

zk

ks
. (11)

Note that Li0(z) = z/(1−z) and Li1(z) = − log(1−z). In fact, we found that formula (11)
is generally faster than (9) whenever |z| < 1/4, at least for precision levels in the range of
100 to 4000 digits.

3.1.1 Outer derivatives of general polylogarithms

On carefully manipulating (10) for integer k ≥ 0, we have for | log z| < 2π and τ ∈ [0, 1):

Lik+1+τ (z) =
∑

0≤n6=k
ζ(k + 1 + τ − n)

logn z

n!
+

logk z

k!

∞∑
j=0

ck,j(L) τ j (12)

(see [21, §9, eqn. (51)]). Here L := log(− log z) and the c coefficients engage the Stieltjes
constants γn, where γ0 = γ [21, 26, §7.1], which occur in the asymptotic expansion

ζ(z) =
1

z − 1
+
∞∑
n=0

(−1)n

n!
γn(z − 1)n.

Precisely

ck,j(L) =
(−1)j

j!
γj − bk,j+1(L), (13)

where the bk,j terms—corrected from [21, §7.1]—are given by

bk,j(L) :=
∑

p+t+q=j
p,t,q≥0

L p

p!

Γ(t)(1)

t!
(−1)tfk,q, (14)

and fk,q is the coefficient of xq in
∏k
m=1

1
1+x/m . This is calculable recursively via f0,0 =

1, f0,q = 0 (q > 0), fk,0 = 1 (k > 0) and

fk,q =

q∑
h=0

(−1)h

kh
fk−1,q−h. (15)

Above we used the functional equation for the Gamma function to remove singularities
at negative integers. While (12) has little directly to recommend it computationally, it is
highly effective in determining derivative values with respect or order, as we shall see in

(16). To obtain, for example, the first derivative Li
(1)
k+1(z), we differentiate (12) at zero and

so require the evaluation ck,1.
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Theorem 1 (Derivatives for positive order). Fix k = 0, 1, 2 . . . and m = 1, 2 . . . . For
| log z| < 2π and L = log(− log z) one has

Li
(m)
k+1(z) =

∑
0≤n6=k

ζ(m)(k + 1− n)
logn z

n!
+m! ck,m(L)

logk z

k!
. (16)

In particular,

Li′1(z) =
∞∑
n=1

ζ ′ (1− n)
logn z

n!
− γ1 −

1

12
π2 − 1

2
(γ + log (− log z))2 , (17)

which, as before, is valid whenever | log z| < 2π.

For k = −1, or, in other words, for Li
(m)
0 (z), things are simpler, as we may use (10):

Theorem 2 (Derivatives for zero order). With Γ(t)(1) and L = log(− log z) as above for
arbitrary z, we have for m any positive integer

Li
(m)
0 (z) =

∑
n≥0

ζ(m)(−n)
logn z

n!
−

m∑
t=0

(−1)t
(
m

t

)
Γ(t)(1)

Lm−t

log z
. (18)

Note that symmetric divided differences allow one to rapidly check (16) or (18) to
moderate precision (say 50 digits).

3.2 Values of ζ and its derivatives at positive integer arguments

Effective use of formulas like (9) and (10) typically requires precomputed values of the zeta
function and its derivatives at integer arguments (see [5, 19, 26]).

For positive integers, derivatives of the zeta function can be computed via a series-
accelerated algorithm for derivatives of the Dirichlet eta function (or alternating zeta
function), given as

η(s) :=

∞∑
n=1

(−1)n−1

ns
= (1− 21−s)ζ(s). (19)

For practical computation of eta or its derivatives, any of several alternating series
acceleration schemes can be used. The corresponding values of zeta derivatives can then
be found by solving (19) for ζ(s) and then taking formal derivatives, for example

ζ ′(s) =
η′(s)

(1− 21−s)
− 21−sη(s) log 2

(1− 21−s)2
. (20)

Example 1 (Alternating series acceleration [21, 20]). This is illustrated in the following
Mathematica code (for argument ss, and precision prec digits):
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zetaprime[ss_] :=

Module[{s, n, d, a, b, c}, n = Floor[1.5*prec]; d = (3 + Sqrt[8])^n;

d = 1/2*(d + 1/d);

{b, c, s} = {-1, -d, 0};

Do[c = b - c;

a = 1/(k + 1)^ss *(-Log[k + 1]);

s = s + c*a;

b = (k + n)*(k - n)*b/((k + 1)*(k + 1/2)), {k, 0, n - 1}];

(s/d - 2^(1 - ss)*Log[2]*Zeta[ss])/(1 - 2^(1 - ss))]

A similar approach works well for higher derivatives of zeta, although the resulting
generalization of (20) becomes progressively more complicated. ♦

3.2.1 Derivatives of of ζ at zero and negative integer arguments

The functional equation for the zeta function, ζ(s) = 2(2π)s−1 sin πs
2 Γ(1 − s) ζ(1 − s),

lets one extract ζ ′(0) = −(log 2π)/2, and, for even m = 2, 4, 6, . . . ,

ζ ′(−m) :=
d

ds
ζ(s)|s=−m =

(−1)m/2m!

2m+1πm
ζ(m+ 1) (21)

([21, p. 15]), while, for odd m = 1, 3, 5 . . . , on the other hand,

ζ ′(−m) = ζ(−m)

(
γ + log 2π −Hm −

ζ ′(m+ 1)

ζ(m+ 1)

)
. (22)

In [10, 8] we delineated methods more suited to higher derivatives at negative integers
[5] showing for n = 1, 2, . . ., with κ := − log(2π)− 1

2πi, we have Apostol’s finite summation
formulas [33, (25.6.13) and (25.6.14)]:

(−1)kζ(k)(1− 2n) =
2(−1)n

(2π)2n

k∑
m=0

m∑
r=0

(
k

m

)(
m

r

)
Re(κk−m) Γ(r)(2n) ζ(m−r)(2n) , (23a)

(−1)kζ(k)(−2n) =
2(−1)n

(2π)2n+1

k∑
m=0

m∑
r=0

(
k

m

)(
m

r

)
Im(κk−m) Γ(r)(2n+ 1) ζ(m−r)(2n+ 1) .

(23b)

To compute these values we also need effective algorithms for computation of Γ(t)(n)
at positive integers, as were given explicitly in [10, 8].

6



4 Character polylogarithms and sums

We first consider a class of real character L-series (see [15, 17] and [33, §27.8]), which will
be denoted as L±d for d ≥ 1. These are based on real multiplicative characters χ modulo
d, which we denote χ±d depending as to whether χ(d − 1) = ±1. Since we only consifer
real multiplicative characters, χ±d(k) = ±1 when (k, d) = 1 and is zero otherwise. In the
following, when we write d without a sign, it denotes |d|.

4.1 Character L-series

We shall call upon the series given by the following, for integer d ≥ 3:

L±d(s) :=
∑
n>0

χ±d(n)

ns
, (24)

where ζ(s, ν) :=
∑

n≥0 1/(n+ ν)s is the Hurwitz zeta function, see [26] and [9], so ζ(s, 1) =
ζ(s). Hence, also for m = 1, 2, . . . and s 6= 1 we have

L
(m)
±d (s) =

1

ds

d−1∑
k=1

χ±d(k)
m∑
j=0

(
m

j

)
(− log d)jζ(m−j)

(
s,
k

d

)
. (25)

This provides access to numerical methods for derivatives of the Hurwitz zeta function for

evaluation of quantities like L
(m)
±d (s) with s > 1. Various packages such as Maple have

a good implementation of ζ(m)(s, ν) with respect to arbitrary complex s, as we shall see
below. For later use we set χ1(n) := 1, χ−2(n) := (−1)n−1. Then L1 := ζ, while L−2 := η,
the alternating zeta function.

We say such a character and the corresponding series is principal if χ(k) = 1 for all
k relatively prime to d. For all other characters

∑d−1
k=1 χ(k) = 0, and we shall say the

character is balanced. We say the character and series are primitive if it is not induced by
character for a proper divisor of d.

We will be particularly interested in cases when d = P, 4P or 8P , where P is a prod-
uct of distinct odd primes, since only such d admit primitive characters. it transpires
[14, 17, 15] that a unique primitive series exists for 1 and each odd prime p, such as
L−3,L+5,L−7,L−11,L+13, . . ., with the sign determined by the remainder modulo 4, and
at 4 and four times primes, while two occur at 8p, e.g., L±24. We then obtain primi-
tive sums for products of distinct odd primes P or 4P , and again two at 8P . That is,
e.g., L−4,L+12,L−20,L+60,L−84. In the primitive cases, χ±d(n) :=

(±d
n

)
, where

(±d
n

)
the

generalized Legendre-Jacobi symbol.
Thence, L−2 is an example of an imprimitive series, in that it is reducible [33, §27.8] to

L1 via (19). Note the imprimitive series L+6(s) =
∑

n>0(1/(6n+ 1)s + 1/(6n+ 5)s) has all
positive coefficients, while L−6(s) =

∑
n>0(1/(6n+ 1)s − 1/(6n+ 5)s) = (1− 1/2s) L−3(s)
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is imprimitive but balanced, as is L−12(s) =
∑

n>0(1/(12n+ 1)s + 1/(12n+ 5)s− 1/(12n+

7)s − 1/(12n+ 11)s), which, being non-principal, has
∑11

k=1 χ−12(k) = 0.
Recall that the sign determines that χ±d(d − 1) = ±1. For example, χ+5(n) = 1 for

n = 1, 4, and χ+5(n) = −1 for n = 2, 3.

Remark 1 (An integral representation). A useful integral formula [33, (25.11.27)] is

ζ(s, a) =
a1−s

s− 1
+

1

2
a−s +

1

Γ (s)

∫ ∞
0

(
1

ex − 1
− 1

x
+

1

2

)
xs−1

eax
dx, (26)

valid for Re s > −1, s 6= 1,Re a > 0; an extension for Re s > −(2n+ 1), s 6= 1,Re a > 0 is
given in [33, (25.11.28)]. From (26) we adduce for d ≥ 3 that

L±d(s) :=
1

d

d−1∑
k=1

χ±d(k)
k1−s − 1

s− 1
+

1

2

d−1∑
k=1

χ±d(k)

ks
(27)

+

∫ ∞
0

(
xs−1

Γ (s)

)(
1

edx − 1
− 1

dx
+

1

2

) d−1∑
k=1

χ±d(k)

ekx
dx.

For the case L−3 we have

L−3(s) =
21−s − 1

3 (1− s)
+

1

2

(
1− 1

2s

)
+

2

Γ (s)

∫ ∞
0
xs−1e−3x/2

(
1

e3x − 1
− 2

3x
+

1

2

)
sinh

(x
2

)
dx.

(28)

For L+5 this simplifies to

L+5(s) =
1− 21−s − 31−s + 41−s

5(s− 1)
+

(1− 2−s − 3−s + 4−s)

2
(29)

+
2

Γ(s)

∫ ∞
0
xs−1e−5x/2

(
1

e5x − 1
− 1

5x
+

1

2

)(
cosh

(
3x

2

)
− cosh

(x
2

))
dx.

For all non-principal characters, the first-term singularity in (26) at s = 1 is removable,
leaving an analytic function and so (27) can be used to numerically compute or confirm

values of L
(m)
±d (1). Explicitly for m ≥ 1,

L
(m)
±d (1) :=

d−1∑
k=2

χ±d(k)(− log k)m
(

1

2k
− log k

d(m+ 1)

)
(30)

+

∫ ∞
0

(
xs−1

Γ (s)

)(m)

s=1

(
1

edx − 1
− 1

dx
+

1

2

) d−1∑
k=1

χ±d(k)

ekx
dx

valid at least for Re s > −1. ♦
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Example 2 (Primitive L-series and their derivatives at zero). It helps to know that
ζ(0, a) = 1/2 − a, ζ ′(0, a) = log Γ(a) − 1

2 log(2π) [33]. With µ±d(1) :=
∑d−1

k=1 χ±d(k)k,

it then follows that L±d(0) =
∑d−1

k=1

(±d
k

)
ζ
(
0, kd

)
= −µ±d(1)

d , which is zero for +d. Thence,

L−d(0) =
d−1∑
k=1

(
−d
k

)
ζ

(
0,
k

d

)
= −µ−d(1)

d
and L+d(0) = 0, (31)

since
∑d−1

k=1 χ±d(k) = 0 and
∑d−1

k=1m
d−1
k=1χ+d(k)k = 0 for primitive characters.

Whence, on differentiating the rightmost formula in (24) we have

L
(1)
±d(0) = L±d(0) log d+

d−1∑
k=1

(
±d
k

)
log Γ

(
k

d

)
. (32)

(See also (34), Remark 3 and the discussion above it.) ♦

Recall also that for d > 4, as Dirichlet showed, the class number formula for imaginary

quadratic fields −µ−d(1)
d = h(−d).

Each such primitive L-series obeys a simple functional equation [4] of the kind seen for
ζ in Section 3.2.1:

L±d(s) = C(s)

{
sin (sπ/2)
cos (sπ/2)

}
L±d(1− s), C(s) := 2sπs−1d−s+1/2Γ(1− s). (33)

Indeed, this is true exactly for primitive series [4]. Moreover, the primitive series can be
summed at various integer values:

L±d(1− 2m) =

{
(−1)mR(2m− 1)!/(2d)2m−1

0

L±d(−2m) =

{
0
(−1)mR′(2m)!/(2d)2m (34)

L+d(2m) = Rd−1/2π2m, L−d(2m− 1) = R′d−1/2π2m−1,

where m is a positive integer and R, R′ are rational numbers which depend on m, d. For
d = 1 these engage the Bernoulli numbers, while for d = −4 the Euler numbers appear.
The precise formulas for R and R′ are given in [17, Appendix 1]. Also, famously,

L+p(1) = 2
h(p)
√
p

log ε0, (35)

where h(p) is the class number1 of the quadratic form with discriminant p and ε0 is the
fundamental unit in the real quadratic field Q(

√
p).

1See http://en.wikipedia.org/wiki/List_of_number_fields_with_class_number_one.
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4.2 Character polylogarithms

We now introduce our character polylogarithms, namely,

L±d(s; z) :=
∞∑
n=1

(
±d
n

)
zn

ns
(36)

L
(m)
±d (s; z) :=

∂m

∂sm
L±d(s; z). (37)

These are well defined for all characters, but of primary interest for primitive ones.
While such objects have been used before, most of the computational tools we provide

appear to be new or previously inaccessible. In the sequel, the reader will lose very little
if he or she assumes all characters are primitive.

4.3 Character polylogarithms and Lerch’s formula

The following parametric version of (10) holds:

∞∑
n=0

z(n+ν)

(n+ ν)s
= Γ(1− s)(− log z)s−1 +

∞∑
r=0

ζ(s− r, ν)
(log z)r

r!
. (38)

Here ζ(s, ν) is again the Hurwitz zeta function, s 6= 1, 2, 3, . . ., ν 6= 0. − 1,−2, . . ., and, as
before, | log z| < 2π (see [23, Vol 1, p.29, eqn. (8)]). Then (10) is the case ν = 1. Using
(38) it is possible to substantially extend (16).

We obtain
∞∑
n=0

z(dn+k+ε)

(dn+ k + ε)s
=

1

d
Γ(1− s)(− log z)s−1 +

∞∑
r=0

ζ

(
s− r, k + ε

d

)
dr−s(log z)r

r!
. (39)

From this we obtain, for k = 1, 2, . . . , d − 1, s 6= 1, 2, 3, . . ., and 0 < ε < 1, that provided∑d−1
m=1

(±d
m

)
= 0,

∞∑
n=1

(
±d
n

)
z(n+ε)

(n+ ε)s
=
∞∑
r=0

(
1

ds−r

d−1∑
k=1

(
±d
k

)
ζ

(
s− r, k + ε

d

))
(log z)r

r!
. (40)

This holds for all primitive characters and some imprimitive ones such as −12, and so in
these cases any term independent of m vanishes.

We then have a tractable formula for differentiation wrt the order. For m = 0, 1, 2, . . .,
we can write

L
(m)
±d (s; z) :=

∞∑
n=1

(
±d
n

)
(log n)m

ns
zn

=

∞∑
r=0

∂m

∂sm

(
1

ds−r

d−1∑
k=1

(
±d
k

)
ζ

(
s− r, k

d

))
(log z)r

r!
(41)
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We can now derive the character counterpart to (16) namely:

Theorem 3 (L-series summations for primitive character polylogarithms). For primitive
d = −3,−4, 5, . . . and all s (since the poles at s = 1, 2, . . . cancel) we have

L
(m)
±d (s; z) =

∞∑
r=0

L
(m)
±d (s− r)(log z)r

r!
(42)

when | log z| < 2π/d.

Now, however, unlike the case for ζ, this is also applicable at s = 1, 2, 3, . . .. By contrast,
the integral (7) or (8), is less attractive since it cannot be applied (to the real part) on the
full range [0, π]. It does, however, lead to two attractive Fourier series

∞∑
n=1

χ±d(n)
cosnθ

ns
=

∞∑
r=0

L
(m)
±d (s− 2r)

(−1)rθ2r

(2r)!
(43a)

∞∑
n=1

χ±d(n)
sinnθ

ns
=
∞∑
r=0

L
(m)
±d (s− 2r + 1)

(−1)rθ2r−1

(2r − 1)!
(43b)

when |θ| < 2π/d.

4.4 L-series derivatives at negative integers

To employ (42) for non-negative integer order s, are left with the job of computing L
(m)
±d (−n)

at negative integers. This can be achieved from the requisite functional equation in (33)
by the methods of [5].

We begin for primitive d = 1, 2, . . . , with (33), which we rewrite as:

√
dL±d(1− s) = Ψ±d(s) L±d(s), Ψ±d(s) :=

(
d

2π

)s{
2 Re eiπs/2

2 Im eiπs/2

}
Γ(s). (44)

Then for real s and κd := − log 2π
d + 1

2πi,

√
dL+d(1− s) = (Re 2esκd) Γ(s) L+d(s), (45a)√
dL−d(1− s) = (Im 2esκd) Γ(s) L−d(s). (45b)

Two applications of Leibnitz’ formula for n-fold differentiation with respect to s leads
to explicit analogues of (23a) and (23b). We arrive at:
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Theorem 4 (L-series derivatives at negative integers). Let L±d be a primitive non-principal
L-series. For all integers n ≥ 1,

L
(m)
+d (1− 2n) =

(−1)m+nd2n−1/2

22n−1π2n

m∑
k=0

(
m

k

) k∑
j=0

(
k

j

)
(Re κjd)Γ

(k−j)(2n) L
(m−k)
+d (2n) (46a)

L
(m)
+d (2− 2n) =

(−1)m+nd2n−3/2

22n−2π2n−1

m∑
k=0

(
m

k

) k∑
j=0

(
k

j

)
(Im κjd)Γ

(k−j)(2n− 1) L
(m−k)
+d (2n− 1)

(46b)

and

L
(m)
−d (1− 2n) =

(−1)m+nd2n−1/2

22n−1π2n

m∑
k=0

(
m

k

) k∑
j=0

(
k

j

)
(Im κjd)Γ

(k−j)(2n) L
(m−k)
−d (2n) (46c)

L
(m)
−d (2− 2n) =

(−1)m+n+1d2n−3/2

22n−2π2n−1

m∑
k=0

(
m

k

) k∑
j=0

(
k

j

)
(Re κjd)Γ

(k−j)(2n− 1) L
(m−k)
−d (2n− 1),

(46d)

where κd = − log 2π
d + 1

2πi.

Since j is a positive integer, Re κjd and Im κjd can be fully expanded. From the prior
result and the known asymptotics, Γ(m)(n) ≈ logm(n)Γ(n), one may deduce:

Corollary 1 (L-series derivative asymptotics). Let L±d be a primitive non-principal L-
series. For all integers m ≥ 0, as n→ +∞ we have

L
(m)
+d (1− 2n)

(2n− 1)!
≈ 2

(−1)m+nd2n−1/2

(2π)2n
Re

(
πi

2
+ log

(
(2n)d

2π

))m
(47a)

L
(m)
+d (2− 2n)

(2n− 2)!
≈ 2

(−1)m+nd2n−3/2

(2π)2n−1
Im

(
πi

2
+ log

(
(2n− 1)d

2π

))m
(47b)

and

L
(m)
−d (1− 2n)

(2n− 1)!
≈ 2

(−1)m+nd2n−1/2

(2π)2n
Im

(
πi

2
+ log

(
(2n)d

2π

))m
(47c)

L
(m)
−d (2− 2n)

(2n− 2)!
≈ 2

(−1)m+n+1d2n−3/2

(2π)2n−1
Re

(
πi

2
+ log

(
(2n− 1)d

2π

))m
. (47d)

One may if one wishes use Stirling’s approximation to remove the factorial. For modest
n this asymptotic allows an excellent estimate of the size of derivative. For instance,

L
(3)
5 (−98)

98!
= −1.157053952 · 10−8...

12



while the asymptotic gives −1.159214401 · 10−8.... Similarly

L
(5)
−3(−38)

38!
− 1.078874094 · 10−10...,

while the asymptotic gives −1.092285447 · 10−8.... These are the type of terms we need to
compute below.

We note that taking n-th roots on each side of the asymptotics in Corollary 1 shows that

the radius of convergence in Theorem 3 is as given. We also observe that
(
π2

4 + log2
(
nd
π

))m/2
provides a useful upper bound for each real and imaginary part in Corollary 1. For example,√√√√(L

(m)
−d (1− 2n)

(2n− 1)!

)2

+

(
L

(m)
+d (1− 2n)

(2n− 1)!

)2

≈ 2√
d

(
π2

4
+ log2

(
nd

π

))m/2 (
d

2π

)2n

.

4.5 Multisectioning character polylogarithms

Example 3 (Explicit character polylogarithms for small d [17]). With an abuse of notation
as above for d = −2, for t arbitrary we write

∞∑
m=1

(−1)m−1xm

mt
=: L−2(t;x) := η(t;x) = −L+1(t;−x) = −Lit(−x), (48)

since Theorem 3 holds for any character summing to zero over the period d.
More significantly, for d = −3 with τ := (−1 + i

√
3)/2, we have

∞∑
m=1

x3m−2

(3m− 2)t
−
∞∑
m=1

x3m−1

(3m− 1)t
= L−3(t;x) =

2√
3

Im Lit(τx), (49)

while for d = −4,

∞∑
m=1

(−1)m−1x2m−1

(2m− 1)t
=: β(t;x) = L−4(t;x) = Tit(x). (50)

It is useful to know [33, (25.11.38)] that for Re s > 0, we have β(s; 1) = β(s) is

L−4(s) = β(s) =
1

Γ(s)

∫ ∞
0

xs−1

2 cosh (x)
dx, (51)

which may be repeatedly differentiated to obtain numerical values of β(n)(s) for integers
n ≥ 1.

Herein, Tit(x) is the inverse tangent integral of Lewin [27] that he relates to Legendre’s
chi-function, confusingly also denoted as χt(x). Note that Li1(x) = − log(1 − x), while
Ti1(x) = arctan(x).
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All character polylogarithms obey the general rule

L±d(s;x) =

∫ x

0

L±d(s− 1; y)

y
dy,

and, in particular, Lin(1) = ζ(n), Lin(−1) = −η(n), and Tin(1) = β(n). ♦

Indeed, ‘multi-sectioning’ allows us to write all of our character polylogarithms in terms
of the classical one. Recall that for integer d > 0, given a formal power series g(z) =∑

n≥0 anz
n, one may algebraically extract the function gd,q(z) :=

∑
n≥0 and+qz

nd+q, for
0 ≤ q ≤ d− 1 by by the multi-sectioning formula

gd,q(z) =
1

d

d−1∑
m=0

ω−mqd g(ωmd z), ωd = e2πi/d.

Applying this to the polylogarithm of order t, we arrive at:

Theorem 5 (Multi-sectioning for the Hurwitz zeta). For order t and integers q, d with
0 ≤ q ≤ d− 1, we have

∞∑
k=1

xdk+q

(dk + q)t
=

1

d

d−1∑
m=0

ω−mqd Lit(ω
m
d x), (52)

and so

L±d(t;x) =
d−1∑
m=0

γ±d(m) Lit(ω
m
d x) where γ±d(m) :=

1

d

d−1∑
q=1

χ±d(q)ω
−mq
d (53)

is a Gauss sum (see [3]).

Remark 2 (Examples of multi-sectioning). We directly computed γ±d, defined in (53),
for the cases d = −3, d = +5, d = ±8, and d = +12. For d = −3, we have

√
−3γ3(m) =

χ−3(m). For d = +5, we have
√

5γ+5(m) = χ+5(m). For d = +8, we have
√

8γ+8(m) =
χ+8(m) and for d = −8 we obtain

√
−8γ−8(m) = χ+8(m). Finally for d = +12 we

again have
√

12γ+12(m) = χ+12(m). From this we have rediscovered the closed form

γ±d(m) =
χ±d(m)√
±d for primitive characters.

Indeed, in [2, 3]—explicitly for primes and implicitly more generally—we find the proof
of the requisite identity. Of course, for any given small ±d we can verify it directly. The
formula fails for imprimitive forms. ♦

Thus we have:
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Corollary 2 (Primitive character polylogarithms). For any primitive character χ±d, any
non-negative integer m, and all orders s, we have

L
(m)
±d (s;x) =

√
±d
d

d−1∑
k=1

χ±d(k) Li(m)
s (ωkdx), (54)

valid for maxk | log(xωkd)| < 2π. In particular, on the unit disk we obtain

L
(m)
±d

(
s; eiθ

)
=

√
±d
d

d−1∑
k=1

χ±d(k) Li(m)
s

(
ei(θ+2kπ/d)

)
, (55)

valid for all θ not equal to 2kπ/d for any k = 1, ..., d− 1.

The equation (55) may be used to exploit character generalizations of (6) and (7).
We note that (46b) and (46d) for n = 1, express the derivatives at zero in terms of the

derivative and values at one. While the quantities are all finite, recall that the Hurwitz
form in (24) involves a cancellation of singularities, and so is hard to use directly, while the
definition is very slowly convergent at s = 1 or near one. We do, however, have recourse
to a special case of Corollary 2.

Example 4 (L-series at unity [17]). For any primitive character χ±d and any non-negative
integer m we have

L
(m)
±d (s) =

√
±d
d

d−1∑
k=1

χ±d(k) Li(m)
s (ωkd). (56)

Now we may usefully employ Theorem 1 at roots of unity. Polylogarithms, as well as

their order derivatives Li
(m)
s (exp(iθ)), were studied in some detail in [10], as they resolve

Eulerian log Gamma integrals.
We illustrate (56) for s = 1 and m = 1, or equivalently (55) with θ = 0. Equation (17)

summed over the roots becomes

d√
±d

L
(1)
±d(1; 1) =

∞∑
n=1

ζ ′ (1− n)
d−1∑
m=1

χ±d(m)
(2πmi)n

dnn!

− 1

2

d−1∑
m=1

χ±d(m)

(
γ + log

(
2πmi

d

))2

, (57)

while the term γ1 + 1
12 π

2 having dropped out when summing. With more massaging, on
separating real and imaginary terms, we end up with:

√
dL

(1)
+d(1) =

∞∑
n=1

ζ ′ (1− 2n)µ+d(2n)
(−1)n(2π)2n

d2n(2n)!
− γ

(
λ±d(1) +

1

2
λ±d(2)

)
, (58a)
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√
dL

(1)
−d(1) =

∞∑
n=1

ζ ′ (−2n)µ−d(2n− 1)
(−1)n(2π)2n−1

d2n−1(2n− 1)!
, (58b)

where µ±d(n) :=
∑d−1

k=1 χ±d(k)kn is the n-th moment of the character [2] and λ±d(n) :=∑d−1
k=1 χ±d(k) logn k is the n-th logarithmic moment.
Thus, µ−3(n) = 1 − 1/2n and µ+5(n) = 1 − 1/2n − 1/3n + 1/4n, while λ5(1) :=

log 2− log 3 + log 4 = log(8/3) and λ5(2) := 3 log2 2− log2 3. Also, on appealing to (35) we
have evaluated the infinite series in (58a) in closed form. ♦

Example 5 (Symbolic recovery of values). The L-series derivative with local notation

λ(m,±d, s) := L
(m)
±d (s) in (24) implements very neatly in Maple. We use

Ls:=(m,d,s)->add(numtheory[jacobi](d,k)*Zeta(m,s,k/abs(d)),k=1..abs(d)-1)/abs(d)^s:

ie:=exp->identify(evalf[20](exp)):

A:=[lambda(0,-4,3)=ie(Ls(0,-4,3)),lambda(0,-3,5)=ie(Ls(0,-3,5)),

lambda(0,-4,5)=ie(Ls(0,-4,5))]:

B:=convert([lambda(1,5,0)=ie(Ls(1,5,0)),lambda(1,13,0)=ie(Ls(1,13,0)),

lambda(1,17,0)=ie(Ls(1,17,0))],ln);

latex(A);latex(B):

This accesses the ‘identify’ function and produces—after a little prettification—three
evaluations given in (34):[

λ (0,−4,−3) =
1

32
π3, λ (0,−3, 5) =

4
√

3

2187
π5, λ (0,−4, 5) =

5

1536
π5

]

and three first-derivative values at zero, discussed in the next remark:[
λ (1, 5, 0) = log

(
1

2
+

1

2

√
5

)
, λ (1, 13, 0) = log

(
3

2
+

1

2

√
13

)
, λ (1, 17, 0) = log

(
4 +
√

17
)]
.

The ease of such manipulations highlights the value of modern numeric-symbolic experi-
mentation. One may similarly use (56) when s = 1. Interestingly using ‘sum’ rather than
‘add’ led to some problems with large values of ±8P such as ±120. ♦

Remark 3 (Derivatives at zero and one revisited). The (derivative) trigonometric series∑
n≥0

logn
n cos(2πnθ) occurs naturally when one desires to compute L

(1)
±d(1), and is studied

intensively in [22]. In [22, Eqn. (3.4)] a classical relation is recovered for L
(1)
−d(1) (see (59a)

below) and in [22, Eqn. (3.6)] a corresponding formula for L
(1)
+d(1) is presented (engaging

a then new auxiliary function). As is observed in [1, Lemma. 3.1 and eqn. (4.6)], one
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obtains L
(1)
+5(0) = log 1+

√
5

2 as a pretty specialization. We record a version of [1, Lemma.
3.1]: for integer k ≥ 1 one has

2(−1)k(2k − 3)!d2k−5/2

(2π)2k−3
L−d(2k − 2) = L

(1)
−d(1− 2k), (59a)

2(−1)k(2k − 2)!d2k−3/2

(2π)2k−2
L+d(2k − 1) = L

(1)
+d(2− 2k), (59b)

and since for positive characters (35) applies we evaluate L
(1)
+5(0),L

(1)
+13(0),L

(1)
+17(0) and so

on (all three having class number one). The asymptotics implicit in (59a) and (59a) are
consistent with the domain of convergence given in Theorem 3. ♦

Example 6 (An order-one generating function). For v, w in the open complex unit disc,
[27, A.2.8. (1)] leads to:

∞∑
k=2

vk
k

k−1∑
j=1

wj

j

 = Li2

(
w

w − 1

)
− Li2

(
w (1− v)

w − 1

)
+ log (1− v) log (1− w) . (60)

This can also be used as a basis for multi-sectioning in one or both variables. ♦

5 Character Mordell–Tornheim–Witten sums

On this foundation, one may then analyse extended character MTW sums, in which more
general character polylogarithms replace the classical one defined earlier in (7). That is,
we may consider, for real q, r, s ≥ 1,

µ±d1,±d2(q, r, s) :=
∑
n,m>0

χ±d1(m)

mq

χ±d2(n)

nr
1

(m+ n)s
(61)

=
1

Γ(s)

∫ 1

0
L±d1(q;x) L±d2(r;x)(− log x)s−1 dx

x
, (62)

where as before for d > 2, χ±d(n) :=
(±d
n

)
, and χ−2(n) := (−1)n−1, χ+1(n) := 1. We may

now also take derivatives in (61) and (62) and indeed so doing is the source of much of our
computational interest. Explicitly, we write

(µ±d1,±d2)a,b,c (q, r, s) :=
∑
n,m>0

(− logm)aχ±d1(m)

mq

(− log n)bχ±d2(n)

nr
(− log(m+ n))c

(m+ n)s

(63)

=

∫ 1

0
L

(a)
±d1(q;x) L

(b)
±d2(r;x)

(
(− log x)s−1

Γ(s)

)(c)
dx

x
. (64)
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5.1 Related work

Such sums do not appear to have been studied in detail, and never with derivatives. The
case of χ−2(n) or χ−2(m+n) has been studied ab initio [35, 37, 39, 40], while [41] provides
some q-analogues.

More interesting is a series of papers by Nakamura including [30, 31, 32], in which the
Lerch transcendant of Section 4.3 is used, so as to study sums of the form

N (α, β, γ; q, r, s) :=
∑
n,m>0

eαπim

mq

eβπin

nr
eγπi(m+n)

(m+ n)s
. (65)

Note that the γ term can be absorbed in the α, β terms. All of our character sums (61)
can be expressed in terms of (65) but the natural arithmetic structure we set up will be
lost. We record that (60) evaluates

N (α, 0, γ; 1, 0, 1) = Li2

(
eiγ π

eiγ π − 1

)
−Li2

(
eiγ π

(
1− eiα π

)
eiγ π − 1

)
+log

(
1− eiα π

)
log
(
1− eiγ π

)
,

which simplifies nicely when γ = ±α.

5.2 First examples

As explained, for Euler sums in [17], there is an impediment to getting a general integral
representation if one attempts to add a non-trivial character to the m + n variable other
than (±1)n−1. In the context of MTWs, this asymmetry is better explained.

Example 7 (Some explicit character polylogarithms and sums of order one [17]). Various
cases of (53) give explicit forms.

1. Character polylogarithms of order one. We have

L+1(1;x) = − log(1− x) (66)

L−3(1;x) =
2√
3

arctan

(√
3x

x+ 2

)
, (67)

√
5 L5(1;x) = log(x2 + ωx+ 1)− log(x2 − x/ω + 1), ω :=

√
5 + 1

2
(68)

√
12 L12(1;x) = log(x2 +

√
3x+ 1)− log(x2 −

√
3x+ 1). (69)

yielding closed forms for order one.
In general for primitive ±d, Corollary 2 implies that

L±d(1;x) = −
√
±d
d

log

∏j

(
1− ωjdx

)
: χ±d(j) = +1∏

k

(
1− ωkdx

)
: χ±d(k) = −1

 . (70)
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It is instructive to verify that

√
8 L+8(1;x) = − log

(
1−
√

2x+ x2

1 +
√

2x+ x2

)
, (71a)

√
8 L−8(1;x) = arctan

(√
8x
(
1− x2

)
, 1− 4x2 + x4

)
. (71b)

Here arctan (y, x) := −i log

(
x+iy√
x2+y2

)
, so as to assure a value in (π, π]. Correspondingly

√
20 L−20(1;x) = i log

(
1− i

√
5x− 3x2 + i

√
5x3 + x4

1 + i
√

5x− 3x2 − i
√

5x3 + x4

)
. (72)

2. Some simple character sums. From various of the formulas above integrals for µ
sums follow. Thence,

µ−3,1(1, 1, s) =
2/
√

3

Γ(s)

∫ 1

0
arctan

(√
3x

x+ 2

)
(− log(1− x)) (− log x)s−1 dx

x
, (73)

and

µ−3,−3(1, 1, s) =
4/3

Γ(s)

∫ 1

0
arctan2

(√
3x

x+ 2

)
(− log x)s−1 dx

x
. (74)

For example, µ−3,−3(1, 1, 1) ≈ 0.259589 and µ−3,−3(1, 1, 3) ≈ 0.0936667862. Similarly,

µ−12,−12(1, 1, 3) = − 1

72

∫ 1

0
log2

(
x2 +

√
3x+ 1

x2 −
√

3x+ 1

)
log3 (x)

dx

x

= 0.062139235322359770447911814351... (75)

and, with ω =
√

5+1
2 as above, we have

µ+5,+5(1, 1, 5) =
1

120

∫ 1

0
log2

(
x2 + ωx+ 1

x2 − x/ω + 1

)
log4 (x)

dx

x

= 0.026975379493214862581276332615... (76)

We also recall that polylogarithms and Euler sums based primarily on mixes of the
characters χ−4 and χ1 are studied at length in [17]. ♦
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Example 8 (Some explicit character polylogarithms of order two). As we saw various
cases of (53) give clean explicit forms. For higher order, less can be hoped for explicitly.

That said, [27, A.2.5. (1)] shows that in terms of the Clausen function, Cl2 (θ) :=∑
n>0 sin(nθ)/n2, we have:

L−3(2;x) =
1

2
Cl2 (2w) +

1

2
Cl2

(
4π

3

)
− 1

2
Cl2

(
2w +

4π

3

)
+ w log x, (77)

where w := arctan
(√

3x
x+2

)
.

We also record a pretty functional equation for L−4(2;x) = Im Li2(ix) given in [27,
Eqn. (2.3.9)], namely

1

3
Ti2(tan 3θ) = Ti2(tan θ) + Ti2(tan(π/6− θ))− Ti2(tan(π/6 + θ))

+
π

6
log

(
tan(π/6 + θ)

tan(π/6− θ)

)
. (78)

Since Ti2(π/4) = G, Catalan’s constant, (78) produces a formula known to Ramanujan:

Ti2(π/12) =
2

3
G +

π

12
log tan(π/12),

while θ = π/24 yields an interesting linear relation. Also for all real x, Ti2(x)−Ti2(1/x) =
sign(x) log |x|. Note that tan(π/8) =

√
2− 1, tan(5π/8) =

√
2 + 1, tan(π/12) = 2−

√
3 and

tan(5π/12) = 2 +
√

3.
A substantial study of Tit, especially Ti2, is made in [27]. It is a sign of the greater

complexity of non-principal primitive character polylogarithms that the cleanest known
functional equation for Ti2 is actually for χ2(x) := iTi2(ix), which satisfies

χ2(x) + χ2

(
1− x
1 + x

)
=

1

2
log

(
1− x
1 + x

)
log x− π2

8
, (79)

for all real x [27, eqn. (1.67)]. Compare [27, eqn. (1.11)], first found by Euler, namely

Li2(x) + Li2(1− x) =
π2

6
− 1

2
log(1− x) log x, (80)

valid at least for −1 ≤ x ≤ 1, which produces the famous result Li2(1
2) = π2

12 −
1
2 log2 2.

More complex functional equations for Li−4 lead to relations such as

6 Ti2(1)− 4 Ti2(1/2)− 2 Ti2(1/3)− Ti2(3/4) = π log 2,

see [27, eqn. (2.28)] in which all terms appear to be algebraically independent—recall
Ti2(1) = β(2) = G.
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For d = +5 we obtain

√
5 L+5(2;x) =

∫ x

0
log

1 + r
(

1+
√

5
2

)
+ r2

1 + r
(

1−
√

5
2

)
+ r2

 dr

r
, (81)

by integration or by exploiting Re Li2(reiθ) = −1
2

∫ r
0 log(1 − 2w cos θ + w2) dw

w , see [27,
A.2.5 (1)].

For larger ±d, more cumbersome versions of some of the above formulas can still be
given. ♦

5.3 Values of character sums including order zero

Integral representation (7) is used freely only when d ≤ 2, and all sj , tk numerator (non-
logarithmic) parameters are non-zero; so we must attend to such more general or degenerate
cases. In our current three-variable setting, we may freely use formulas such as:

ωa,b,c(q, r, s) = ω

(
q , r | s
a , b | c

)
=

∫ ∞
0

(
xs−1

Γ(s)

)(c)

Li(a)
q (e−x) Li(b)r (e−x) dx, (82)

which is valid when q ≥ 0, r ≥ 0, s > 0, with q + r + s > 2, and a ≥ 0, b ≥ 0, c ≥ 0. Here
the notation (·)(c) denotes the c-th partial derivative of the expression in parentheses with
respect to s. This may be seen by expanding the integrand and using 1

Γ(s)

∫∞
0 e−wxxs−1dx =

1
ws , for s, w > 0.

It is helpful to split the integral in two, and set u = e−x in the second integral:

ωa,b,c(q, r, s) =

∫ 1

0

(
xs−1

Γ(s)

)(c)

Li(a)
q (e−x) Li(b)r (e−x) dx

+

∫ 1/e

0

(
(− log u)s−1

Γ(s)

)(c)

Li(a)
q (u) Li(b)r (u)

du

u
. (83)

We were able to use formula (83), together with formulas (16) through (18)—and related
machinery described in [8] to produce high-precision numerical values of all the degenerate
omega constants needed in our earlier study.

Alternatively, for ω or µ, one may directly substitute u = e−x in the analogue of formula
(82) and obtain the following result, which provides an efficient evaluation method.

For this we require the incomplete Gamma function

Γ(s, z) :=

∫ ∞
z

ts−1e−t dt, (84)

so that Γ(s, 0) = Γ(s), see [33, Chapter 8] and [9]. Since the size of d determines the
domain of validity of (42), we replace e by a general parameter σ > 1.
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Proposition 2 (Depth three character sum computation). Fix character series L1 := L±d1
and L2 := L±d2. For q ≥ 0, r ≥ 0, s > 0, with q+ r+ s > 2, and a ≥ 0, b ≥ 0, c ≥ 0. In the
notation of (63) we have, for σ > 1 that

(µd1,d2)a,b,c (q, r, s) =

∫ 1

0

(
(− log u)s−1

Γ(s)

)(c)

L1
(a)(q;u)L2

(b)(r;u)
du

u

=

∫ 1/σ

0

(
(− log u)s−1

Γ(s)

)(c)

L1
(a)(q;u)L2

(b)(r;u)
du

u

+

∫ 1

1/σ

(
(− log u)s−1

Γ(s)

)(c)

L1
(a)(q;u)L2

(b)(r;u)
du

u
. (85)

Thence,

(µd1,d2)a,b,c (q, r, s) =
∑
m,n>0

(
Γ (s, (m+ n) log σ)

Γ (s) (m+ n)s

)(c) χ±d1(m)(− logm)a

mq

χ±d2(n)(− log n)b

nr

+

∫ 1

1/σ

(
(− log u)s−1

Γ(s)

)(c)

L1
(a)(q;u)L2

(b)(r;u)
du

u
, (86)

where in (86) we express the result in terms of the incomplete Gamma function of (84).

It is a happy consequence of Theorem 3 that when it applies to both L1, L2 we arrive
at effective integral free summations.

Theorem 6 (Explicit sum computation). Suppose L1 and L2 satisfy Theorem 3. For
q ≥ 0, r ≥ 0, s > 0, with q + r + s > 2, and a ≥ 0, b ≥ 0, c ≥ 0 we have, for σ chosen so
that as necessary 1/σ does not exceed exp(−2π/d) for either character, that

(µ±d1,±d2)a,b,c (q, r, s) =
∑
m,n>0

(
Γ (s, (m+ n) log σ)

Γ (s) (m+ n)s

)(c)

χ±d1(m)χ±d2(n)
(− logm)a

mq

(− log n)b

nr

+
∑
j,k≥0

L
(a)
1 (q − j)
j!

L2
(b)(r − k)

k!

∫ 1

1/σ

(
(− log u)s−1

Γ(s)

)(c)

(log u)j+k
du

u
,

(87)

where the final integral may now be evaluated symbolically, since
∫ 1

1/σ
logn−1 u

u du = − (− log)nσ
n .

Note that σ = e may be used when neither of d1, d2 exceeds six. In general, to determine
the truncation needed in the final term (87), we have proceeded by precomputing the needed
L-series and using only those summands which are larger than the desired error. We note
that Corollary 1 provides excellent estimates for these L-series terms. For truncation of
the first term on the right of (87), the next remark yields an effective a priori estimate
(when c = 0) which decays exponentially in z.
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Remark 4 (Error estimates for Γ(s, z)). For fixed positive integer n and real s, with
uk = (−1)k (1− a)k = (a− 1)(a− 2) · · · (a− k), we have [33, §8.11] that

Γ(s, z) = zs−1e−z

(
n−1∑
k=0

uk
zk

+Rn(s, z)

)
, (88)

where for real z Rn(s, z) = O(z−n) , is is bounded in absolute value by the first neglected
term un/z

n and has the same sign provided only that n ≥ s− 1. ♦

As Crandall [21] observed, for the case of L1 = L2 = L−2, some seemingly more difficult
character sums can now be computed more easily than classical ones, contrary to what one
might expect:

Example 9 (Alternating MTWs [21]). For example, L−2(z, s) =
∑

m≥0 η(s−m) logm z
m! and

so we may write

(µ−2,−2)1,1,0 (q, r, s) =
∑
n,m>0

(
Γ (s, n+m)

Γ (s) (n+m)s

)
(−1)n log n

nq
(−1)m logm

mr

+
1

Γ(s)

∑
j,k≥0

η(1)(q − j)
j!

η(1)(r − k)

k!

(−1)j+k

j + k + s
. (89)

For positive integer s, the incomplete Gamma function value used above is elementary, see
[33, Ch. 8] and [9]

Using Theorem 6 with q = r = s = 1 and summing say m,n, j, k ≤ 240, yields

(µ−2,−2)0,0,0 (1, 1, 1) :=
∑
m,n≥1

(−1)m+n

mn(m+ n)
(90)

= 0.3005142257898985713499345403778624976912465730851247 . . . , (91)

agreeing with (µ−2,−2,0)0,0,0 (1, 1, 1) = 1
4ζ(3), a known evaluation. Likewise, using the first

derivative of the η function,

(µ−2,−2)1,1,0 (1, 1, 1) :=
∑
m,n≥1

(−1)m+n logm log n

mn(m+ n)
(92)

= 0.0084654591832435660002204654836228807098258834876951 . . . . (93)

Both evaluations are correct to the precision shown. ♦
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For primitive characters with 3 ≤ d1, d2 ≤ 5, we have

(µ±d1,±d2)a,b,0 (q, r, s) =
∑
m,n≥1

χ±d1(m)χ±d2(n)
(− logm)a (− log n)b

mr nq(m+ n)s

=
∑
n,m>0

(
Γ (s, n+m)

Γ (s) (n+m)s

)
χ±d1(m)(− logm)a

mq

χ±d2n(− log n)b

nr

+
1

Γ(s)

∑
j,k≥0

L
(a)
±d1(q − j)

j!

L
(b)
±d2(r − k)

k!

(−1)j+k

j + k + s
, (94)

in analogy with Example 9.

Example 10 (Character MTWs). For d = −4 we obtain quite similar evaluations with
β := L−4 replacing η := L−2. Precisely we get,

(µ−4,−4)1,1,0 (q, r, s) =
∑
n,m>0

(
Γ (s, n+m)

Γ (s) (n+m)s

)
χ−4(n) log n

nq
χ−4(m) logm

mr

+
1

Γ(s)

∑
j,k≥0

β(1)(q − j)
j!

β(1)(r − k)

k!

(−1)j+k

j + k + s
. (95)

Hence

(µ−4,−4)1,1,0 (1, 1, 1) :=
∑
m,n≥1

χ−4(n)χ−4(m)
logm log n

mn(m+ n)
(96)

= 0.00832512075015357521062197448271 . . . . (97)

To compute the requisite value of β(1)(1) = 0.1929013167969124293..., we may use (51),
and for β(1)(−n) with n ≥ 0, we can use one of many methods including (25). We also
computed the same value to the precision shown directly from the sum expressed in terms
of Ψ functions.
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In like vein, from Theorem 6 or (94), we compute various sums:

(µ−4,−4)2,1,0 (1, 1, 5) := −
∑
m,n≥1

χ−4(m)χ−4(n)
log2m log n

mn(m+ n)5
(98a)

= −0.00001237144966467 . . . .

(µ−4,−4)2,1,0 (1, 1, 8) := −
∑
m,n≥1

χ−4(m)χ−4(n)
log2m log n

mn(m+ n)8
(98b)

= −7.238940044699712819 · 10−8 . . . .

(µ−4,−3)2,0,0 (1, 1, 7) :=
∑
m,n≥1

χ−4(m)χ−3(n)
log2m

mn(m+ n)7
(98c)

= −0.206867464 · 10−8 . . . .

(µ−4,−3)2,1,0 (1, 1, 7) := −
∑
m,n≥1

χ−4(m)χ−3(n)
log2m log n

mn(m+ n)7
(98d)

= −0.150314175 · 10−5 . . . .

(µ−4,−3)2,2,0 (1, 1, 6) :=
∑
m,n≥1

χ−4(m)χ−3(n)
log2m log2 n

mn(m+ n)6
(98e)

= 0.45467644545 · 10−5 . . . .

(µ+5,+5)2,2,0 (1, 1, 4) :=
∑
m,n≥1

χ+5(m)χ+5(n)
log2m log2 n

mn(m+ n)4
(98f)

= 0.00035650565 . . . ,

and higher-order variants such as

(µ−4,−4)2,2,0 (2, 2, 4) :=
∑
m,n≥1

χ+4(m)χ+4(n)
log2m log2 n

m2 n2(m+ n)4
(98g)

= 0.921829712836 · 10−5 . . . .

(µ−4,−4)3,3,0 (3, 3, 3) :=
∑
m,n≥1

χ+4(m)χ+4(n)
log3m log3 n

m3 n3(m+ n)3
(98h)

= 0.69071031171 · 10−5 . . . .

and so on. In each case the precision shown has been confirmed directly from the defini-
tional sum. Note that for the purpose of formula and code validation, it is often useful to
use larger values of parameters such as s. ♦
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6 Reductions and relations for character MTW sums

Armed with these computational and analytic tools, we continue our study.

6.1 Reduction of MTW values and derivatives

Again we define the shorthand notation

ωa,b,c(r, s, t) := ω

(
r , s | t
a , b | c

)
.

Partial fraction manipulations allow one to relate partial derivatives of MTWs. Such a
relation in the classical three parameter setting, is based on

1

nq
1

mr

1

(n+m)s
=

1

nq−1

1

mr

1

(n+m)s+1
+

1

nq
1

mr−1

1

(n+m)s+1
.

This yields that for arbitrary a, b, c, the function δ = ωa,b,c satisfies

δ(q, r, s) = δ(q − 1, r, s+ 1) + δ(q, r − 1, s+ 1), (99)

for real positive q, r, s. That in turn leads for integers q, r, s to:

Theorem 7 (Reduction of MTW derivatives [7]). Let nonnegative integers a, b, c and q, r, s,
be given. Set N := q + r + s. Then for δ := ωa,b,c we have

δ(q, r, s) =
∑q

i=1

(
q+r−i−1
r−1

)
δ (i, 0, N − i) +

∑r
i=1

(
q+r−i−1
q−1

)
δ (0, i, N − i) . (100)

In the case that δ = ω, this shows that each classical MTW value is a finite positive
integer combination of Euler sums (character multi zeta values (MZVs)), as are discussed
below.

Example 11 (Concrete MTW reductions). It is well known that for N = r+s+t odd, the
evaluation is reducible entirely to sums of products of Riemann zeta values [13]. Espinosa
and Moll [24, 25] record, with attributions, that

ω(2n+ 1, 2n+ 1, 2n+ 1) = −4

n∑
k=0

(
4n− 2k − 3

2n

)
ζ(2k)ζ(6n− 2k − 3), (101a)

ω(2n, 2n, 2n) =
4

3

n∑
k=0

(
4n− 2k − 1

2n− 1

)
ζ(2k)ζ(6n− 2k). (101b)

Then (101b) shows that further cancellation can take place—and seemingly irreducible
terms such as ζ(10, 2) never appear. Another reduction is

ω(n, n,m) = (−1)n

bn/2c∑
k=0

(
n+m− 2k − 1

m− 1

)
+

bm/2c∑
k=0

(
n+m− 2k − 1

n− 1

) ζ(2k)ζ(2p+m− 2k).

(102)
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In Tornheim’s [34] original paper one finds

ω(1, 1, n− 2) = (n− 1)ζ(n)−
n−2∑
k=2

ζ(k)ζ(n− k), (103a)

ω(n− 2, 1, 1) =
1

2
ω(1, 1, n− 2) + ζ(n), (103b)

and like equations for integral n. See also [8] for a proof that (100) and similar equations
hold for all complex values of n. Similar reductions for combinations of ω values, such as
ω(a, b, s) + (−1)bω(b, s, a) + (−1)aω(s, a, b, s) and variants including alternations with L−2,
can be found in [30, 31]. ♦

6.2 Twisted and pure character Euler sums

We now return to the character MTW sums. To do so, we introduce the twisted and
pure character Euler sums. Here use notation consistent with [17], namely denote twisted
character sums:

〈d1, d2〉(a, b) :=
∑
m,n>0

χd2(n)

nb
χd1(m)

(m+ n)a
=

∞∑
k=1

1

ka

k−1∑
j=1

χd1(k − j)χd2(j)

jb
(104)

and pure character sums:

[d1, d2](a, b) :=
∑
m,n>0

χd2(n)

nb
χd1(m+ n)

(m+ n)a
=
∞∑
k=1

χd1(k)

ka

k−1∑
j=1

χd2(j)

jb
. (105)

Example 12 (Twisted and pure character Euler sums). For instance, [17, Table 3] provides

〈−2,−2〉(2, 1) =
∑
m,n>0

(−1)n

n

(−1)m

(m+ n)2
= [−2, 1](2, 1) =

1

8
ζ (3) ,

while

[−2,−2](2, 1) =
∑
m,n>0

1

n

(−1)m

(m+ n)2
=
π2

4
log 2− 13

8
ζ (3) .

Also

〈−4,−4〉(2, 1) =
∑
m,n>0

χ−4(n)

n

χ−4(m)

(m+ n)2
=

1

4

∞∑
m=0

( ∞∑
n=0

(−1)m+n

(m+ n+ 1)2 (2n+ 1)

)

= − 7

16
ζ (3) +

πG

4
6= [−4, 1](2, 1),
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while

[−4,−4](2, 1) =
∑
m,n>0

χ−4(n)

n

χ−4(m+ n)

(m+ n)2
= − 7

16
ζ (3) +

π2

16
log 2,

where again these evaluations are in or derivable from [17, Table 3]. Note that integral
forms for [d1, d2](s, t) for the eight choices d1, d2 = 1,−2,−4 are given in [17, Table 2]. ♦

6.3 Reduction of character MTW sums to twisted Euler sums

Now (100) holds for any δ satisfying the recursion (99) without being restricted to partial
derivatives. In particular, it applies to sums of the form

∑
m,n>0

am
mq

bn
nr

cn+m

(n+m)s . Thence,
Theorem 7 above extends to show that:

Theorem 8 (Reduction of character sums). For any two characters d1 and d2, each sum
µd1,d2(q, r, s) is a superposition of twisted character Euler sums of the form 〈d1, d2〉(a, b) =∑

m,n>0
χd2

(n)

na

χd1
(m)

(m+n)b
, as in (104), with the reduction given by (100).

Here the χd2 term is not usually coincident with that seen in [17], which considered
rather [d1, d2](a, b) as in (105). But note that

[1, d2](a, b) = 〈1, d2〉(a, b). (106)

The result above has extensions to derivatives (µd1,d2)a,0,c (q, r, s), but we forfend.

Example 13 (Representative character sum reductions). We illustrate with µd1,d2(2, 1, 1) =
µd1,d2(2, 0, 2) + µd1,d2(1, 1, 2) = µd1,d2(2, 0, 2) + µd1,d2(1, 0, 3) + µd1,d2(0, 1, 3). Thus

µd1,d2(2, 1, 1) = 〈d1, d2〉(2, 2) + 〈d1, d2〉(3, 1) + 〈d2, d1〉(3, 1),

and so on. In Example 10 we listed an abbreviated version of

(µ−4,−4)3,3,0 (3, 3, 3) = 0.690710311713441241214787656159 · 10−5, (107)

and we similarly compute

(µ−4,−4)3,3,0 (3, 1, 5) = 0.167646883093693896852765820595 · 10−5, (108)

while

(µ−4,−4)3,3,0 (2, 1, 6) = 8.88541363815133618773139117241 · 10−7. (109)

The underlying recursion leads to

(µ−4,−4)3,3,0 (3, 3, 3) = 2 (µ−4,−4)3,3,0 (3, 2, 4) (110)

= 2 (µ−4,−4)3,3,0 (3, 1, 5) + 2 (µ−4,−4)3,3,0 (2, 2, 5)

= 2 (µ−4,−4)3,3,0 (3, 1, 5) + 4 (µ−4,−4)3,3,0 (2, 1, 6),
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and so on. One may check that (107)=2·(108)+4·(109) to the computed 30 places as
predicted.

Correspondingly, we also gave

(µ+5,+5)2,2,0 (1, 1, 4) = 0.000356505653610023, (111)

and compute

(µ+5,+5)2,2,0 (1, 0, 5) = 0.000178252826805198. (112)

The underlying recursion leads to

(µ+5,+5)2,2,0 (1, 1, 4) = 2 (µ+5,+5)2,2,0 (1, 0, 5), (113)

and one may check that (111)=2·(112) to 16 places. In each case, we used derivatives up
to n = −128, which for L+5 decrease more slowly than for L−4. Increasing the number of
derivative terms used to n = −256 leads to (µ+5,+5)2,2,0 (1, 1, 4) = 2 (µ+5,+5)2,2,0 (1, 0, 5) =
0.00035650565361002353206435, which is correct to all places shown.

Finally, we illustrate two much higher precision sums (µ−4,−4)2,2,0 (1, 1, 4) =

0.000065079205320893012446595684990042272900528250434096839965346720780

85812813651555390159928214387452572766912562913627737004397885757003044

5562666574186136298500580253843059981738739583846236751230099872, (114)

and (µ−4,−4)2,2,0 (1, 1, 1) =

0.00633802199298997495285569331466149967623586882429821383039501211425

4520853068931486273015616135520762600461424773493842826729486603855923

3192564711049043329230490341942301545096666157132361663200374743, (115)

each correct to 200 places by using (95) with all four indices taken to N = 1024. ♦

6.4 Interrelations for character sums

We start by listing information for the MZV cases to which our derivative free character
sums reduce. For the principal character we have

ω

(
r | s
a | b

)
= ζ(a+b)(r + s). (116)

Now let ζa,b denote the partial derivative of the multi-zeta function

ζa,b(r, s) :=
∑
k>j>0

(− log k)a

kr
(− log j)b

js
.
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(We shall sometimes use the term MZV for the principal character and Euler sums for the
more general case.)

From the definition we derive:

Proposition 3 (Depth three ω reductions). For s, t > 0, a, b ≥ 0 we have

ω

(
0, 0 | t
0, 0 | b

)
= ζ(b)(t)− ζ(b)(t− 1) (117)

ω

(
s, 0 | t
a, 0 | b

)
= ζb,a(t, s) (118)

ω

(
s, t | 0
a, b | 0

)
= ζ(a)(s) ζ(b)(t). (119)

Moreover, from Euler’s reflection formula, see [11],

ζ(s, t) + ζ(t, s) = ζ(s)ζ(t)− ζ(t+ s), (120)

we obtain

ω

(
s, 0 | t
a, 0 | b

)
+ ω

(
t, 0 | s
a, 0 | b

)
= ζ(a)(s) ζ(b)(t)− ζ(a+b)(t+ s), (121)

or, equivalently,

ω

(
s, t | 0
a, b | 0

)
− ω

(
t, 0 | s
a, 0 | b

)
− ω

(
s, 0 | t
a, 0 | b

)
= ζ(a+b)(t+ s). (122)

When s = 1, (121) has singularities and must be handled with care. We fully addressed
this issue in [8]. We emphasize that when computing quantities such as ω2,2,0(1, 1, 2), we
require the full version of (83).

For twisted character sums we record the special cases corresponding to Proposition 3.

Proposition 4 (Depth three µ reductions). For s, t > 0, a, b, c, q, r ≥ 0 we have:

(µ±d1,±d2)0,0,c (0, 0, t) =
∑
m,n>0

χ±d1(n)χ±d2(m)

(m+ n)c
, (123)

(µ±d1,±d2)a,0,b (s, 0, t) = 〈d2, d1〉b,a(t, s), (124)

(µ±d1,±d2)a,b,0 (q, r, 0) = L
(a)
±d1(q) L

(b)
±d1(r). (125)

There are many character analogues of Euler’s reflection for (105) given [17]. For
instance, using the second sum in (105) we have

[d1, d2](a, b) + [d2, d1](b, a) = Ld1(a) Ld2(b)− Lχd1
χd2

(a+ b),
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so that for d1 = d2 and a = b we deduce

[d, d](a, a) =
1

2
Ld(a)2 − 1

2
Lχ2

d
(2a).

For example,

[−3,−3](2, 2) =
1

2
L−3(2)2 − 15

32
ζ(4).

[−3,−3](3, 3) =
1

2
L−3(3)2 − 63

128
ζ(6) = − 4

32805
π6.

The case of the twisted sum, when d1 6= 1, is less clear. By contrast, in Theorem 6 we
have provided an effective integral form for general 〈d1, d2〉 (the case r = 0), while none
such is known for [d1, d2] except when d2(n) = (±1)n−1.

6.5 Character sum ladders

Rather than proceeding as in Theorem 6, we may instead for c ≥ 1 use

Γ(t)ζ0,a(t, s) =

∫ 1

0
(− log x)t−1 Li

(a)
s (x)

1− x
dx,

and as before employ Leibnitz’ formula to obtain

ζb,a(t, s) = −
b−1∑
k=0

(
b

k

)
Γ(b−k)(b)

Γ(b)
ζk,a(t, s) +

∫ 1

0

Li
(a)
s (x)

1− x
logb(− log x)

Γ(b)
(− log x)t−1 dx, (126)

which leads to a nice ladder for ζk,a values using the algorithms already provided for Γ(k)(b).
The same process leads more generally, for q+ r+ s > 2 and a, b, q, r ≥ 0, c ≥ 1, s > 0,

for Dirichlet characters d1 and d2, to the ladder:

(µ±d1,±d2)a,b,c (q, r, s) =−
c−1∑
k=0

(
c

k

)
Γ(c−k)(c)

Γ(c)
(µ±d1,±d2)a,b,k (q, r, s)

+
1

Γ(c)

∫ 1

0

 L1
(a)(q;x) L2

(b)(r;x)

x
logc(− log x)(− log x)s−1 dx.

(127)

As in (87), this final term may be split at 1/σ.
For simplicity, we give details only for e, which is relevant for d1, d2 = −2,−3,−4,+5,

and is notationally somewhat cleaner. We have

1

Γ(c)

∫ 1

1/σ

(− log (− log x))c (− log x)n−1

x
dx =

c

nc+1
,
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whence with Is,c(k) :=
∫ 1/e

0 logc(− log x)(− log x)s−1xk−1 dx we adduce

(µ±d1,±d2)a,b,c (q, r, s) =−
c−1∑
k=0

(
c

k

)
Γ(c−k)(c)

Γ(c)
(µ±d1,±d2)a,b,k (q, r, s)

+ c
∑
j,k>0

L
(a)
1 (q − j)

j!

L
(b)
2 (r − k)

k!

(−1)j+k

(j + k + s)c+1

+
∑
m,n>0

χ±d1(m)χ±d2(n)
(− logm)a

mq

(− log n)b

nr
Is,c(m+ n). (128)

The c = 0 case which ignites the ladder is also covered by the simplest case of (87).
Also,

Is,0(k) =
1

ks

∫ ∞
k
zs−1e−z dz =

Γ(s, k)

ks
(129)

and Is,c(k) = I(c)
s,0(k). By [33, Eqn. (8.7.3)] we have

Γ(s, z)

zs
=

Γ(s)

zs
−
∞∑
j=0

(−1)jzj

j!(s+ j)
, (130)

which can easily be symbolically differentiated with respect to s, using methods described
in [8] for the derivation of Γ(s).

On combining more general forms of (128) and (129) with Theorem 3, we have effec-
tive series ladders for (µ±d1,±d2)a,b,c (q, r, s) for characters to which Theorem 3 applies—so

certainly not d1 = 1 which needs the intervention of Theorem 1. )
In the forthcoming paper [9] we record more information on computation of incomplete

Gamma and Hurwitz zeta functions.

7 Conclusion

Needless to say, the tools used above are equally applicable for evaluating character MTW
sums with K > 2, and to some degree for N > 1. For instance

√
8

∑
m,n,p>0

χ+8(m)χ+8(n)χ+8(p)

mnp (m+ n+ p)8
=

1

8!

∫ 1

0
log3

(
1−
√

2x+ x2

1 +
√

2x+ x2

)
log7 x

dx

x
, (131)

= 0.000423776563719585317405092...

on using (71a) and the four variable analogue of (62). Summing for n,m, p ≤ 200 gives
agreement of the underlined digits with the displayed integral.
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Since, as we have in part illustrated, the polylogarithms and their relatives are central
to a great deal of mathematics and mathematical physics [6, 16, 28], such efforts to provide
robust high precision algorithms are bound to find many applications in the near future.
Indeed, providing a suite of such tools is the basis for a 2014 to 2016 Australian Research
Council Discovery Project by the current authors in tandem with Richard Brent.

As we proceed with our research we intend, inter alia, to:

• Look for effective integral evaluation methods for general [a, b](s, t).

• Hunt for evaluations of 〈a, b〉(s, t) using basis terms identified in [17].

• Look for relations amongst various (µd1,d2)a,b,c(q, r, s)—primarily with a = b = c = 0.

We conclude by emphasising that our research agenda is driven as much by the desire
to improve tools for computer-assisted discovery as it is by the precise needs of the current
project.
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helpful comments; the manuscript is significantly better as a result. In our research, we
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