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Abstract

In recent times the Douglas–Rachford algorithm has been observed empirically to
solve a variety of nonconvex feasibility problems including those of a combinatorial
nature. For many of these problems current theory is not sufficient to explain this
observed success and is mainly concerned with questions of local convergence. In this
paper we analyze global behavior of the method for finding a point in the intersection
of a half-space and a potentially non-convex set which is assumed to satisfy a property
weaker than compactness. The special case in which the second set is finite provides
a prototypical setting for combinatorial optimization problems.
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1 Introduction

Recent computational experiments have demonstrated the ability of Douglas–Rachford
methods to successfully solve a variety of significant non-convex optimization problems.
Examples include combinatorial optimization [3, 1, 13], low-rank matrix reconstruction
[4], boolean satisfiability [16], sphere packing [16, 13], matrix completion [1], image re-
construction [10], and road design [8]. Since this success in non-convex settings is not
uniform, the underlying theory is in need of significant enhancement.

Douglas–Rachford methods belong to the family of so called projection algorithms and
are traditionally analyzed using nonexpansivity properties when the problem is convex.
For non-convex problems theory is still developing. One approach to proving conver-
gence is to replace assumptions of convexity with regularity properties not tantamount
to convexity [14, 18, 9, 15]. Examples of the properties required include: superregularity,
strong regularity of sets, (ε, δ)-regularity, and exploiting convex structure (i.e., realizing a
non-convex constraint as the union of certain convex sets). Being local in nature, these
assumptions lead to local results; that is, they hold in a sufficiently small neighbourhood
of a solution. An alternate, albeit less general, approach for proving convergence is to
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instead focus on specific non-convex feasibility problems. In this direction, global conver-
gence of the method has been established for the two set feasibility problem involving a
line (or hyperplane) and sphere [12, 2, 11].

In the non-convex feasibility problems for which Douglas–Rachford methods have been
successful, it is the methods’ apparent global convergence properties which deserve greater
attention, and hence on which we shall focus. This is the case, for instance, in problems
having discrete or combinatorial constraints where local convergence can be deduced from
the general theory of convex sets as a consequence of the local convexity of the constraints.
Furthermore, an implementation of a Douglas–Rachford method would always round the
current iterate, and check if this rounded iterate is a solution to the problem. That is, in
practice, the algorithm is never run locally.

The purpose of this paper is to analyze global properties of the basic Douglas–Rachford
method. Of the two approaches already discussed, ours bears more resemblance to the
latter. We focus on a two set feasibility problem with the first set allowed to be quite
general — it must satisfy an assumption which encompasses all compact sets. The trade-
off for this assumption is that a more constrained structure is required of the second set —
it must be a closed half-space. The fact that this analysis is far from immediate, illustrates
the subtles of the Douglas–Rachford method’s global behavior, even for typical problems.

The remainder of this paper is organized as follows. In Section 2 we introduce the
problem to be solved and the basic Douglas–Rachford algorithm. In Section 3 we study
properties of the Douglas–Rachford operator. In Section 4 we analyze the global behavior
of the method and give our main results. In Section 5 we give various examples and
counter-examples. Finally, in Section 6, we make our concluding remarks.

2 Preliminaries

Through this paper our setting is the real finite dimensional Hilbert space Rm equipped
with inner-product 〈·, ·〉 and induced norm ‖ · ‖. We consider the feasibility problem

Find x ∈ H ∩Q, (1)

where Q ⊂ Rm is a closed set, and H ⊂ Rm is a (closed) half-space. We will be concerned
with the case in which Q has additional properties (see Assumptions 4.1 & 4.2), but
is intended to be as general as possible – these assumptions are explicitly stated where
needed. It is convenient to represent H, and its dividing hyperplane L, in the form

H := {x ∈ Rm | 〈a, x〉 ≤ b}, L := {x ∈ Rm | 〈a, x〉 = b},

where b ∈ R, and a ∈ Rm with ‖a‖ = 1.
To solve (1) we employ the specific Douglas–Rachford operator, denoted DR : Rm ⇒

Rm, given by

DR(x) :=
x+RH(RQ(x))

2
. (2)

Here RA denotes the reflector of a point x with respect to the set A ⊂ Rm given by
RA(x) := 2PA(x)− x, and PA stands for the projector of x onto A given by

PA(x) :=

{
z ∈ A

∣∣∣∣ ‖x− z‖ = inf
a∈A
‖x− a‖

}
.

When x is a fixed point of the Douglas–Rachford operator (i.e., x ∈ DR(x)) there is an
element of PQ(x) which solves (1) as is easy to confirm. This suggests that iterating the
Douglas–Rachford operator to find a fixed point is a potential method for solving (1).
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Given an initial point x0 ∈ Rm, we say the sequence {xk}k∈N is a Douglas–Rachford
iteration if

xk+1 ∈ DR(xk) for k ∈ N.

We now make explicit the precise form of the Douglas–Rachford operator for our
feasibility problem in (1). The projections onto L and H are given by

PL(x) = x− (〈a, x〉 − b)a, PH(x) =

{
x if 〈a, x〉 ≤ b,
x− (〈a, x〉 − b)a if 〈a, x〉 > b.

We assume PQ is effectively computable. The corresponding reflections are given by

RL(x) = x− 2(〈a, x〉 − b)a, RH(x) =

{
x if 〈a, x〉 ≤ b,
x− 2(〈a, x〉 − b)a if 〈a, x〉 > b,

and RQ(x) = 2PQ(x)−x. The Douglas–Rachford operator (2) may therefore be expressed
as

DR(x) =
⋃

q∈PQ(x)

DR(x, q),

where

DR(x, q) :=

{
q if 〈a, 2q − x〉 ≤ b,
q + (〈a, x〉+ b− 2〈a, q〉)a if 〈a, 2q − x〉 > b.

(3)

Under this notation, a sequence {xk}k∈N is a Douglas–Rachford iteration if

xk+1 = DR(xk, qk) for some qk ∈ PQ(xk).

We shall refer to the sequence {qk}k∈N as an auxiliary sequence for {xk}.
An example of a Douglas–Rachford iteration in the plane when Q is a set of four

points is given in Figure 1. The iteration converges to a solution of (1) in eight steps.
This behavior is explained by Theorem 4.2.

H

L

x0

q1

q2

q3

q4

Figure 1: A Douglas–Rachford iteration in R2 with Q = {q1, q2, q3, q4}.

Remark 2.1. In practice, an implementation of the Douglas–Rachford iteration would
hope to terminate as soon as qk0 ∈ Q ∩ H for some k0 ∈ N. Observe, however, that (3)
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does not necessarily ensure that the Douglas–Rachford sequence or its auxiliary sequence
remain constant for k ≥ k0. It is therefore important to distinguish the Douglas–Rachford
iteration from an algorithm arising from its implementation (see Algorithm 1). ♦

It is worth emphasising that, unlike the Douglas–Rachford algorithm, other projection
algorithms can fail when applied to (1). An example is given in Example 2.1. The simplest
method from this family is the alternating projection algorithm. It iterates by alternatively
applying projectors onto Q and H. Precisely, given an initial point x0 ∈ Rm, it generates
a sequence {xk} given by xk+1 ∈ PH(PQ(xk)).

Example 2.1 (Failure of alternating projections). In general, von Neumann’s alternating
projection is unable to find a point in the intersection of H and Q (and hence the same is
true for the cyclic Douglas–Rachford algorithm [5, 6]). Figure 2 shows a simple example
with a doubleton Q = {q1, q2} ⊂ R2. In this example, PQ(PH(q1)) = q1 and the algorithm
cycles between q1 and PH(q1) for any starting point x0 ∈ P−1Q (q1). ♦

H

L

P−1Q (q1)

x0 q1

q2

Figure 2: Failure of the alternating projection algorithm for initial points in P−1Q (q1).

We next give some examples of feasibility problems of the form in (1) to which our
results apply.

Example 2.2 (Finite union of compact convex sets). Suppose Q is a finite union of compact
convex sets in Rm. Applied to this problem, [9, Theorem 1] yields a local result that applies
near strong fixed-points of DR(·) (these are points for which DR(x) = {x}). Namely, that
the Douglas–Rachford sequence locally converges to a fixed-point and any cluster of its
auxiliary sequence solves (1). Note that the existence of a strong-ixed points, x, impiles
PQ(x) ∩H 6= ∅ (see [9]).

Theorem 4.3 complements this result by showing that, whenever Q ∩ H 6= ∅, the
auxiliary sequence always has at least one cluster point, regardless of the behavior of the
Douglas–Rachford sequence. ♦

Example 2.3 (Knapsack lower bound feasibility). The classical 0-1 knapsack problem is
the binary program

min {〈c, x〉 | x ∈ {0, 1}n, 〈a, x〉 ≤ b} ,

for non-negative vectors a, c ∈ Rn+ and a non-negative real number b ∈ R+.
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The 0-1 knapsack lower-bound feasibility problem is a case of (1) with constraints

H := {x ∈ Rn | 〈a, x〉 ≤ b}, Q := {x ∈ {0, 1}n | 〈c, x〉 ≥ λ},

where λ ∈ R+. As a decision problem it is NP-complete [17, I.5 Corollary 6.11].
Applied to this problem, Theorem 4.1 shows that the Douglas–Rachford method either

finds a solution in finitely many iterations, or none exists and the norm of the Douglas–
Rachford sequence diverges to infinity. Note that, in general, PQ usually cannot be com-
puted efficiently. ♦

Example 2.4. Consider the problem of minimizing a linear function f = 〈a, ·〉 over a
compact set Q for which PQ is effectively computable or approximable. Problem (1) is
a useful relaxation of this minimization when an upper-bound b on the optimal value is
known. Theorem 4.3 then applies. ♦

Example 2.5 (A sphere and a half-space). Application of the Douglas–Rachford method
to the problem of finding a point in the intersection of a sphere and an affine line (more
generally an affine subspace) was originally investigated in [12, 2], with global convergence
later proven using a Lyapunov stability argument in [11]. Here we consider the case in
which the affine line is replaced with a half-space.

Let Q be the unit sphere and H a half-space in R2. By symmetry, we may assume
a = (0, 1). Let x0 6= 0 with x0(1) > 0. Then xk(1) > 0 and qk = xk

‖xk‖ for all k ∈ N, and

the iteration given by (3) becomes

xk+1(1) =
xk(1)

‖xk‖
, xk+1(2) =


xk(2)
‖xk‖ if

(
2
‖xk‖ − 1

)
xk(2) ≤ b,(

1− 1
‖xk‖

)
xk(2) + b if

(
2
‖xk‖ − 1

)
xk(2) > b.

If Q ∩H 6= ∅ (or equivalently b ≥ −1) then Theorem 4.3 below ensures d(qk, H)→ 0.
It then follows that either qk0 ∈ H ∩ Q for some k0 ∈ N (i.e., a solution can be found in
finitely many iterations), or qk(2)→ b and hence qk → (

√
1− b2, b) ∈ Q ∩H. ♦

3 Properties of the Douglas–Rachford Operator

In this section we investigate the behavior of the Douglas–Rachford operator (2) and the
corresponding iteration without imposing any additional assumptions on the closed set Q.

We begin by distinguishing two cases depending on whether the point is contained in
the half-space. Our first proposition shows the image of H under the Douglas–Rachford
operator to be a subset of H.

The following remains true (in the convex case) when H is any obtuse cone. see Re-
mark 3.20 from Bauschke’s DR paper.

Proposition 3.1. If x ∈ H then DR(x) ⊂ H.

Proof. Choose any q ∈ PQ(x). We will distinguish two cases, depending on whether q
belongs to H. If q 6∈ H, then

〈a, 2q − x〉 = 2(〈a, q〉 − b) + (b− 〈a, x〉) + b > b,

whence, DR(x, q) = q + (〈a, x〉+ b− 2〈a, q〉)a. Thus,

〈a,DR(x, q)〉 = 〈a, q〉+ 〈a, x〉+ b− 2〈a, q〉 ≤ 2b− 〈a, q〉 < b,
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and we have DR(x, q) ∈ H.
Suppose now that q ∈ H. If 〈a, 2q − x〉 ≤ b we have DR(x, q) = q ∈ H. Otherwise, if

〈a, x〉+ b < 2〈a, q〉, we have DR(x, q) = q + (〈a, x〉+ b− 2〈a, q〉)a and

〈a,DR(x, q)〉 = 〈a, x〉+ b− 〈a, q〉 < 〈a, q〉 ≤ b.

Thus, DR(x, q) ∈ H.

Our second proposition characterizes behavior of the Douglas–Rachford operator for
points which lie outside the half-space.

Proposition 3.2. Suppose that x 6∈ H and q ∈ PQ(x). The following holds:

(i) if q ∈ H, then DR(x, q) = q;
(ii) if q 6∈ H, then

(a) if d(x,H) ≥ 2d(q,H), then DR(x, q) = q and DR(DR(x, q)) = PL(q);

(b) if d(x,H) < 2d(q,H), then DR(x, q) = q + (〈a, x〉+ b− 2〈a, q〉)a, and

(I) if d(x,H) ≤ d(q,H), then DR(x, q) ∈ H;

(II) if d(x,H) > d(q,H), then d(DR(x, q), H) = d(x,H) − d(q,H). Further-
more, if q ∈ PQ(DR(x, q)), then DR(DR(x, q), q) ∈ H.

Proof. (i) If q ∈ H, then

〈a, 2q − x〉 = 2(〈a, q〉 − b) + b+ (b− 〈a, x〉) < b;

whence, DR(x, q) = q, as claimed.
(ii)(a) We have d(x,H) ≥ 2d(q,H) ⇐⇒ 〈a, 2q − x〉 ≤ b. Thus, DR(x, q) = q and

DR(DR(x, q)) = DR(q) = q − (〈a, q〉 − b)a = PL(q),

as required.
(ii)(b)(I) If 〈a, x〉 − b = d(x,H) ≤ d(q,H) = 〈a, q〉 − b, then

〈a,DR(x, q)〉 = 〈a, q〉+ 〈a, x〉+ b− 2〈a, q〉 = 〈a, x− q〉+ b ≤ b,

whence, DR(x, q) ∈ H.
(ii)(b)(II) If d(x,H) > d(q,H), then

〈a,DR(x, q)〉 = 〈a, x− q〉+ b > b,

and

d(DR(x, q), H) = 〈a, x− q〉 = (〈a, x〉 − b)− (〈a, q〉 − b) = d(x,H)− d(q,H).

Further, suppose that q ∈ PQ(DR(x, q)). Then,

〈a, 2q −DR(x, q)〉 = 〈a, 2q − q − (〈a, x〉+ b− 2〈a, q〉)a〉
= 〈a, q〉 − (〈a, x〉 − b) + 2(〈a, q〉 − b)
= 〈a, q〉 − d(x,H) + 2d(q,H) > b.

Hence,

DR(DR(x, q), q) = q + (〈a, q + (〈a, x〉+ b− 2〈a, q〉) a〉+ b− 2〈a, q〉) a
= q + (〈a, x〉 − 3〈a, q〉+ 2b)a.
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Finally, we have

〈a,DR(DR(x, q), q)〉 = (〈a, x〉 − b)− 2(〈a, q〉 − b) + b

= d(x,H)− 2d(q,H) + b < b;

whence, DR(DR(x, q), q) ∈ H.

By combining Propositions 3.1 & 3.2, we shall deduce the following lemma concerning
the behavior of Douglas–Rachford iterations which never enter the half-space.

Lemma 3.1. Let {xk} be a Douglas–Rachford sequence with auxiliary sequence {qk}. If
xk /∈ H for each k ∈ N, then qk 6∈ H for all k ∈ N, the sequence {d(xk, L)} is strictly
monotone decreasing, and

lim
k→∞

d(xk, L) = lim
k→∞

d(qk, L) = 0.

Proof. If xk /∈ H for all k, by Propositions 3.1 & 3.2, it must be that d(qk, H) < d(xk, H) <
2d(qk, H) and d(xk+1, H) = d(xk, H)− d(qk, H). Thus the sequence {d(xk, H)} is strictly
decreasing and bounded below by zero. Since limk→∞ d(xk, H) exists, we deduce

lim
k→∞

d(qk, H) = lim
k→∞

[d(xk, H)− d(xk+1, H)] = 0.

Thus limk→∞ d(qk, L) = limk→∞ d(qk, H) = 0, and, as d(xk, H) < 2d(qk, H), we have
limk→∞ d(xk, L) = limk→∞ d(xk, H) = 0.

We now turn our attention to the precise structure of the Douglas–Rachford operator
at points which lie within the half-space. The following proposition gives a relationship
between consecutive terms in a Douglas–Rachford sequence.

Proposition 3.3. For any x ∈ H and any q ∈ PQ(x) such that q 6∈ H one has

DR(x, q) = q − (d(x, L) + 2d(q, L))a,

d(DR(x, q), L) = d(q, L) + d(x, L).

Proof. Since x ∈ H and q 6∈ H we have that 〈a, q〉 > b ≥ 〈a, x〉. Thus,

〈a, 2q − x〉 = 〈a, q〉+ 〈a, q − x〉 > b,

and we have

DR(x, q) = q − (−〈a, x〉 − b+ 2〈a, q〉)a = q − (b− 〈a, x〉+ 2(〈a, q〉 − b))
= q − (d(x, L) + 2d(q, L))a.

Then,
d(DR(x, q), L) = |〈a, q〉 − b− d(x, L)− 2d(q, L)| = d(q, L) + d(x, L),

which completes the proof.

When the Douglas–Rachford point x lies in H, our next proposition relates x to an
auxiliary points which lie in Q \H.

Proposition 3.4. Let x ∈ H and q ∈ PQ(x) \ H. Then, if p ∈ PQ(DR(x, q)) \ H, with
p 6= q, one has

d(p,H) + ‖DR(x, q)− q‖ ≤ d(q,H) + d(DR(x, q), Q). (4)

Furthermore, we have d(p,H) < d(q,H).
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Proof. Let z := DR(x, q) ∈ H. Since p ∈ PQ(z), we have ‖z − q‖ ≥ ‖z − p‖. Observe that

0 < d(p,H) + d(z, L) = 〈a, p〉 − b+ b− 〈a, z〉 = 〈a, p− z〉 ≤ ‖p− z‖. (5)

If the inequality in (5) is not strict, there is some λ ∈ R such that λa = p− z. Then,

〈a, p− z〉 = ‖p− z‖ =⇒ λ = λ‖a‖2 = ‖p− z‖ > 0.

If ‖z − q‖ = ‖z − p‖ = λ, using Proposition 3.3, we obtain a contradiction with the
assumption that p 6= q:

‖p− q‖ = ‖λa+ z − q‖ = ‖λa− (d(x, L) + 2d(q, L))a‖ = |λ− ‖z − q‖| = 0.

Thus, ‖z − q‖ > ‖z − p‖ = λ, and by Proposition 3.3 we have

d(p,H)− d(q,H) = 〈a, p− q〉 = 〈a, λa+ z − q〉
= λ+ 〈a, z − q〉 = λ− (d(x, L) + 2d(q, L))

= λ− ‖z − q‖ < 0, (6)

whence,
d(p,H) + ‖z − q‖ = d(q,H) + ‖z − p‖ = d(q,H) + d(z,Q),

and we are done.
Otherwise, suppose that the inequality in (5) is strict, i.e.,

d(p,H) + d(z, L) < ‖p− z‖. (7)

By Proposition 3.3 we know that

‖z − q‖ = d(x, L) + 2d(q, L) and d(z, L) = d(q, L) + d(x, L);

whence,
‖z − q‖ = d(q, L) + d(z, L).

Thus, by (7),

d(q,H) = d(q, L) = ‖z − q‖ − d(z, L) > ‖z − q‖ − ‖z − p‖+ d(p,H) ≥ d(p,H),

which proves (4). The last assertion in the statement follows from (6) and the inequality
above.

Remark 3.1. In particular, Proposition 3.4 shows that once a Douglas–Rachford sequence
enters the half-space, it is not possible for its auxiliary sequence to cycle within points
from Q \ H. Indeed, once an element qk0 ∈ Q \ H appears as the k0-th term auxiliary
sequence either the sequence remains constant with qk = qk0 for all k ≥ k0, or there exists
k1 ≥ k0 such that qk0 6∈ PQ(xk) for all k ≥ k1. ♦

4 Analysis of the Algorithm

In this section we establish our main results which analyze the global convergence prop-
erties of the Douglas–Rachford method assuming some additional structure on the closed
set Q. These assumption encompass, but are not limited to, the setting in which Q is a
finite set, or a compact set.

We first consider the case in which the following assumption holds. This assumption
might be of interest, for instance, when Q is an integer lattice.

8



Assumption 4.1. For every q ∈ Q \H there is at most a finite number of points in Q \H
whose distance to L is smaller than d(q, L). ♦

The following lemma shows that, under this assumption, any Douglas–Rachford se-
quence eventually enters the half-space.

Lemma 4.1. Suppose Assumption 4.1 holds. Then any Douglas–Rachford sequence {xk}
enters and remains in H after a finite number of steps. That is, there exists k0 ∈ N such
that xk ∈ H for all k ≥ k0.

Proof. Suppose there exists a Douglas–Rachford sequence {xk} such that xk 6∈ H for all
k ∈ N, with auxiliary sequence {qk}. By Proposition 3.1 & Proposition 3.2, qk 6∈ H for all
k ∈ N, and

d(xk+1, H) = d(xk, H)− d(qk, H) for all k ∈ N.

By telescoping we obtain

0 < d(xk+1, H) = d(x1, H)−
k∑
j=1

d(qj , H) ≤ d(x1, H)− k d(Q \H,H).

By Assumption 4.1, we have d(Q \H,H) > 0. A contradiction is obtained for sufficiently
large k.

Remark 4.1. Evidently, Lemma 4.1 remains valid on replacing Assumption 4.1 with the
assumption d(Q \H,H) > 0. ♦

The following example shows that the conclusions of Lemma 4.1 need not hold without
something akin to Assumption 4.1.

Example 4.1. Consider the following subsets of the real line:

Q :=

{
2

3k

∣∣∣∣ k = 0, 1, 2, . . .

}
∪ {0} , H := {x ∈ R | x ≤ 0} .

For initial point x0 = 1, the Douglas–Rachford iteration and auxiliary sequence are

xk =
1

3k
, qk := PQ(xk) =

2

3k+1
.

Both {xn} and {qn} are positive real numbers, and hence never enter H. ♦

We formulate now our first main result regarding convergence of the method under
Assumption 4.1.

Theorem 4.1. Suppose Assumption 4.1 holds. Let {xk} be a Douglas–Rachford sequence
with auxiliary sequence {qk}. Then either: (i) there exists k0 ∈ N such that qk0 ∈ Q∩H 6=
∅, or (ii) H ∩Q = ∅. Moreover, in the latter case, ‖xk‖ → +∞.

Proof. Suppose qk 6∈ H for all k ∈ N. By Lemma 4.1, there is some k0 ∈ N such that
xk ∈ H for all k ≥ k0. By Assumption 4.1 and Proposition 3.4, there is some k1 ∈ N with
k1 ≥ k0 and some q ∈ Q\H such that PQ(xk) = q for all k ≥ k1. Then, by Proposition 3.3,

xk+1 = q − (d(xk, L) + 2d(q, L))a = q − (d(xk−1, L) + 3d(q, L))a

= . . . = q − (d(xk1 , L) + (2 + k − k1)d(q, L))a, (8)
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for all k ≥ k1. Hence,

‖xk+1‖ ≥ d(xk1 , L) + (2 + k − k1)d(q, L)− ‖q‖,

whence, ‖xk‖ → ∞. Further, suppose by contradiction that there is p ∈ H ∩Q. For any
k ≥ k1, by (8), one has

‖xk+1 − p‖2 = ‖(xk+1 − q) + (q − p)‖2

= ‖xk+1 − q‖2 + ‖q − p‖2 + 2〈xk+1 − q, q − p〉
= ‖xk+1 − q‖2 + ‖q − p‖2 − 2〈a, q − p〉(d(xk1 , L) + (2 + k − k1)d(q, L)).

Observe that, since q 6∈ H and p ∈ H, we have

〈a, q − p〉 = (〈a, q〉 − b) + (b− 〈a, p〉) > 0.

Thus, there is some k2 ∈ N, with k2 ≥ k1, such that

‖q − p‖2 − 2〈a, q − p〉(d(xk1 , L) + (2 + k − k1)d(q, L)) < 0, ∀k ≥ k2.

Hence,
‖xk+1 − p‖2 < ‖xk+1 − q‖2, ∀k ≥ k2,

that is, we obtain a contradiction with the fact that PQ(xk+1) = q.

Theorem 4.1 suggests the following algorithm for finding a point Q ∩H.

Algorithm 1: The Douglas–Rachford algorithm for solving (1) with Assumption 4.1.

Input: x0 ∈ Rm;
Choose any q0 ∈ PQ(x0);
Set k := 0;
while qk 6∈ H do

xk+1 := DR(xk, qk);
Choose any qk+1 ∈ PQ(xk+1);
k := k + 1;

end
Output: qk ∈ Q ∩H;

The following corollary provides justification for Algorithm 4.1.

Corollary 4.1. Suppose Assumption 4.1 holds. Then Algorithm 1 either: (i) terminates
finitely to a point in H ∩Q, or (ii) Q ∩H = ∅ and ‖xk‖ → +∞.

Proof. Follows directly from Theorem 4.1.

It is easily seen that any finite set satisfies Assumption 4.1, hence Theorem 4.1 applies.
However, as we now show, a stronger result holds in this special case. We first require the
following two lemmata.

Lemma 4.2. Let {xk} be a Douglas–Rachford sequence with auxiliary sequence {qk}.
Suppose there exists k0 ∈ N such that xk0 ∈ H and qk0 ∈ H. Then qk ∈ H and d(qk+1, L) ≥
d(qk, L) for all k ≥ k0. Furthermore, for any k ≥ k0, one has d(qk+1, L) = d(qk, L) if and
only if qk+1 = qk.
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Proof. We distinguish two cases. First suppose 〈a, 2qk0 − xk0〉 ≤ b. By (3) we have
xk0+1 = qk0 and hence qk0+1 = qk0 .

Now suppose 〈a, 2qk0 − xk0〉 > b. By (3),

xk0+1 = qk0 − (〈a, 2qk0 − xk0〉 − b)a = qk0 − d(2qk0 − xk0 , H)a. (9)

Then, as qk0+1 ∈ PQ(xk0+1), we have

〈a, qk0+1〉 = 〈a, qk0+1 − xk0+1〉+ 〈a, xk0+1〉
≤ ‖qk0+1 − xk0+1‖+ 〈a, qk0〉 − d(2qk0 − xk0 , H) (10)

≤ ‖qk0 − xk0+1‖+ 〈a, qk0〉 − d(2qk0 − xk0 , H) (11)

= 〈a, qk0〉 ≤ b,

whence qk0+1 ∈ H and d(qk0+1, L) ≥ d(qk0 , L).
Further, let us assume that d(qk0+1, L) = d(qk0 , L). Then, we have 〈a, qk0+1〉 = 〈a, qk0〉.

Therefore the inequalities in (10) and (11) must be equalities, from where we deduce

〈a, qk0+1 − xk0+1〉 = ‖qk0+1 − xk0+1‖ = ‖qk0 − xk0+1‖. (12)

Hence, by (12) and (9), we have

〈qk0+1 − xk0+1, xk0+1 − qk0〉 = 〈qk0+1 − xk0+1,−d(2qk0 − xk0 , H)a〉
= −‖xk0+1 − qk0‖〈qk0+1 − xk0+1, a〉
= −‖xk0+1 − qk0‖2.

Thus, using again (12), we obtain

‖qk0+1 − qk0‖2 = ‖qk0+1 − xk0+1‖2 + ‖xk0+1 − qk0‖2 + 2〈qk0+1 − xk0+1, xk0+1 − qk0〉
= ‖qk0+1 − xk0+1‖2 − ‖xk0+1 − qk0‖2 = 0;

that is, qk0+1 = qk0 . The result now follows by induction.

Lemma 4.3. Let {xk} be a Douglas–Rachford sequence with auxiliary sequence {qk}.
Suppose there exists k0 ∈ N such that xk ∈ H and qk = q ∈ H for all k ≥ k0. Then there
exists k1 ∈ N with k1 ≥ k0 such that xk = xk1 for all k ≥ k1.

Proof. If 〈a, 2q − xj〉 ≤ b for some j ≥ k0, then by (3) we deduce xk = q for all k ≥ j + 1
and we are done.

Otherwise, by (3), we have xk+1 = q + (〈a, xk〉+ b− 2〈a, q〉)a for all k ≥ k0. Thus,

〈a, 2q − xk+1〉 = 〈a, 2q − (q + (〈a, xk〉+ b− 2〈a, q〉)a)〉
= 〈a, 2q − xk〉 − (b− 〈a, q〉)
= 〈a, 2q − xk〉 − d(q, L),

whence,
b < 〈a, 2q − xk〉 = 〈a, 2q − xk0〉 − (k − k0)d(q, L).

This implies d(q, L) = 0 and then,

xk+1 = q + (〈a, xk〉+ b− 2〈a, q〉)a = q + (〈a, xk〉 − b)a,

from which we deduce xk = q + (〈a, xk〉 − b)a for all k ≥ k0 + 1. This completes the
proof.
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The following theorem is a refinement of Theorem 4.1 when Q is assumed to be finite.

Theorem 4.2. Suppose Q is finite. Let {xk} be a Douglas–Rachford sequence with auxil-
iary sequence {qk}. Then either: (i) {xk} and {qk} are eventually constant and the limit
of {qk} is contained in H ∩Q 6= ∅, or (ii) H ∩Q = ∅ and ‖xk‖ → +∞.

Proof. By Theorem 4.1, it suffices to show that the sequences {xk} and {qk} are eventually
constant and the limit of {qk} is contained in H ∩Q 6= ∅, assuming there exists a k0 ∈ N
such that xk0 ∈ H and qk0 ∈ H.

To this end, suppose there is some k0 ∈ N such that xk0 ∈ H and qk0 ∈ H. By
Proposition 3.1 and Lemma 4.2 we have xk ∈ H, qk ∈ H and d(qk+1, L) ≥ d(qk, L) with
equality if and only if qk+1 = qk, for all k ≥ k0. Since Q is finite, the latter implies that
there exists k1 ≥ k0 such that qk = qk1 for all k ≥ k1. By Lemma 4.3, there exists a
k2 ≥ k1 such xk = xk2 for all k ≥ k2. This completes the proof.

We now consider the following assumption which holds, in particular, for any compact
set Q.

Assumption 4.2. The function ιQ +d(·, H) has compact lower-level sets. In particular, for
every q ∈ Q, the set

Q(q) := {p ∈ Q | d(p,H) ≤ d(q,H)},

is compact. ♦

Assumption 4.2 may also be written in the form limx∈Q,‖x‖→∞ d(x,H) = +∞.
The following is our final main result. It characterizes behavior of the algorithm for Q

satisfying Assumption 4.2. In particular, it shows that the Douglas–Rachford algorithm
can be used to determine consistency of the feasibility problem (1) and to find a solution
when such exist.

Theorem 4.3. Suppose Assumption 4.2 holds. Let {xk} be a Douglas–Rachford sequence
with auxiliary sequence {qk}. Then either: (i) d(qk, H) → 0 and the set of cluster points
of the auxiliary sequence is non-empty and contained in Q ∩H, or (ii) d(qk, H) → β for
some β > 0 and H ∩Q = ∅. Moreover, in the latter case, ‖xk‖ → +∞.

Proof. Let {xk} be a Douglas–Rachford sequence with auxiliary sequence {qk}. We dis-
tinguish two cases.

First suppose that xk 6∈ H for all k. By Proposition 3.2, qk 6∈ H for all k and,
by Lemma 3.1, d(qk, H) → 0. Hence there exists k0 ∈ N such d(qk, H) ≤ d(q0, H) for all
k ≥ k0, whence qk ∈ Q(q0) for all k ≥ k0. Since Q(q0) is compact and d(·, H) is continuous,
the set of cluster points of the auxiliary sequence {qk} is non-empty and contained in Q∩H.

Next suppose there is some k0 ∈ N such that xk0 ∈ H. Then, by Proposition 3.1, we
have xk ∈ H for all k ≥ k0. On one hand, if there exists k1 ≥ k0 such that qk1 ∈ H then,
by Lemma 4.2, qk ∈ H for all k ≥ k1. Since Q(qk1) = Q∩H is compact, it follows that the
set of cluster points of the auxiliary sequence {qk} is non-empty and contained in Q ∩H,
and we are done.

On the other hand, suppose qk 6∈ H for all k ≥ k0. Then by Proposition 3.4, qk ∈ Q(qk0)
for all k ≥ k0, and {d(qk, H)}∞k=k0 is monotone decreasing and bounded below by zero,
hence

β := inf
k≥k0

d(qk, H) = lim
k→∞

d(qk, H) ≥ 0.

12



By Proposition 3.3, for all k ≥ k0,

xk+1 = qk − (d(xk, L) + 2d(qk, L))a

= qk − (d(xk−1, L) + d(qk−1, L) + 2d(qk, L))a

= . . . = qk −

d(xk0 , L) + d(qk, L) +

k∑
j=k0

d(qj , L)

 a.

For all k ≥ k0, we may therefore express xk+1 = qk − λka where

λk := d(xk0 , L) + d(qk, L) +
k∑

j=k0

d(qj , L) ≥ (k − k0)β ≥ 0. (13)

If β = 0 then, by the compactness of Q(qk0) and continuity of d(·, H), the set of cluster
points of the auxiliary sequence {qk} is non-empty and contained in Q ∩H.

Conversely, assume β > 0. By the compactness of Q(qk0) there exists K > 0 such that
‖q‖ ≤ K for all q ∈ Q(qk0), and thus

‖xk+1‖ ≥ λk − ‖qk‖ ≥ λk −K ≥ (k − k0)β −K → +∞. (14)

To complete the proof, we must show Q∩H = ∅. To this end, suppose there is a p ∈ Q∩H.
We claim that, for all k ≥ k0,

‖xk − qk‖ >
∥∥∥∥xk − PL(qk)−

β

2
a

∥∥∥∥ .
To prove this claim, first observe(

〈a, qk〉 − b−
β

2

)
+ 2〈a, xk − qk〉 = − (〈a, qk〉 − b)−

β

2
− 2 (b− 〈a, xk〉)

= −d(qk, L)− β

2
− 2d(xk, L) < 0.

Since
(
〈a, qk〉 − b− β

2

)
= d(qk, L)− β

2 ≥ β −
β
2 = β

2 > 0, we deduce the claimed result∥∥∥∥xk − PL(qk)−
β

2
a

∥∥∥∥2 =

∥∥∥∥xk − qk +

(
〈a, qk〉 − b−

β

2

)
a

∥∥∥∥2
= ‖xk − qk‖2 +

(
〈a, qk〉 − b−

β

2

)2

+ 2

(
〈a, qk〉 − b−

β

2

)
〈a, xk − qk〉

< ‖xk − qk‖2.

Further, for all k ≥ k0, we have

‖xk+1 − qk+1‖2 >
∥∥∥∥xk+1 − PL(qk+1)−

β

2
a

∥∥∥∥2
= ‖xk+1 − p‖2 +

∥∥∥∥p− PL(qk+1)−
β

2
a

∥∥∥∥2 + 2

〈
xk+1 − p, p− PL(qk+1)−

β

2
a

〉
.

Since 〈
a, PL(qk+1) +

β

2
a− p

〉
=

〈
a, qk+1 − (〈a, qk+1〉 − b) a+

β

2
a− p

〉
= b− 〈a, p〉+

β

2
= d(p, L) +

β

2
,
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we obtain〈
xk+1 − p, p− PL(qk+1)−

β

2
a

〉
=

〈
qk − λka− p, p− PL(qk+1)−

β

2
a

〉
=

〈
qk − p, p− PL(qk+1)−

β

2
a

〉
+ λk

〈
a, PL(qk+1) +

β

2
a− p

〉
=

〈
qk − p, p− PL(qk+1)−

β

2
a

〉
+ λk

(
d(p, L) +

β

2

)
.

Then,

‖xk+1 − qk+1‖2 > ‖xk+1 − p‖2 +

∥∥∥∥p− PL(qk+1)−
β

2
a

∥∥∥∥2
+ 2

〈
qk − p, p− PL(qk+1)−

β

2
a

〉
+ 2λk

(
d(p, L) +

β

2

)
.

By the compactness of Q(qk0) and since H ∩Q ⊆ Q(qk0), we have

η := min
w,z∈Q(qk0 )

{∥∥∥∥p− PL(z)− β

2
a

∥∥∥∥2 + 2

〈
w − p, p− PL(z)− β

2
a

〉}
∈ R.

Therefore,

‖xk+1 − qk+1‖2 > ‖xk+1 − p‖2 + η + 2λk

(
d(p, L) +

β

2

)
.

Finally, since λk → +∞ (by (13)) and d(p, L) + β
2 > 0, there is some k1 ≥ k0 such that

η + 2λk

(
d(p, L) + β

2

)
> 0 for all k ≥ k1. Then

‖xk+1 − qk+1‖2 > ‖xk+1 − p‖2, ∀k ≥ k1,

which contradicts the fact that qk+1 ∈ PQ(xk+1). We therefore have that H ∩Q = ∅ and
the proof is complete.

Every compact set satisfies Assumption 4.2, and thus we deduce the following impor-
tant corollary.

Corollary 4.2. Suppose Q is a compact set. Let {xk} be a Douglas–Rachford sequence
with auxiliary sequence {qk}. Then either: (i) d(qk, H) → 0 and the set of cluster points
of the auxiliary sequence is non-empty and contained in Q ∩H, or (ii) d(qk, H) → β for
some β > 0 and H ∩Q = ∅. Moreover, in the latter case, ‖xk‖ → +∞.

Proof. Follows immediately from Theorem 4.3.

Remark 4.2. A closer look at the proof of Theorem 4.3 in the case of H ∩ Q = ∅, shows
that (14) gives information regarding the rate of divergence of the Douglas–Rachford
sequence. More precisely, it shows that the sequence diverges with at least linear rate in
the sense that ‖xk+1‖ ≥ (k − k0)β −K for some β,K > 0. ♦

Remark 4.3. In general, the Douglas–Rachford sequence need not converge finitely for
compact Q (see Theorem 4.2). Example 4.1 serves as a counter-example. ♦

14



Remark 4.4. The following diagram summarizes the relationships amongst our assump-
tions.

Assumption 4.1

Assumption 4.2

Q compact

Q finite

=⇒
6⇐=

=⇒
6⇐=

=⇒
6⇐=

H∩Q compact=⇒
6⇐=

♦

5 Examples and Counter-Examples

In this section, we give a number of examples which highlight the role of the hyperplane
in Theorems 4.3 and 4.1. These examples are interesting in light of results such as [7, 14]
which exploit linear structure to analyze the Douglas–Rachford method.

Example 5.1 (Failure for two half-spaces). The algorithm no longer remains globally con-
vergent on replacing the half-space by a cone resulting from the intersection of two half-
spaces, as is shown in Figure 3. ♦

H

q1

q2 q3

q4

x0

Figure 3: A 2-cycle of the Douglas–Rachford algorithm when H is a cone.

Example 5.2 (Failure for hyperplane). The Douglas–Rachford operator for Q and L (rather
than H) is given by

DR(x) =
⋃

q∈PQ(x)

DR(x, q) =
⋃

q∈PQ(x)

q + (〈a, x〉+ b− 2〈a, q〉)a.

In this case, Proposition 3.4 no longer holds, hence the algorithm need not converge. An
example with cycling behavior is given in Figure 4. Moreover, cycles are still possible,
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L

q1

q2

x0

Figure 4: A 4-cycle of the Douglas–Rachford algorithm with hyperplane constraint.

even in the product formulation in terms of the diagonal space, see Example 5.4 , as the
following example shows. Let C1 = C2 := {0, 1}. Consider

C := C1 × C2 =

{(
0
0

)
,

(
0
1

)
,

(
1
0

)
,

(
1
1

)}
and

D := {(x, y) ∈ R2 | x = y}.
If x0 = (−1/2, 1)T , then x1 = (1/4, 3/4)T , x2 = (3/4, 1/4)T and x3 = x1. ♦

Example 5.3 (Failure with slab constraints). The algorithm no longer remains globally
convergent on replacing the half-space by a slab constraint. That is,

H := {x | c ≥ 〈a, x〉 ≥ d},

with d < c, both finite. An example is given in Figure 5.

H

q1

q2

q3

x0

Figure 5: A 4-cycle of the Douglas–Rachford algorithm with a slab constraint.

♦
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Example 5.4 (Failure of the product reformulation). Pierra’s product space reformulation
casts any feasibility problem with finitely many constraints as an equivalent two set prob-
lem in a larger product space. As the Douglas–Rachford method can only be directly
applied to two set feasibility problem, this reformulation is crucial in many applications.

Consider the constraint sets

H := {x ∈ R2 | x2 ≤ 1}, Q := {0, 1} × {0, 1}.

Applied to this problem, the global convergence of the Douglas–Rachford method is cov-
ered by Theorem 4.2. However, as we will show the product space reformulation destroys
convergence.

Consider the product space R2 × R2 with the reformulation with constraints

C := H ×Q = {(x, y) | x ∈ H, y ∈ Q}, D = {(x, y) | x = y}.

Observe that x ∈ Q∩H if and only if (x, x) ∈ C ∩D. Furthermore, note that the neither
of the sets C or D are half-spaces, hence our results no longer apply.

Consider the Douglas–Rachford iteration with the reflection first performed with re-
spect to the diagonal space D for initial point (x0, y0) = ((0, 2/5), (0, 4/5)). Then (x1, y1) =
((0, 3/5), (0, 1/5)) and (x2, y2) = (x0, y0). That is, 2-cycle is obtained.

If the reflection was instead performed first with respect to H × Q for initial point
(x0, y0) = ((0, 4/5), (0, 2/5)), a 2-cycle is still obtained. In this case, we have (x1, y1) =
((0, 1/5), (0, 3/5)) and (x2, y2) = (x0, y0). ♦

6 Conclusion

We have established global convergence and described global behavior of the Douglas–
Rachford method applied to the two-set feasibility problem of finding a point in the
intersection of a half-space and a second potentially non-convex set, assumed to have
minimal additional structure. Indeed, the difference in behavior of the method applied to
a half-space instead of an affine constraint is quite striking.
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