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Irregular continued fractions

We finish our expedition with a look at irregular continued fractions and pass
by some classical gems en route.

9.1 General theory

There exist many generalisations of classical continued fractions. One of the
most natural generalisations, which admits many applications not only in num-
ber theory but also in analysis, is the following irregular continued fraction:

a0 +
b1

a1 +
b2

a2 +
b3

a3 + . . . + an−1 +
bn

an

,

which is written as

a0 +
b1

a1
+

b2

a2
+

b3

a3
+ · · · + bn

an
.

For the regular continued fractions considered earlier, we have bn = 1 for all n.
An infinite irregular continued fraction can then be written as

a0 +
b1

a1
+

b2

a2
+

b3

a3
+ · · · + bn

an
+ · · · (9.1)

and is formalised as follows. For two given sequences of numbers or indeter-
minates (an)∞n=0 and (bn)∞n=1, we define rational functions S n(x) by the rule

S 0(x) = a0 + x, S n(x) = S n−1

( bn

an + x

)
, n = 1, 2, 3, . . .

161



162 Irregular continued fractions

By induction on n = 1, 2, . . . it is not hard to show that

S n(x) = a0 +
b1

a1
+

b2

a2
+

b3

a3
+ · · · + bn

an + x
.

Therefore, r0 = S 0(0) = a0 and

rn = S n(0) = a0 +
b1

a1
+

b2

a2
+

b3

a3
+ · · · + bn

an
, n = 1, 2, 3, . . .

If we assign numerical values to the sequences (an)∞n=0 and (bn)∞n=1 (assuming
that bn , 0 for n ∈ N) then we can consider the limit

α = lim
n→∞

rn.

If this limit exists α is said to be the value of the irregular continued frac-
tion (9.1); the numbers rn, where n = 0, 1, 2, . . . , are called the nth convergents.

As in the case of regular continued fractions, to every continued fraction (9.1)
we assign the sequences of numerators (pn)∞n=−1 and denominators (qn)∞n=−1 of
the convergents. They are determined by the linear recurrence equations

p−1 = 1, p0 = a0, pn = an pn−1 + bn pn−2, n = 1, 2, . . . ,

q−1 = 0, q0 = 1, qn = anqn−1 + bnqn−2, n = 1, 2, . . .
(9.2)

(When bn ≡ 1 we have our familiar regular continued fraction recursions.)
The fact that these sequences indeed provide the numerators and denomina-

tors of the corresponding convergents is proved in the following statement.

Theorem 9.1 If pn and qn are the sequences generated by (9.2) for a given
continued fraction (9.1) and S n(x) is the above sequence of rational transfor-
mations then

S n(x) =
pn + pn−1x
qn + qn−1x

, pnqn−1 − pn−1qn , 0, n = 0, 1, 2, . . .

In particular,

rn = S n(0) =
pn

qn
, n = 0, 1, 2, . . .

Exercise 9.2 Prove Theorem 9.1 by induction on n = 0, 1, 2, . . .

Once again, a 2× 2 matrix approach is useful. From the recurrence relations
in (9.2), we see that(

a0 1
1 0

) (
a1 1
b1 0

)
· · ·

(
an 1
bn 0

)
=

(
pn pn−1

qn qn−1

)
.

By taking the determinant of both sides, we obtain immediately
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Corollary 9.3 We have

pnqn−1 − pn−1qn = (−1)n−1
n∏

k=1

bk for n = 0, 1, 2, . . .

Summarising, the sequence of convergents of a continued fraction (9.1) is
uniquely determined by the sequences ( pn)∞n=−1 and (qn)∞n=−1, which, in turn,
are constructed by means of the recurrence relations (9.2). As the following
theorem shows, the converse holds as well: the sequences (9.2) define the con-
tinued fraction (9.1) in a unique way.

Theorem 9.4 Let ( pn)∞n=−1 and (qn)∞n=−1 be two sequences of numbers such
that q−1 = 0, p−1 = q0 = 1 and pnqn−1 − pn−1qn , 0 for n = 0, 1, 2, . . . Then
there exists a unique continued fraction (9.1) whose nth numerator is bn and
nth denominator is an, for each n ≥ 0. More precisely,

a0 = p0, a1 = q1, b1 = p1 − p0q1,

an =
pnqn−2 − pn−2qn

pn−1qn−2 − pn−2qn−1
,

bn =
pn−1qn − pnqn−1

pn−1qn−2 − pn−2qn−1
,

n = 2, 3, . . .

Proof Again, the proof is by induction on n = 0, 1, 2, . . . �

Theorem 9.1 provides us with a simple algorithm for computing the value
of an irregular continued fraction. Namely,

rn =
pn

qn
= p0 +

n∑
l=1

( pl

ql
− pl−1

ql−1

)
= a0 +

n∑
l=1

(−1)l−1 ∏l
k=1 bk

qlql−1
, n = 0, 1, 2, . . . ,

implying that

a0 +
b1

a1
+

b2

a2
+

b3

a3
+ · · · + bn

an
+ · · · = a0 +

∞∑
l=1

(−1)l−1 ∏l
k=1 bk

qlql−1
.

Therefore, the convergence problem for continued fractions of the form (9.1)
can be reduced to a convergence problem for the corresponding series.

Two (irregular) continued fractions

a0 +
b1

a1
+

b2

a2
+

b3

a3
+ · · · + bn

an
+ · · · and a′0 +

b′1
a′1
+

b′2
a′2
+

b′3
a′3
+ · · · + b′n

a′n
+ · · ·

(9.3)
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with corresponding sequences of convergents (rn)∞n=0 and (r′n)∞n=0, respectively,
are said to be equivalent if

rn = r′n for all n = 0, 1, 2, . . .

Theorem 9.5 Two continued fractions (9.3) are equivalent iff there exists a
sequence of nonzero numbers (cn)∞n=0 with c0 = 1 such that

a′n = cnan, n = 0, 1, 2, . . . , b′n = cncn−1bn, n = 1, 2, . . . (9.4)

Proof First, assume that relations (9.4) hold. Then it can be easily shown by
induction on n = 0, 1, 2, . . . , with the help of the recurrence relations (9.2), that

p′n = pn

n∏
l=0

cl, q′n = qn

n∏
l=0

cl, (9.5)

implying that r′n = p′n/q
′
n = pn/qn = rn. Second, if r′n = rn for all n = 0, 1, 2, . . .

then take c0 = 1 and define recursively cn = p′n/
(
pn

∏n−1
l=0 cl

)
. Now we arrive

at the relations in (9.5), which imply (9.4) in accordance with the formulae of
Theorem 9.4. �

Finally, we stress that the value of an infinite irregular continued fraction is
not necessarily an irrational number even when the ak and bk are required to
be positive integers. An example is given in the following exercise.

Exercise 9.6 Compute the value of the continued fraction

1 +
2
1
+

2
1
+

2
1
+ · · · + 2

1
+ · · · .

9.2 Euler continued fraction

Finite identities such as

a0 + a1 + a1a2 + a1a2a3 + a1a2a3a4 = a0 +
a1

1
+

a2

1 + a2
+

a3

1 + a3
+

a4

1 + a4

are easily verified symbolically. The general form

a0 + a1 + a1a2 + a1a2a3 + · · · + a1a2a3 · · · aN

= a0 +
a1

1
+

a2

1 + a2
+

a3

1 + a3
+ · · · + aN

1 + aN
(9.6)

can then be obtained by substituting aN + aNaN+1 for aN and checking that the
form of the right-hand side is preserved.

Equation (9.6) allows many series to be re-expressed as irregular continued
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fractions. For example, with a0 = 0, a1 = z, a2 = −z2/3, a3 = −3z2/5, . . . , we
find that

arctan z = z − z3

3
+

z5

5
− z7

7
+

z9

9
− · · · (9.7)

with |z| ≤ 1, can be expressed as an irregular continued fraction due to Euler:

arctan z =
z
1
+

z2

3 − z2 +
9z2

5 − 3z2 +
25z2

7 − 5z2 + · · · .

When z = 1, this becomes what is now viewed as the first infinite continued
fraction, given by Lord Brouncker (1620–1684):

4
π
= 1 +

1
2
+

32

2
+

52

2
+

72

2
+

92

2
+ · · · . (9.8)

Brouncker intuited this result from Stirling’s work on the factorial.

Exercise 9.7 (see also [74]) Legitimate the derivation of Brouncker’s irregu-
lar fraction (9.8) for 4/π.

Furthermore, since

arctan z =
log(1 + iz) − log(1 − iz)

2i
,

we also obtain a variant of Euler’s continued fraction for log
(
(1 + z)/(1 − z)

)
.

Exercise 9.8 ([74]) Find the value of the continued fraction

1
1
+

12

1
+

22

1
+

32

1
+

42

1
+

52

1
+ · · · .

While elegant, Euler’s continued fraction is much less useful than that of
Gauss, to which we now turn.
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9.3 Gauss continued fraction for the hypergeometric
function

A classical result on an irregular continued fraction for the so-called hyperge-
ometric function goes back to Gauss. The function is defined by the series

F(a, b; c; z) =
∞∑

n=0

(a)n(b)n

n!(c)n
zn

= 1 +
a × b
1 × c

z +
a(a + 1) × b(b + 1)

1 × 2 × c(c + 1)
z2

+
a(a + 1)(a + 2) × b(b + 1)(b + 2)

1 × 2 × 3 × c(c + 1)(c + 2)
z3 + · · · ,

where the notation

(a)n =
Γ(a + n)
Γ(a)

= a(a + 1) · · · (a + n − 1)

stands for the Pochhammer symbol (or shifted factorial; note that (1)n = n!).
It is not hard to check that the series converges for |z| < 1. Among the many
properties possessed by the function F(z) = F(a, b; c; z), the fact that it satisfies
a second-order linear homogeneous differential equation,

z(1 − z)
d2F
dz2 + (c − (a + b + 1) z)

dF
dz
− abF = 0,

is crucial. Using this relation one can efficiently construct the analytic contin-
uation of the function F(z), originally defined by the series above, to the whole
complex plane with a branch cut along the real ray [1,∞).

An important feature of the hypergeometric function (and its generalisa-
tions) is that it encompasses many other functions, including elementary ones,
as either special or limiting cases. For example,

log(1 + z) = zF(1, 1; 2;−z), (1 + z)−a = F(a, b; b;−z),

ez = lim
b→∞

F(1, b; 1, z/b), arcsin z = zF(1/2, 1/2; 3/2; z2)

and arctan z = zF(1, 1/2; 3/2;−z2).

Lemma 9.9 The following contiguous relation holds:

F(a, b; c; z) − F(a + 1, b; c + 1; z) =
(a − c)b
c(c + 1)

zF(a + 1, b + 1; c + 2; z). (9.9)
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Proof Indeed, we have

F(a, b; c; z) − F(a + 1, b; c + 1; z)

=

∞∑
n=0

(a)n(b)n

n!(c + 1)n

(c + n
c
− a + n

a

)
z n

=

∞∑
n=1

(a)n(b)n

n!(c + 1)n

(a − c)n
ac

z n

=

∞∑
m=0

(a)m+1(b)m+1

m!(c + 1)m+1

a − c
ac

z m+1

=
(a − c)bz
c(c + 1)

∞∑
m=0

(a + 1)m(b + 1)m

m!(c + 2)m
z m. �

Note that, because of the symmetry between a and b in the hypergeometric
function F(a, b; c; z), we also obtain from (9.9) another contiguous relation:

F(a, b; c; z) − F(a, b + 1; c + 1; z) =
a(b − c)
c(c + 1)

zF(a + 1, b + 1; c + 2; z). (9.10)

Theorem 9.10 (Gauss continued fraction) We have

F(a + 1, b; c + 1; z)
cF(a, b; c; z)

=
1
c
+

λ0z
c + 1

+
λ1z

c + 2
+ · · · + λnz

c + n + 1
+ · · · , (9.11)

where λ2k−1 = (a + k)(b − c − k) and λ2k = (a − c − k)(b + k).

Proof For k = 0, 1, 2, . . . , define

F2k(z) = F(a + k, b + k; c + 2k; z)

and

F2k+1(z) = F(a + k + 1, b + k; c + 2k + 1; z).

Then

F2k(z) − F2k+1(z) =
(a − c − k)(b + k)

(c + 2k)(c + 2k + 1)
zF2k+2(z),

F2k−1(z) − F2k(z) =
(a + k)(b − c − k)

(c + 2k − 1)(c + 2k)
zF2k+1(z),

by the contiguous relations (9.9) and (9.10), respectively. Therefore

Fn+1(z)
Fn(z)

=
1

1 +
λnz

(c + n)(c + n + 1)
Fn+2(z)
Fn+1(z)

,
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where λ2k = (a − c − k)(b + k) and λ2k−1 = (a + k)(b − c − k), so that

F1(z)
F0(z)

=
1
1
+

λ0z
c(c+1)

1
+

λ1z
(c+1)(c+2)

1
+ · · · +

λnz
(c+n)(c+n+1)

1
+ · · · .

It remains to pass to the equivalent continued fraction by taking cn = c + n − 1
for n = 1, 2, . . . in the notation of Theorem 9.5. �

Our derivation of the Gauss continued fraction follows the lines of Sec-
tion 2.10, where we derived a continued fraction for a confluent hypergeo-
metric function, also known as Bessel’s function. By taking the limit a → 0
in (9.11) and specialising to c = b, we obtain the continued fraction

∞∑
n=0

zn

b + n
=

F(1, b; b + 1; z)
b

=
1
b
+

λ′0z
b + 1

+
λ′1z

b + 2
+ · · · + λ′nz

b + n + 1
+ · · · , (9.12)

where λ′2k−1 = −k2 and λ′2k = −(b+ k)2; this can be used to construct continued
fractions for

log(1 + z) = zF(1, 1; 2;−z) and arctan z = zF(1, 1/2; 3/2;−z2),

as well as for the tails of their power series.

Theorem 9.11 For N = 1, 2, . . . , we have

log(1 + z) −
N−1∑
n=1

(−1)n−1zn

n
=

(−1)N−1zN

N
+

N2z
N + 1

+
12z

N + 2

+
(N + 1)2z

N + 3
+

22z
N + 4

+ · · · , (9.13)

arctan z −
N−1∑
n=0

(−1)nz2n+1

2n + 1
=

(−1)Nz2N+1

2N + 1
+

(2N + 1)2z2

2N + 3
+

22z2

2N + 5

+
(2N + 3)2z2

2N + 7
+

42z2

2N + 9
+ · · · . (9.14)

Proof Use

log(1 + z) −
N−1∑
n=1

(−1)n−1zn

n
=

zN F(1,N; N + 1;−z)
N

and

arctan z −
N−1∑
n=0

(−1)nz2n+1

2n + 1
=

z2N+1 F(1,N + 1/2; N + 2/2;−z2)
2(N + 1/2)
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together with the continued fraction (9.12). �

Note that further specialisation to z = 1 in (9.14) leads to a continued frac-
tion for the tail of the approximation of π/4 by Gregory’s series:

π

4
−

N−1∑
n=0

(−1)n

2n + 1
=

(−1)N

2N + 1
+

(2N + 1)2

2N + 3
+

22

2N + 5

+
(2N + 3)2

2N + 7
+

42

2N + 9
+ · · · , (9.15)

while its special case N = 0 gives

π =
4
1
+

12

3
+

22

5
+

32

7
+ · · · + n2

2n + 1
+ · · · . (9.16)

The estimates given in [25, Theorem 4] show that, for large b and z from the
range −1 ≤ z < 0, the quality of approximation of the hypergeometric value
by the nth convergent from (9.12) is roughly bounded by (z/(z − 1))n. The es-
timate is applicable in the case of (9.15), thus showing that the convergents to
the continued fraction can be used to accelerate the convergence of Gregory’s
series. Note that the paper [25] discusses an interesting phenomenon concern-
ing the tail (9.15) of Gregory’s series, which relates to its asymptotic power
series in 1/N as N → ∞.

Finally, we mention that, on using the Nth convergent of the continued frac-
tion in (9.13) for z = 1, it is possible to demonstrate that the resulting rational
approximations to log 2 are sufficient for proving the irrationality of the num-
ber (using Theorem 1.34) as well as for producing a bound for its irrationality
exponent (using Theorem 1.35). We will not pursue this topic further here,
but the idea is developed by M. Prévost in [137] for irrationality proofs of the
constants ζ(2) and ζ(3).

9.4 Ramanujan’s AGM continued fraction

In this section we give a taste of Ramanujan’s AGM continued fraction; the
more famous Rogers–Ramanujan continued fraction is discussed in the chapter
notes. The substantial technical details can be found in the papers [26, 27, 19]
and [102].

In [26, 27] one of the present authors considered the arithmetic-geometric
mean (AGM) fraction, found in Chapter 18 of Ramanujan’s second notebook
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[13]. For a, b, η > 0 we have

Rη(a, b) =
a

η +
b2

η +
4a2

η +
9b2

η + . . .

, (9.17)

one of whose remarkable properties is a formal AGM relation that is known to
be true at least for positive real a, b:

R1

(
a + b

2
,
√

ab
)
=
R1(a, b) + R1(b, a)

2
. (9.18)

However, this relation is of dubious validity for general complex parame-
ters [26] despite claims in the literature. Note that Rη(a, b) = R1(a/η, b/η)
and that validity of (9.18) depends only on the ratio a/b, which can be thought
as a point of the extended complex field C = C ∪ {∞}.

Figure 9.1 Cardioid on whose complement (shaded) AGM relation (9.18) holds.

Work in [27] focused on the convergence domain

D0 =
{
(a, b) ∈ C2 : R1(a, b) converges on C

}
.

It was proved therein that, with

D1 = {(a, b) ∈ C2 : |a| , |b|} ∪ {(a, b) ∈ C2 : a2 = b2 < (−∞, 0)},

we have D1 ⊆ D0, so that the Ramanujan continued fraction converges for
almost all complex pairs (a, b). The article [19] showed that D1 = D0. Equiv-
alently, the fraction R1 diverges whenever 0 , a = beiϕ with cos2 ϕ , 1 or
a2 = b2 ∈ (−∞, 0). It was also shown that remarkable and explicit chaotic dy-
namics occur on the imaginary axis, say for R1(i, i ). Key to all this analysis is
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the following theorem, whose components date back to the nineteenth century.
The notation

ϑ2(q) =
∑
k∈Z

k odd

qk2/4 = 2q1/4
∞∑

n=0

qn(n+1), ϑ3(q) =
∑
k∈Z

k even

qk2/4 = 1 + 2
∞∑

n=1

qn2

stands for the classical theta (null) functions [166].

Theorem 9.12 ([26, 19]) For real y, η > 0 and q = e−πy, we have the theta
function parametrisations

η
∑
k∈Z

k odd

sech(kπy/2)
η2 + k2 = Rη(ϑ2

2(q), ϑ2
3(q)),

η
∑
k∈Z

k even

sech(kπy/2)
η2 + k2 = Rη(ϑ2

3(q), ϑ2
2(q)).

Moreover, the equality (9.18) holds when a/b belongs to the closed exterior of
the cardioid knot shown in Figure 9.1, which in polar coordinates is given by
r2 + (2 cos ϕ − 4)r + 1 = 0.

Interpreting Theorem 9.12 as giving a Riemann integral in the limit b→ a−

(for a > 0), gives a slew of relations involving the psi or digamma function

ψ(z) =
d
dz

log Γ(z),

the hypergeometric function and the Gauss continued fraction (see Section 9.3).

Corollary 9.13 ([26]) For all a > 0,

R1(a, a) =
∫ ∞

0

sech(πx/(2a))
1 + x2 dx

= 2a
∞∑

k=1

(−1)k+1

1 + (2k − 1)a

=
1
2

(
ψ
(3
4
+

1
4a

)
− ψ

(1
4
+

1
4a

))
=

2a
1 + a

F
( 1
2a
+

1
2
, 1;

1
2a
+

3
2

;−1
)

= 2
∫ 1

0

t1/a

1 + t2 dt

=

∫ ∞

0
e−x/a sech x dx.
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No closed form is known for any case with a , b. In [29, 30] various exten-
sions were studied and fractions with period 3 and other features were elabo-
rated.

Exercise 9.14 Derive a restricted parametrised form of (9.18) from Theo-
rem 9.12 (as q 7→ q2).

Exercise 9.15 Derive Corollary 9.13 from Theorem 9.12.

Hint The expressions are listed in an order suited to proving each expression
from the previous one. �

Exercise 9.16 ([26]) Use Corollary 9.13 to determine that R1(1, 1) = log 2
and R1(1/2, 1/2) = 2 − π/2. Obtain for positive integers p, q that

R1

( p
q
,

p
q

)
= −2p

p+q−1∑
n=1

1
n
(
δn≡p+q (mod 4p) − δn≡3p+q (mod 4p)

)
− 2

∑
0<k<2p
k odd

cos
(p + q)kπ

2p
log

(
2 sin

kπ
4p

)

+ 2π
∑

0<k<2p
k odd

(1
2
− k

4p

)
sin

(p + q)kπ
2p

,

where δX denotes the indicator of set X.

The convergence of (9.17) is slowest – at an arithmetic rate – when a = b.
The key to analysing the AGM fraction is the replacement of the irregular
fraction by a reduced continued fraction, in which, as observed earlier, we
have the same form as in a regular fraction except that we require that an be
real or complex.

Exercise 9.17 Show that for all a, b we have

R1(a, b) =
a

[a1, a2, . . . , an, . . . ]
,

where

an =
n!2

(n/2)!4 4−n bn

an ≈
2
πn

bn

an for even n,

an =
((n − 1)/2)!4

n!2 4n−1 an−1

bn+1 ≈
π

2abn
an

bn for odd n,

and so the series
∑∞

n=1 an diverges.

Now, the Seidel–Stern theorem [82, 103] asserts that for reduced fractions
with positive terms the sum diverges iff the fraction converges. This shows that
for real a, b > 0 the continued fraction R1(a, b) converges.
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Effective algorithms for computing (9.17) in the full complex plane are given
in [26, 27]. They produce D good digits for O(D) operations where the order
constant D is independent of a, b, η.

9.5 An irregular continued fraction for ζ(2) = π2/6

Recall the definition of the Riemann zeta function from (1.8). In this section
we will construct an irregular continued fraction for the number

ζ(2) =
∞∑

n=1

1
n2 .

The fact that ζ(2) = π2/6 is known from analysis. For example, it follows from
the Fourier expansion of the function x2 or from the product formula for the
function sin x; see [157, 28].

Exercise 9.18 ([28]) Show by elementary methods that( ∞∑
n=−∞

(−1)n

2n + 1

)2
=

∞∑
n=−∞

1
(2n + 1)2 .

Deduce from this that ζ(2) = π2/6.

Hint Let

δN =

N∑
m,n=−N

(−1)n+m

(2n + 1)(2m + 1)
−

N∑
k=−N

1
(2k + 1)2 and εN =

N∑
m,n=−N

m,n

1
m − n

.

Show that εN ≤ 1/(N − n + 1), while

δN =

N∑
m,n=−N

m,n

(−1)n+m

(2n + 1)(m − n)
→ 0. �

For each n = 0, 1, 2, . . . , define the rational function

Rn(t) = (−1)n
n!

∏n
j=1(t − j)∏n

j=0(t + j)2

and consider the quantity

rn =

∞∑
ν=1

Rn(ν).

The latter series converges (absolutely), since Rn(t) = O(t−2) as t → ∞.
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Lemma 9.19 The following representation holds:

rn = qnζ(2) − pn, n = 0, 1, 2, . . . ,

where

qn =

n∑
k=0

(
Rn(t)(t + k)2)∣∣∣

t=−k ∈ Q and pn ∈ Q, n = 0, 1, 2, . . .

In addition, for n = 0 and n = 1 we have r0 = ζ(2) and r1 = 3ζ(2) − 5, that is,

p0 = 0, q0 = 1 and p1 = 5, q1 = 3.

Proof First, consider the particular cases n = 0 and n = 1. For n = 0 we have
R0(t) = 1/t2, and hence

r0 =

∞∑
ν=1

R0(ν) = ζ(2).

For n = 1 we decompose the function R1(t) into a sum of partial fractions:

R1(t) = − t − 1
t2(t + 1)2 =

1
t2 +

2
(t + 1)2 −

3
t
+

3
t + 1

.

Thus,

r1 =

∞∑
ν=1

R1(ν) =
∞∑
ν=1

( 1
t2 +

2
(t + 1)2 −

3
t
+

3
t + 1

)
=

∞∑
ν=1

1
ν2 +

∞∑
ν=2

2
ν2 +

∞∑
ν=1

( 3
ν + 1

− 3
ν

)
= ζ(2) + 2(ζ(2) − 1) − 3 = 3ζ(2) − 5.

In the general case, let us replace the quantity rn with the power series

rn(z) =
∞∑
ν=1

Rn(ν) zν,

which converges at z = 1 by the argument indicated above. The partial-fraction
decomposition of Rn(t) is as follows:

Rn(t) =
n∑

k=0

( Ak

(t + k)2 +
Bk

t + k

)
,

where Ak and Bk are certain rational numbers. For the moment, we need ‘ex-
plicit’ formulae for the coefficients

Ak =
(
Rn(t)(t + k)2)∣∣∣

t=−k, k = 0, 1, . . . , n,
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only. We obtain

rn(z) =
∞∑
ν=1

Rn(ν) zν =
∞∑
ν=1

n∑
k=0

Ak zν

(ν + k)2 +

∞∑
ν=1

n∑
k=0

Bk zν

ν + k

=

n∑
k=0

Ak z−k
∞∑
ν=1

zν+k

(ν + k)2 +

n∑
k=0

Bk z−k
∞∑
ν=1

zν+k

ν + k

=

n∑
k=0

Ak z−k
( ∞∑

l=1

z l

l2
−

k∑
l=1

z l

l2

)
+

n∑
k=0

Bk z−k
( ∞∑

l=1

z l

l
−

k∑
l=1

z l

l

)
= A(z)

∞∑
l=1

z l

l2
+ B(z)

∞∑
l=1

z l

l
−C(z)

= A(z)
∞∑

l=1

z l

l2
+ B(z)

(− log(1 − z)
) −C(z),

where

A(z) =
n∑

k=0

Ak z−k ∈ Q[z−1], B(z) =
n∑

k=0

Bk z−k ∈ Q[z−1],

C(z) =
n∑

k=0

Ak z−k
k∑

l=1

z l

l2
+

n∑
k=0

Bk z−k
k∑

l=1

z l

l
∈ Q[z−1].

Since the power series rn(z) converges at z = 1, we can use Abel’s theorem,
which says that the right-hand side of the resulting series rn(z) has a finite
limit rn as z → 1. In particular, this means that B(1) = 0 and rn = rn(1) =
A(1)ζ(2) −C(1). It remains to take qn = A(1) =

∑n
k=0 Ak and pn = C(1). �

Note that the function Rn+1(t)/Rn(t) is a rational function not only of the
parameter t but also of n. Let us define another (rational) function S n(t) =
sn(t)Rn(t), where

sn(t) = 11n2 + 9n + 2 + 3(2n + 1)t − t2. (9.19)

Lemma 9.20 For each integer n = 1, 2, . . . , the following identity holds:

(n+ 1)2Rn+1(t)− (11n2 + 11n+ 3)Rn(t)− n2Rn−1(t) = S n(t+ 1)− S n(t). (9.20)

Proof Since

Rn−1(t)
Rn(t)

= − (t + n)2

n(t − n)
,

Rn+1(t)
Rn(t)

= − (n + 1)(t − n − 1)
(t + n + 1)2 ,

S n(t + 1)
Rn(t)

=
S n(t + 1)
Rn(t + 1)

Rn(t + 1)
Rn(t)

= sn(t + 1)
t3

(t − n)(t + n + 1)2 ,
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the proof is reduced to verification of the identity

(n + 1)2
(
− (n + 1)(t − n − 1)

(t + n + 1)2

)
− (11n2 + 11n + 3) − n2

(
− (t + n)2

n(t − n)

)
= sn(t + 1)

t3

(t − n)(t + n + 1)2 − sn(t), (9.21)

where the polynomial sn(t) is given in (9.19). Calculation shows that both sides
of (9.21) are equal to

ξn(t)
(t − n)(t + n + 1)2

where

ξn(t) = nt4 − (7n2 + 9n + 3)t3 − (6n3 + 30n2 + 27n + 7)t2

+ (17n4 + 24n3 + 3n2 − 6n − 2)t + (11n4 + 31n3 + 31n2 + 13n + 2)n. �

Theorem 9.21 The sequences (rn)∞n=0, (qn)∞n=0 and (pn)∞n=0 each satisfy the
recurrence relation

(n + 1)2rn+1 − (11n2 + 11n + 3)rn − n2rn−1 = 0, n = 1, 2, . . . (9.22)

Proof We use the definition of rn and Lemma 9.20: thus,

(n + 1)2rn+1 − (11n2 + 11n + 3)rn − n2rn−1

=

∞∑
ν=1

(
S n(t + 1) − S n(t)

)∣∣∣
t=ν = −S n(1) = −sn(1) Rn(1) = 0,

because Rn(1) = 0 for n = 1, 2, . . .
For the sequence of coefficients qn, we use the formula from the proof of

Lemma 9.19:

qn =

n∑
k=0

(
Rn(t)(t + k)2)∣∣∣

t=−k =
∑
k∈Z

(
Rn(t)(t + k)2)∣∣∣

t=−k,

where we have
(
Rn(t)(t + k)2)∣∣∣

t=−k = 0 for k < 0 and k > n for trivial reasons.
With the help of identity (9.20) we find that

(n + 1)2qn+1 − (11n2 + 11n + 3)qn − n2qn−1

=
∑
k∈Z

(
(S n(t + 1) − S n(t))(t + k)2)∣∣∣

t=−k

=
∑
k∈Z

(
(S n(l − k + 1) − S n(l − k))l2

)∣∣∣
l=0

=

(
l2

∑
k∈Z

(
S n(l − k + 1) − S n(l − k)

))∣∣∣∣∣
l=0
= 0
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for n = 0, 1, 2, . . . , since the inner sum over k telescopes.
Finally, the sequence pn = qnζ(2) − rn satisfies the required recurrence as a

linear combination (with constant coefficients) of the sequences qn and rn. �

Lemma 9.22 For all n = 0, 1, 2, . . . we have qn ≥ 1. Moreover, rn → 0 as
n→ ∞.

Proof From Lemma 9.19 we have q0 = 1 and q1 = 3 > 1. Hence an inductive
argument gives us

qn+1 =
(11n2 + 11n + 3)qn + n2qn−1

(n + 1)2 ≥ (11n2 + 11n + 3) + n2

(n + 1)2 > 1

for n = 1, 2, . . . The fact that rn → 0 as n → ∞ (indeed, a stronger statement
than that about the asymptotics of the quantities rn) will be proved in the next
section. �

As a consequence, we derive that
pn

qn
= ζ(2) − rn

qn
→ ζ(2) as n→ ∞. (9.23)

Thus, we have constructed a sequence of rational numbers (pn)∞n=0 and (qn)∞n=0
that satisfy the recurrence relation

pn =
P(n − 1)

n2 pn−1 +
(n − 1)2

n2 pn−2,

qn =
P(n − 1)

n2 qn−1 +
(n − 1)2

n2 qn−2,

where P(n) = 11n2 + 11n + 3, for n = 2, 3, . . . Setting p−1 = 1, q−1 = 0 and
taking into account that p0 = 0, q0 = 1 and p1 = 5, q1 = 3, by Lemma 9.19,
we conclude that

p1 = 3p0 + 5p−1, q1 = 3q0 + 5q−1.

We are now in a position to apply Theorem 9.1. The continued fraction given
by

b1

a1
+

b2

a2
+

b3

a3
+ · · · + bn

an
+ · · · ,

with an =
P(n − 1)

n2 for n = 1, 2, . . . ,

b1 = 5, bn =
(n − 1)2

n2 for n = 2, 3, . . . ,

(9.24)

has (pn)∞n=−1 and (qn)∞n=−1 as the sequences of numerators and denominators of
its convergents; moreover, we have pn/qn → ζ(2) as n → ∞ by (9.23). Hence
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ζ(2) is the value of the continued fraction (9.24). Developing the equivalent
transformation of the resulted continued fraction (see Theorem 9.5) with the
choices c0 = 1 and cn = n2 for n = 1, 2, . . . , we finally arrive at the continued
fraction

ζ(2) =
b′1
a′1
+

b′2
a′2
+

b′3
a′3
+ · · · + b′n

a′n
+ · · ·

with a′n = P(n − 1) for n = 1, 2, . . . ,

b′1 = 5, b′n = (n − 1)4 for n = 2, 3, . . .

Let us summarise our findings in the following statement.

Theorem 9.23 We have the following (irregular) continued fraction:

ζ(2) =
5
3
+

14

P(1)
+

24

P(2)
+ · · · + n4

P(n)
+ · · · ,

where P(n) = 11n2 + 11n + 3.

Exercise 9.24 (Irregular continued fraction for ζ(3)) Take the rational func-
tion

R̃n(t) =

∏n
j=1(t − j)2∏n
j=0(t + j)2

and, for each n = 0, 1, 2, . . . , consider the (absolutely convergent) series

r̃n = −
∞∑
ν=1

dR̃n(t)
dt

∣∣∣∣∣
t=ν
.

(a) Show that

r̃0 = 2ζ(3) and r̃1 = 10ζ(3) − 12.

(b) Show that, for each n = 0, 1, 2, . . . , we have r̃n = q̃nζ(3) − p̃n, where p̃n

and q̃n are rational numbers, q̃n > 0.
(c) Define S̃ n(t) = s̃n(t)R̃n(t), where

s̃n(t) = 4(2n + 1)(−2t2 + t + (2n + 1)2).

Check that

(n + 1)3R̃n+1(t) − (2n + 1)(17n2 + 17n + 5)R̃n(t) + n3R̃n−1(t)

= S̃ n(t + 1) − S̃ n(t) (9.25)

for n = 1, 2, . . .
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(d) Using (c), show that the sequences (r̃n)∞n=0, (q̃n)∞n=0 and ( p̃n)∞n=0 each sat-
isfy the recurrence relation

(n + 1)3r̃n+1 − (2n + 1)(17n2 + 17n + 5)r̃n + n3r̃n−1 = 0, n = 1, 2, . . .
(9.26)

(e) Assuming that r̃n → 0 as n→ ∞, prove the following continued fraction
expansion for ζ(3):

ζ(3) =
6
5
+
−16

Q(1)
+
−26

Q(2)
+ · · · + −n6

Q(n)
+ · · · ,

where Q(n) = (2n + 1)(17n2 + 17n + 5).

9.6 The irrationality of π2

The aim of this final section is to prove that ζ(2) is irrational.

Theorem 9.25 The number ζ(2) = π2/6 is irrational.

The proof, which we present below, is based on the original construction of
Apéry (who also proved the irrationality of ζ(3); see Exercises 9.24 and 9.30).
However, our ideas considerably differ from those of Apéry. Note that the irra-
tionality problem of the numbers ζ(5), ζ(7), ζ(9), . . . is not yet resolved.

As in the previous section, to each n = 0, 1, 2, . . . we assign the rational
function

Rn(t) = (−1)n
n!

∏n
j=1(t − j)∏n

j=0(t + j)2

and the corresponding quantity

rn =

∞∑
ν=1

Rn(ν) = qnζ(2) − pn.

Let dn = lcm(1, 2, . . . , n). The corollary of the prime number theorem (see
Theorem 1.20) asserts that

lim
n→∞

log dn

n
= 1; (9.27)

in other words, that dn grows with n as en+o(n).

Lemma 9.26 The rational coefficients in the partial-fraction decomposition

Rn(t) =
n∑

k=0

( Ak

(t + k)2 +
Bk

t + k

)
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satisfy the inclusions Ak ∈ Z and dnBk ∈ Z for k = 0, 1, . . . , n.

Proof Write Rn(t) as a product of two ‘simpler’ rational functions,

R′(t) =
n!∏n

j=0(t + j)
=

n∑
k=0

A′k
t + k

and

R′′(t) =
(−1)n ∏n

j=1(t − j)∏n
j=0(t + j)

=

n∑
k=0

A′′k
t + k

.

Then

A′k =
n!

(−1)kk!(n − k)!
= (−1)k

(
n
k

)
∈ Z,

A′′k =
(n + k)!/k!

(−1)kk!(n − k)!
= (−1)k

(
n
k

)(
n + k

k

)
∈ Z,

k = 0, 1, . . . , n,

whence

Rn(t) = R′(t)R′′(t) =
n∑

k=0

A′kA′′k
(t + k)2 +

n∑
k=0

n∑
l=0

k,l

A′kA′′l
(t + k)(t + l)

=

n∑
k=0

A′kA′′k
(t + k)2 +

n∑
k=0

n∑
l=0

k,l

A′kA′′l
l − k

( 1
t + k

− 1
t + l

)
,

implying that

Ak = A′kA′′k =
(
n
k

)2(n + k
k

)
,

Bk =

n∑
l=0
l,k

A′kA′′l − A′l A
′′
k

l − k
,

k = 0, 1, . . . , n.

Since |l − k| ≤ n in the last sum, the resulting formulae for Ak and Bk give us
grounds for the required inclusions. �

Lemma 9.27 The rational coefficients of the linear form rn = qnζ(2) − pn

satisfy qn ∈ Z and d 2
n pn ∈ Z.

In other words, the sequence

qn =

n∑
k=0

(
n
k

)2(n + k
k

)
, n = 0, 1, 2, . . . ,
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which satisfies the recurrence relation

(n + 1)2qn+1 − (11n2 + 11n + 3)qn − n2qn−1 = 0,

is integer-valued.

Proof In accordance with the formulae from the proof of Lemma 9.19, we
have

qn =

n∑
k=0

Ak, pn =

n∑
k=0

Ak

k∑
l=1

1
l 2 +

n∑
k=0

Bk

k∑
l=1

1
l
.

Using the inclusions of Lemma 9.26 as well as

dn ·
k∑

l=1

1
l
∈ Z and d2

n ·
k∑

l=1

1
l2
∈ Z for k = 0, 1, . . . , n,

we arrive at the desired claim. �

Lemma 9.28 For each n = 1, 2, . . . , the following estimate holds:

0 < |rn| <
7n
10n .

Proof Let us estimate the product M = m(m+1) · · · (m+n−1) of n successive
positive integers. As in the proof of Lemma 2.59, we have∫ m+n−1

m−1
log x dx < log M =

m+n−1∑
l=m

log l <
∫ m+n

m
log x dx

implying that

log M > (x log x − x)
∣∣∣m+n−1
x=m−1 = log

(m + n − 1)m+n−1e−n

(m − 1)m−1 ,

log M < (x log x − x)
∣∣∣m+n
x=m = log

(m + n)m+ne−n

mm .

Thus,

n! <
(n + 1)n+1e−n

11 ,

n∏
j=1

(ν − j) <
ννe−n

(ν − n)ν−n ,

n∏
j=1

(ν + j) >
(ν + n)ν+ne−n

νν
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for ν ≥ n + 1; hence

0 < (−1)nRn(ν) <
(n + 1)n+1

ν2nn

nnν3ν

(ν − n)ν−n(ν + n)2(ν+n)

=
n
ν2

(
1 +

1
n

)n+1 (ν/n)3ν

(ν/n − 1)ν−n(ν/n + 1)2(ν+n)

<
4n
ν2 f

(
ν

n

)n
,

where

f (x) =
x3x

(x − 1)x−1(x + 1)2(x+1) .

Let C stand for the maximum of the function f (x) in the interval x > 1. Then

0 < (−1)nRn(ν) <
4n
ν2 Cn,

implying that

0 < (−1)nrn < 4nCn
∞∑

ν=n+1

1
ν2 ≤ 4ζ(2)nCn < 7nCn.

It remains to compute the maximum C. We have

f ′(x)
f (x)

=
d
dx

(
3x log x − (x − 1) log(x − 1) − 2(x + 1) log(x + 1)

)
= 3 log x − log(x − 1) − 2 log(x + 1) = log

x3

(x − 1)(x + 1)2 ;

hence f ′(x) = 0 if x3 = (x − 1)(x + 1)2. A unique root of the latter quadratic
equation −x2 + x + 1 = 0 in the interval x > 1 is equal to x0 = (1 +

√
5)/2.

Therefore,

C = f (x0) =
x3x0

0

(x0 − 1)x0−1(x0 + 1)2(x0+1)

=
x0 − 1

(x0 + 1)2

( x3
0

(x0 − 1)(x0 + 1)2

)x0

=
(1 +
√

5)/2 − 1(
(1 +
√

5)/2 + 1
)2 × 1 =

(√5 − 1
2

)5
<

1
10
.

This completes our proof of the lemma. �

Remark 9.29 Dividing both sides of the linear recurrence relation of Theo-
rem 9.21 by n2, we see that the ‘limiting’ form of the recurrence for the se-
quences (rn)∞n=0, (qn)∞n=0 and (pn)∞n=0 is the difference equation

rn+1 − 11rn − rn−1 = 0
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with constant coefficients. By Theorem 1.27 a general solution of this equation
has the form rn = c1λ

n
1 + c2λ

n
2, where c1, c2 ∈ R, while λ1 =

(
(1 −
√

5)/2
)5 and

λ2 =
(
(1+
√

5)/2
)5 are the roots of characteristic polynomial λ2 − 11λ− 1 = 0.

A consequence of the general formula for rn is the following limit:

lim
n→∞

n
√
|rn| =

|λ2| if c2 , 0;

|λ1| if c2 = 0 and c1 , 0.

Our original difference equation does not have constant coefficients, which
constitutes a natural obstacle to obtaining a simple formula for a general solu-
tion. However, the limiting relation

lim sup
n→∞

n
√
|rn| ∈

{|λ1|, |λ2|
}

(9.28)

continues to hold whenever rn is a nontrivial solution. This fact is a classi-
cal theorem from analysis due to Poincaré; its proof is not difficult but rather
technical [66, Chapter V].

The reasonableness of Poincaré’s theorem derives, in part, from its validity
for difference equations with constant coefficients (which follows from Theo-
rem 1.27).

Elementary estimation shows that lim supn→∞
n√|rn| ≤ 1; hence, using (9.28),

we obtain lim supn→∞
n√|rn| = |λ1| < 1/10. Thus, Poincaré’s theorem could

save us from the involved computation in the proof of Lemma 9.28.

Proof of Theorem 9.25 Suppose that, on the contrary, that ζ(2) = a/b, where
a and b are certain positive integers. For each n = 0, 1, 2, . . . , the number

r∗n = bd 2
n |rn| = (−1)n(d 2

n qna − d 2
n pnb)

is an integer satisfying 0 < r∗n < 7nbd 2
n (1/10)n. Clearly rn ≥ 1, while (9.27)

yields 7nbd 2
n < 32n for all sufficiently large n. The resulting estimate 1 ≤ r∗n <

(9/10)n is a contradiction, and proves the theorem. �

Exercise 9.30 Assume the notation of Exercise 9.24.

(a) Show that, for each n = 0, 1, . . . , at least one of r̃n and r̃n+1 is nonzero;
in other words, the sequence (r̃n)∞n=0 is a nontrivial solution of the dif-
ference equation from Exercise 9.24(d).

(b) Using Poincaré’s theorem, verify that

lim sup
n→∞

n
√
|r̃n| ∈

{
(
√

2 − 1)4, (
√

2 + 1)4}.
(c) Show, by an elementary estimation, that |r̃n| < Cn for a certain constant

C > 0.
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(d) Deduce from (a)–(c) that

lim sup
n→∞

n
√
|r̃n| = (

√
2 − 1)4 <

4
33 × 5

.

(e) Show that the coefficients of the linear form r̃n = q̃nζ(3) − p̃n satisfy
q̃n ∈ Z and d3

n p̃n ∈ Z for n = 0, 1, 2, . . .
(f) Deduce from (d) and (e) that ζ(3) is irrational.

Notes

Throughout this chapter and the rest of this book there lies an iceberg of com-
putation, symbolic and numeric, most of which has not been directly exposed
to the reader. The reader would be well advised to keep a computer algebra
package open and to implement as much as she or he can! The writers cer-
tainly had to use such methods to check or develop many of the more subtle
results presented in the book.

One should not miss reading the historical-mathematical account of Apéry’s
proof [8] of the irrationality of ζ(2) and ζ(3) given by Alf van der Poorten in
[127]. Our proofs in Sections 9.5 and 9.6 produce Apéry’s rational approxima-
tions to ζ(2) (and ζ(3)) but use a somewhat different approach; see [16, 137]
for other proofs. It is now apparent that the original construction of Apéry
was highly influenced [7, 138] by a continued fraction given by Ramanujan. It
should be mentioned that Ramanujan was an indefatigable producer of explicit
and highly nontrivial continued fraction expansions, which one could easily
classify as beautiful.

Here we limit ourselves to recording the Rogers–Ramanujan continued frac-
tions: for |q| ≤ 1,

R(q) = q1/5
∞∏

n=0

(1 − q5n+1)(1 − q5n+4)
(1 − q5n+2)(1 − q5n+3)

=
q1/5

1 +
q

1 +
q2

1 +
q3

1 + . . .

, (9.29)

Then R(1) = φ−1, where φ is our old friend the golden ratio, see Exercise 2.31,
and R(q) may be thought of as a q-analogue of the golden mean.

Ramanujan showed that R(e−π
√

r) is algebraic for each rational number r;
Sloane’s sequence A082682 in [156] gives the exact values of rn = R(e−π

√
n)
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for 1 ≤ n ≤ 10. In particular, famously,

r2 =

√
5 +
√

5
2

− 1 +
√

5
2

.

We highly recommend to our readers that they browse through Berndt’s edi-
tion of Ramanujan’s notebooks [13] and the Andrews–Berndt edition of Ra-
manujan’s ‘lost notebook’ [5] (see also [6]), since just listing Ramanujan’s
contributions to this particular subject deserves a separate volume.

Turning to the end of Section 9.4, a recent unifying presentation on the more
general Seidel–Stern theorem and its relatives, where terms may be complex,
is to be found in [12]. The basic building blocks are as follows, where Zn

represents the nth partial quotient.

Theorem 9.31 (The Seidel–Stern theorem, 1846) If each an is positive then
the sequences Z2n and Z2n+1 are monotonic and convergent. If, in addition,∑

n an diverges then Zn converges.

Theorem 9.32 (The Stern–Stolz theorem, 1860) If Zn converges then
∑

n |an|
diverges.

Theorem 9.33 (Van Vleck’s theorem, 1901) Suppose that 0 ≤ θ < π/2 and
that | arg(bn)| ≤ θ whenever an , 0. Then the sequences Z2n and Z2n+1 converge.
Further, Zn converges if and only if

∑
n |an| diverges.

Examples and pictures in [29, 30], and elsewhere, show the need for such re-
strictions to rule out period-3 and higher-period behaviour of the convergents.
They are based on the irregular fraction S(b) given by

S(b) =
12b2

1

1 +
22b2

2

1 +
32b2

3

1 + . . .

(9.30)

where the string (bn) is periodic and is most interesting when all terms have
the same modulus. The case of period 2 is the setting for Ramanujan’s AGM
fraction. It is convenient to set (9.30) obeys tn = qn−1/n!, where pn/qn is the
nth partial convergent of S(b), so that

tn =
1
n

tn−1 +
n − 1

n
b2

n−1tn−2. (9.31)

For example, with bn of period 3 we obtain Figure 9.2 for

(b1, b2, b3) =
(
exp(iπ/4), exp(iπ/4), exp(iπ/4 + 1/

√
2)

)
. (9.32)
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Note the scaling is that suggested by (9.28).

Exercise 9.34 (Pictures for R) In the original Ramanujan fraction setting,
draw graphs with |b1| = b2| = 1 corresponding to that of Figure 9.2. You should
see three cases depending on whether none, one or two of the parameters are
roots of unity. However, in all cases the graphs produce points lying on two
circles and look nothing like Figure 9.2.

Figure 9.2 Dynamics for cycles of length 3. Shown are the iterates
√

ntn for tn
given by (9.31) with the choice (9.32). The odd iterates are light and the even
iterates are dark.

We remark that the ‘magic’ appearance of the identities (9.20) and (9.25) is
not accidental: the explicit form of the functions S n(t) and S̃ n(t) is the output of
the so-called algorithm of creative telescoping due to Gosper and Zeilberger,
which can be found in [126]. The algorithm is implemented in some computer
algebra systems, including Maple and Mathematica.

It is interesting to note that recurrence equations like (9.22) and (9.26) en-
code a lot of number theory in addition to the material explored above. In re-
cent years such Apéry-like difference equations and their generalisations have
become a subject of independent interest [4, 171].

While the irrationality proof for ζ(2) prefigures that for ζ(3), the most direct
proof of the irrationality of π is probably Ivan Niven’s 1947 short proof [120]. It
illustrates well the ingredients of many more difficult proofs of the irrationality
of other constants and indeed of Lindemann’s proof of the transcendence of π,
which builds on on Hermite’s 1873 proof of the transcendence of e.

Theorem 9.35 ([120]) The number π is irrational.

Proof Let π = a/b, the quotient of positive integers. We define the polyno-
mials f (x) = xn(a − bx)n/n! and

F(x) = f (x) − f (2)(x) + f (4)(x) − · · · + (−1)n f (2n)(x);

the positive integer n will be specified later. Since n! f (x) has integral coeffi-
cients and terms in x of degree not less than n, the polynomial f (x) and its
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derivatives f ( j)(x) have integral values for x = 0; also for x = π = a/b, since
f (x) = f (a/b − x). By elementary calculus we have

d
dx

(F′(x) sin x − F(x) cos x) = F′′(x) sin x + F(x) sin x = f (x) sin x

and ∫ π

0
f (x) sin x dx =

(
F′(x) sin x − F(x) cos x

)∣∣∣π
0 = F(π) + F(0). (9.33)

Now F(π)+F(0) is an integer, since f ( j)(0) and f ( j)(π) are integers. But, for
0 < x < π,

0 < f (x) sin x <
πnan

n!
,

so that the integral in (9.33) is positive but less than 1 for sufficiently large n.
Thus (9.33) is false, and so is our assumption that π is rational. �

This proof can be enhanced to cover ζ(2) as Niven did later [121].

There is a deep connection between the (classical) orthogonal polynomials
with respect to a linear functional L : C[x] → C and the continued fraction
expansions of the generating function

∑∞
n=0L(xn)zn for its moments; this has

nontrivial applications to the evaluation of Kronecker–Hankel determinants.
We refer the interested reader to the highly accessible review [89] of this story
(see also [50, pp. 91–99]).




