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Preface

This book arose from many lectures the authors delivered independently at
different locations to students of different levels.

‘Theory’ is a scientific name for ‘story’. So, if the reader somehow feels
uncomfortable about following a theory of continued fractions, he or she might
be more content to read the story of neverending fractions.

The queen of mathematics – number theory – remains one of the most acces-
sible parts of significant mathematical knowledge. Continued fractions form a
classical area within number theory, and there are many textbooks and mono-
graphs devoted to them. Despite their classical nature, continued fractions
remain a neverending research field, many of whose results are elementary
enough to be explained to a wide audience of graduates, postgraduates and re-
searchers, as well as teachers and even amateurs in mathematics. These are the
people to whom this book is addressed.

After a standard introduction to continued fractions in the first three chap-
ters, including generalisations such as continued fractions in function fields
and irregular continued fractions, there are six ‘topics’ chapters. In these we
give various amazing applications of the theory (irrationality proofs, generat-
ing series, combinatorics on words, Somos sequences, Diophantine equations
and many other applications) to seemingly unrelated problems in number the-
ory. The main feature that we would like to make apparent through this book
is the naturalness of continued fractions and of their expected appearance in
mathematics. The book is a combination of formal and informal styles. The
aforementioned applications of continued fractions are, for the most part, not
to be found in earlier books but only in scattered scientific articles and lectures.

We have included various remarks and exercises but have been sparing with
the latter. In the topics chapters we do not always give full details. Needless to
say, all topics can be followed up in the end notes for each chapter and through
the references.
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x Preface

We would like to thank many colleagues for useful conversations during
the development of this book, especially Mumtaz Hussain, Pieter Moree and
James Wan. We are also deeply indebted to the copy-editor Susan Parkinson
whose incisive and tireless work on the book has enhanced its appearance im-
measurably.

Finally, Alf van der Poorten (1942–2010) died before this book could be
brought to fruition. He was both a good friend and a fine colleague. We offer
this book both in his memory and as a way of bringing to a more general
audience some of his wonderful contributions to the area. Chapters 4, 5 and 6
originate in lectures Alf gave in the last few years of his life and, for matters
of both taste and necessity, they are largely left as presentations in his unique
and erudite style.

Alfred “Alf” Jacobus van der Poorten
(16 May 1942 in Amsterdam–9 October 2010 in Sydney)

A full mathematical biography of Alf is to be found in the 2013 volume
dedicated to his memory [31].

Jon Borwein, Jeffrey Shallit, and Wadim Zudilin
Newcastle and Waterloo


