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1 The QRS constant

In a recent treatment, D. Quinn, R. Rand, and S. Strogatz, in describing a nonlinear Winfree-
oscillator mean-field system, cite a formula

N
1
0 = 2y/1—5s2(1-2(i—1)/(N —1))%2 — , (1
2( i (=20 —=1)/( ) \/1_82(1_2(2._1)/(]\[_1))2) (1)
implicitly defining a phase offset angle ¢ := sin~' s due to bifurcation.! The authors conjec-
tured, on the basis of numerical evidence, the asymptotic behavior of the N-dependent solution
s to be

where ¢; is what we shall call the QRS constant, having—said those original authors—the
empirical value 0.60544365.... Note the important fact that the very existence of c; as a
constant limit should be proven, and that is one of our present aims.

The present treatment began when we attempted to compute ¢; to significantly higher
precision, so that the tools of experimental mathematics could be brought to bear on the
problem [4][6][7]. Our experience shows that extreme-precision® evaluation of constants that
arise in mathematics or mathematical physics can be of enormous help, even if the constants are
not discovered from the digits directly. Moreover, extreme precision brings confidence during
the sometimes arduous empirical verification of analytical results.

Our computational approach was as follows. Hoping to obtain a numeric value accurate to
at least 40 decimal digits, we employed a software package that facilitates computations to 64-
digit arithmetic (see Appendix). We first rewrote the right-hand side of (1) by substituting z =
N(1—s), so that the roots of the resulting function Fy (x) directly correspond to approximations
to ¢;. Given a particular value of N, we found the root of Fy(x) by using iterative linear
interpolation, in the spirit of Newton-Raphson iterations, until two successive values differed
by no more than 107°2. In this manner we found a sequence of roots z,, for N = 4™, where m
ranged from one to 15. These successive roots were then extrapolated to the limit as m — oo
(or in other words, as N — oo) by using Richardson extrapolation [15, pg. 21-41], in the
following form:

For each m > 1, set A,,1 = x,,. Then for k = 2 to k = m, successively set

2kAAm k-1 — Amfl k—1
Amp = ’ ’ 2

!The QRS treatment [14] has s = sin ¢p(1) in those authors’ notation [14, p. 6].

2By “extreme precision” is meant, in the spirit of previous papers such as [3], that “enough digits for
detection” are obtained. In modern times, this means hundreds or thousands of digits, depending on the
scope-of-search.



This recursive scheme generates a triangular matrix A. The best estimates for the limit of z,,
are the diagonal values A,, ,,. Indeed, we found to our delight that for each successive m, the
value A, ,, agreed with A,,_1,,-1 to an additional three to four digits, which indicates that
this extrapolation scheme is very effective on this problem.

In general, Richardson extrapolation employs a multiplier » where we have used two in the
numerator and denominator of (2), which multiplier  depends on the nature of the sequence
being extrapolated. We found that two is the optimal value to use here quite by accident—what
we actually discovered is that /2 is the optimal multiplier when N = 2™, which implies that
two is optimal when N = 4™. The resulting final extrapolated value A;515 we obtained for
m = 15 (corresponding to N = 4 = 1073741824) is:

cr ~ 0.6054436571967327494789228424472074752208996. (3)

Since this and A4 4 differed by only 10738, and successive values of A, had been agreeing
to roughly four additional digits with each increase of m, we inferred that this numerical value
was most likely good to 107%2, or in other words to the precision shown, except possibly for the
final digit.

We then attempted to recognize this numeric value using the online Inverse Symbolic Cal-
culator tool, which is available at http://oldweb.cecm.sfu.ca/projects/ISC/ISCmain.html.
Sadly, this tool was unable to determine any likely closed form.

After this recognition failure, we explored some analytic lemmas in the hope of giving the
QRS constant a theoretical meaning. Indeed, in our case, the lack of immediate numerical
discovery led to eventual theoretical success. We should also mention that having a suspected
“moderate precision” value such as the 42-digit entity above is of considerable aid during
numerical testing of any theory. Moreover, another “mystery constant” we call C' in our last
section was found in closed form because of lucky, manual experiments on such a moderate-
precision value.

2 Bounding lemmas

We first simplify the nomenclature, noting that an equivalent formulation to the original work—
now for M := N — 1 a positive integer—involves a sum

M

Pals) = Y (m — 21— 2%/M)? - 1 ) - 4)

— V1—82(1—2k/M)?

With this new nomenclature, consider a zero sy having Py(sy) = 0. We choose to state the
QRS conjecture in the following form: Such a zero sy exists, is unique on the positive reals,



and enjoys a natural expansion

with the coefficients d; being absolute constants. The establishment of this form leads imme-

diately to an historical QRS expansion
C1 Co C3

l—sy ~ —+-—+—
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with corresponding absolute constants c;, so with

+ ...,

cg = dy
being the QRS constant, and higher coefficients derivable with series algebra. For example

Cy = dl—d%‘i‘dg,
C3 — dl — Qd% + d? — 2d2 — 2d1d2 + dg,

and so on.

We shall be able to prove existence and uniqueness of sy, and also prove that the QRS
constant d; = ¢; exists as a genuine limit of (M /sy — M), with conjectures finally posited in
regard to the higher-order d;,c;. The next lemmas serve to establish bounds crucial to such
analysis.

Lemma 1 Let N > 1 be a fized integer, and consider real, positive arguments s. Then Py(s)
is strictly monotone decreasing in s, with Py(0) = N and Pyn(1) = —oo, so that for every
N > 1 a unique zero sy always exists; in fact sy € (0,1).

Proof: The monotonicity is obvious from the radicals in the summand; in fact each summand
is itself strictly monotonic decreasing in s, except for a possible harmless constant summand
when M is even and k = M/2. Also immediate are the endpoint values of Py for s = 0, 1.
QED

To further facilitate asymptotic analysis, we shall establish a reasonably tight bound on
the unique zero sy of Lemma 1. We shall use an elementary form of the Euler-Maclaurin
summation formula valid for any continuously-differentiable function f on real interval (a,b)
2, pg. 285][16, (2.1.2)]; namely, denoting by W (x) := — |x] —1/2 the antisymmetric-sawtooth
function, we have

S k) = / f() do + / W (a)f'(a) do + W (a)f(a) — W(b)f(b): (5)

a<k<b

The bounding scheme we have in mind runs as follows:

3We admit that our use of the term “natural” is based on hindsight; the given expansion with the d; occurs
naturally in our subsequent analysis.



Lemma 2 For positive integer M := N — 1, the real, positive zero sy satisfies

1 > > 1 28 1
N 27 M’
also
M 20
0 < —— M < —.
SN 19

Remark. These effective bounds are true, regardless of any expansion for sy. The lemma
does, however, prove that if the QRS constant ¢; exists, then said constant must be in (0, 28/27].

Proof: Define T := | M/2] and write

PN(S) = _5M, even T+ QZ <2\/1 - 52(1 - Qk/M)Z - \/1 — 82(11— 2k/M)2> : (6)

We now identify a := 0,0 := M/2 and

1
V1—s2(1—2z/M)?

f(x) = 23/1—s2(1 —22/M)? —

in the identity (5), where all right-hand terms are easy except for the second integral, which
we bound on the knowledge that this f is monotone increasing over = € [0, M /2]:

M/2

W(z)f' (x) dx L

< S(f(M/2) = (0)).

\)

0

These machinations yield, whether M be even or odd,

Pn(s) > —1+4vV1—s2— 2

-2

+ MV1—s2. (7)

A zero of the right-hand side of (7) is

. \/1_(1+\/8M+33)2‘

2M + 8

It is straightforward to check the derivative ds’/dM and the value of s" at the critical point, to
conclude that ' > 1 — (28/27)/M, so the first result of the lemma follows. The second result
follows from similar critical-point analysis of M/s" — M. QED



3 Poisson transformation

It is tempting, on the basis of Lemma 2, to explore tighter theoretical bounds, say via Euler—
Maclaurin formulae or the like. Unfortunately, such an approach has various problems stemming
from the manifestly asymptotic nature of Euler-Maclaurin error terms. Instead, we have opted
for a Poisson transformation of the P sum.

For a wide class of functions f one has the Poisson identity

S = Y [ s an (®)

keZ nezZ v
This holds for any Lebesgue integrable function, [6, Thm 2.12]. Generally speaking, if the
left-hand sum is, as in our case for Q, to be truncated at finite limits, then we may use the
relation

S = Y / " @) d, (9)

provided n € (0,1). This “truncated” Poisson expansion can be proved directly—e.g. via stan-
dard techniques such as summation formulae. One may establish the Poisson transformation,
for example, by using (5) and integrating by parts, employing at a key step a Fourier series
for the sawtooth function W [16, (2.1.7)]. Any integrable (f € L) function with finite-interval
support allows the transformation—or by applying (8) to f restricted to [—n, M + n].

Theorem 1 Let M := N — 1 be a positive integer, and assume for a positive real s that
0< M/s— M < 2. Then we have the identity
M & mnM
Py(s) = — (—1)"M J, < 5 ) , (10)
n=1

where Jy is the standard Bessel function of order 2.

Proof: For the real s assumed, we can, according to Lemma 2, take € := M/s — M € (0,2)
and infer

M+e/2 )

Setting x — (M/2)(1 — (1/s) cost) we have

Pn(s) = Z %ei””M/ dt (1 —2sin*¢) eI cost

0

nez
M . m )
_ Z 6wrnM/v COS(Qt)e—mn%costdt
5 nez 0
M & mnM
= — (—1)”MJ2< , ) (11)
n=1
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where the final equation (11) follows from the representation for J; in [1, eqn. 9.2.21], since J,
is an even function with J5(0) = 0. QED

4 Asymptotic analysis

Evidently, our sought-after zero sy for the QRS problem solves

ZJQ (W”M> (1™ (12)

and has a proven constraint; namely, if we write

M
- = M+5N7
SN

then 0 < dy < 20/19. Simple as the Bessel-sum relation may appear, it contains clues as to
the difficulty of our desired asymptotic analysis. Indeed, the Bessel function exhibits damped
oscillation, and the arithmetic progression {7nM/sy :n =1,2,3,...} samples said oscillations
in somewhat chaotic fashion, at least until the Bessel argument is large.

To address the issue of oscillations in such summands, we state a classical truth in regard
to the Bessel function: For positive real z,

Jo(z) = \/g (cos(z 5/ — g sin(z — 57r/4)> Lo (). (13)

This kind of asymptotic is presented in most references that explain Bessel functions, say [1, p.
364]. However, if one desires effective bounds—that is, explicit big-O constants, the reference
[5] provides a method for effective bounds (and convergent—not asymptotic—series) for J,(z),
any integer n.

Compelled by the appearance of the cos-sin terms in the Bessel asymptotic (13), we define
a set of offset-periodic zeta functions:

cos(mnz — 5w /4)

©
D
i

hE

n=1 n
1 > cos 7mz sm 7mz

= —— (14)

. sin(mnz — 57 /4
RS(Z') — Z ( — /)

n=1
1 > cos 7mz > sin 7mz

_ 15



For positive real s and for z not an even integer, these summations are all seen—by a standard
uniform Abel test—to converge to continuous functions. The functions also enjoy polylogarith-
mic forms, at least for real s:

1 : iTZ : iTZ
Q.(2) = -7 (ReLi, (¢™) + Im Liy (¢™)) , (16)
1 : (%191 : 1Tz
Ri(z) = 7 (ReLi, (¢™) — Im L, (e™)) . (17)

Here Lis(z) := Y 2, z"/n® for |z| < 1 and its analytic continuation for other z [13]. Q4(z) =0
can, for example be solved with polylogarithm calculations, using the first of these two relations.
Of special interest, now, is the Erdélyi expansion [10, Vol. 1, p. 29], [9]:

Lis (¢7) = D(1—s)(—imz)"' + Z W(im)m, (18)

valid on z € (0,2), with s not a positive integer (in which cases canceling divergences can be
analyzed to recast the right-hand side). We may employ the Riemann functional equation,
which stipulates that

m=*2L(s/2)¢(s)

be invariant under s — 1 — s, to convert all ( arguments into positive ones. Putting all of this
together for the case s = 1/2, we obtain

Qia(z) = ——+ZQn ; (19)

n>0

where the coefficients enjoy a closed form

Im = —TCerl/? H(——1>

(An empty product is interpreted as 1.) It is fascinating that, starting with ¢;, the coefficients
in (19) are alternating in sign. Indeed, an alternative series for Q5 is given by

Qle) = -~ - f24n+1/2 Cr) (-5 (20)

There is another vantage point on the Q,R pair. Namely, since the polylogarithmic Liy is
a case of the Lerch zeta function, and since there is a functional equation for the Lerch, one
may work out, from (16, 17) and a suitable reference [11, Sec 2.2] a functional relation

Li, (€™) = i(2m)*'T(1 — ) {7 ™/*¢(1 = 5,2/2) — ™21 — 5,1 - 2/2)},  (21)
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where now ((s,a) := >, -, 1/(n+a) is the Hurwitz zeta function. Formula (21) is valid for all
z € (0,2), and any complex s for which the right-hand side exists as an analytic continuation.
In turn, ((s,a) can be analytically continued except for a pole at s = 1, so (21) has a wide
scope of validity. For our present purposes the functional equation proves, for real s, via (16,

17):

Lemma 3 For real s,z with z € (0,2) we have the following functional relations for the offset-
periodic zeta functions Q, R and the Hurwitz zeta function, all entities being analytic continu-
ations:

Q,(2) = —(2n)"'T(1 —3s){¢(1 —s,2/2)cos((2s — 1)7/4) + (1 — 5,1 — z/2) sin((2s — 1)7w/4)},
Re(z) = (2m)* 'T(1 —s){¢(1 —s,1—2/2)cos((2s — 1)7/4) + (1 — s,2/2)sin((2s — 1)w/4)} .

Note that for half-odd s such as s = —1/2,1/2,3/2, there is one Hurwitz zeta in play. Special
instances of Lemma 3 are thus:

Qips) = —= ((3/21=2/2), (22)
Quals) =~ C(1/2.2/2), (23)
Qso(z) = w8 ((—1/2,1—2/2), (24)
Roald) = ——=C3/2.2/2) (25)
Rin(z) = <5 C/21-2/2), (26)
Rip(z) = —mV8((—1/2,2/2). (27)

There is one more foray we require before proving the main asymptotic conjecture. We shall
employ the following representation for the analytic continuation of the Hurwitz zeta:

Lemma 4 (Crandall [8]) The complete analytic continuation of ((s,a) for a € (0,1),s #
1+ 01, s given by

((s,a) = 1 ZF(S,)\(n+a)) 1 Z(_l)mBm(a> \ms—

I'(s) (n+a)s * I'(s) m! m+s—1

n>0 m>0

with the following interpretations: T'(s,-) is the standard incomplete gamma function, B, is
the standard Bernoulli polynomial, X is a free parameter with |A| < 2mw. For any case of
integer s = —n < 0, the I'(s) divergence cancels a divergent m-summand, and so ((—n,a) =

—Buii(a)/(n+1).



Though Lemma 4 was developed for computational purposes, there is one useful side result:

Corollary 1 If s # 1 be positive real, the formal derivative relation

%C(s,a) = —s¢(s+1,a)

holds, even if the left-hand side is the analytic continuation (the right-hand side always being a
convergent sum,).

Proof: From the relation of Lemma 4, with say A\ := 1, both absolutely convergent sums can be
differentiated internally. One may use B/ (x) = B,,—1(z) and the standard recurrence relation
for I'(s,.). One sees that—remarkably enough—each sum has the derivative property specified
for ((s,a) itself. QED

We are now prepared to establish certain key properties of the Q;/, function (the reader
may wish to refer to the graph, Figure 1):

Lemma 5 For z belonging to the open interval (0,2),

1) Q12(2) is infinitely differentiable,
2) Q12(2) is strictly monotone increasing,
3) Q1/2(2) has a unique zero, say Qi,2(20) = 0, which zy belongs in the subinterval (0,1).

Proof: From the closed form for the ¢, coefficients, one can see that |g,| < 1/2™ for all
m > 0. Thus for any |z| < 2 the given series converges, as does the series for any order of
derivative of Q; /o, thus settling part (1). (One could also use the corollary to Lemma 4 to infer
arbitrary differentiability.)

For part (2), observe that Corollary 1 assures us that the derivative of Q; 5(2) = —((1/2, 2/2)/V/2
is positively proportional to ((3/2,2/2) which itself is a manifestly positive, convergent sum.
Thus Q;/, has positive slope over the interval.

For part (3), it is an easy check that for z — 0%, the function Q;/, diverges negatively as
—z712. On the other hand, it is an easy (and effectively boundable) check that Qi/2(1) > 0.

For example,

¢(1/2) | 5¢(3/2)
-t s > 03

(See text below for the closed form for Q;/5(1).) Therefore a zero-crossing exists and is unique
by part (2). QED

Q1/2(1) > =

We are finally in a position to resolve the QRS constant, as follows:

Theorem 2 The sequence {0y := M/sy — M : M € Z*} approaches a definite limit, said
limit being the zero zy of Lemma 5, and so the QRS constant ¢, exists and is the unique zero
of the Hurwitz zeta ((1/2,2/2) on z € (0,2).

10



Proof: Write the Bessel asymptotic (13) as

Jo(z) = \/gcos(z —5m/4) + O (2—3/2)

then observe:

S (M /sy )e™M = ,/QSN Z cos(rn(M + ) — 57/4)
n>1
1 1
+ O <M3/2 Z n3/2>

/2 1
= <5N Z—cos ™oy — 5 /4) + O<M3/2)'

But the Bessel sum vanishes for every dy, so we must have

Q15(6x) = 0(%).

Now the point of our previous analytical results on Q;,, for the open interval (0,2) is
apparent: We know from Lemmas 2 and 5 that Q;/, has a legitimate inverse over the entire
domain (—oo, —((1/2)/+/2], which domain containing the full sequence {5 }. We can write

= o(2))

so that our limit exists, namely limdy = zg = d; = ¢;. QED

Using formula (16) for Q, /2, employing also a root-finding algorithm, we produced the 1500-
digit value of the zero as appears in our Appendix. We note that Q;2(27) = —((1/2)/Vv2 =
1.0326265761156085 . . ., as can be calculated by methods relevant to Lemma 3, but was also
found using the Inverse Symbolic Calculator at
http://oldweb.cecm.sfu.ca/projects/ISC/ISCmain.html.

Likewise

1
Qip(l) = —((1/2) (1—5) = 0.42772793269307822 . ..

5 Higher-order asymptotics

On the matter of the coefficient dy, which immediately yields a ¢y, again we took the experimental-
mathematical path. First, we established via similar extrapolation to that for ¢; the estimate

co ~ —0.104685459433071176262158436589.

11



Then, by analyzing the Bessel asymptotic (13) through the sin term inclusive, we found (and
hereby omit the tedious derivation) that

15 Rg/g(Zo)

dy = —
2 1671'2 7?,,1/2(2?())7

and thus, with z again being the zero of ((1/2,2/2), we established a closed form for ¢y:

C(—=1/2,2/2)
(3/2,20/2)

It is a delight that this value for co—found in our Appendix to extreme precision—agrees
with the above extrapolation value. But perhaps most interesting is this: Whereas ¢; was
an “implicit solution”—i.e. a Hurwitz-zeta zero—it turns out that cy is just an “evaluation”
involving said zero. We do not yet know whether higher-order ¢; will take the form of implicit
zeros, or evaluations. For such higher-order analysis, the complications arise in the fact that
the formal series for M /sy — M appears in both the asymptotic powers and the cos/sin terms of
the general Hankel asymptotic for J5. It may help to use absolutely convergent series for Js, as
found in [5]. These special series, sometimes called Hadamard series (see the given reference for
distinctions) are not the classical ascending series, which do converge; they are series structured
just like the asymptotic series but nevertheless converge absolutely.

We would like to conjecture hereby that the d; coefficients are bounded, and so are the c;.
This happy circumstance would mean, of course, that the so-called asymptotic series is really
a convergent series, and such a phenomenon is at least consistent with the bounding Lemma 2.

Finally, we also identified another constant conjectured in the Quinn-Rand-Strogatz paper
[14, Equ. 55]. Therein they define a function S by

s = - (-320)]

=1

co = 20—z —30

(28)

and then note that the limit

o _ o SN1—c/N)

o NEE = 2.038169...

appears to hold, although they admit neither having an exact value nor a proof of existence for
the constant.

To resolve these matters, we first obtained 43-digit accuracy, by means, again, of a high-
precision Richardson extrapolation scheme. Our result is:

C =~ 2.0381693797021506217106484597282955162787140

12



Guided by this experimental number, we were able to guess (literally, by hand) an exact form
by noticing that the 43-digit C' value satisfies, to the implied accuracy,

C
W = 0.2500000000000000000000000000000000000000000. . .
202

where ¢; is what we have been calling all along the QRS constant.
Rather than developing here a full theorem in regard to existence (of C') and closed-form
1
C = —(¢

value
3 C1
—— 2
; (2,2) (29)

0 1 a
= Tt (5’5)'@

we shall, for the sake of brevity, merely sketch the argument. First, rewrite the S definition as

LM)/2] —3/2

S(N,a) = =0 even+2 Y [1 —a? (1 - %)2] , (30)

k=0

where M = N — 1 as before. Now, roughly speaking (for this sketch we use “~” rather loosely,
heuristically, for large M) we have

2 o 1-24
a i
and for small k/M,

. 2(1 2k:)2 2¢y + 4k
—Qa - — ~ .

so that we can rewrite (30) as

2MB/2 1
§ ~ >
43/2 e (k +c1/2)3/2

= Z¢(Z2. 2 wmB2
¢ (2’ 2 ) ’
thus establishing (29).

It should be possible—if tedious—to work out in the above fashion arbitrary orders of the
large-N expansion of S(N,1 —¢;/N) ~ CN3? + O(N?).

An extreme-precision value for C' is exhibited in our Appendix. Incidentally, we also believe
that a theory of sums similar to S, but having, say, a denominator power s instead of 3/2, with
R(s) > 1, should be possible and surely would involve Hurwitz-zeta evaluations ((s, -).

13



6 Appendix

The 42-digit extrapolation value (3) for ¢; was calculated the “quad-double” (QD) package,
which is described in the paper [12] and is available at http://crd.1bl.gov/~dhbailey/mpdist.
This software permits one to write conventional Fortran-90 or C4++ programs, defining some
or all variables to be of type “dd_real” (double-double precision, or roughly 32 decimal digits)
or “qd_real” (quad-double precision, or roughly 63 decimal digits). Our code used the qd_real
datatype. While we developed this code on systems at the Lawrence Berkeley Laboratory, the
final computations that produced this value, as well as that of c; and C, were performed on
the Terascale Computing Facility, an Apple-based parallel computer at Virginia Tech (whom
we thank for their generous grant of computer time). Each of these three runs used 64 CPUs
and required a run of 25 minutes.

Once we found formula (16), we used the FindRoot[ ] function in Mathematica to obtain
the following 1500-decimal-digit value for the QRS constant:

c_1 =
0.6054436571967327494789228424472074752208994969563226178775528774518289983516\
763567570472921383427041523642338571096639169139026246543307132765082252331939\
008468543249816966251743269169938993579021291151627795144801265809631735353064\
584595256050633565038813531984427083311019243469327700890687316931799630146321\
318600921674738308974101700798656707535895028571088566182353335405921652886974\
844346002926670517781741686176818017483543352378797702880483574067491652117216\
737990532059789423395594416138766678791671648224242336094997969074232060876645\
391819722049952523384339452196056648938892980118850879743052036983141051015432\
215385755198160124952526634474107571519983167998486705047352545582392335289389\
938718220615968256932537430253906936580394740776461008835378927133384884131428\
133608522737823790911326342919760897512801398336380219021008425837665411311346\
859291065380542948931698005624499968318585840543787743511650206560578054834179\
198306606733537043689866885357386583198643837949848062599933285610944315241278\
917320821690170042872987593908071106435901285774390509158979349598759759942199\
621885801931138655484389585347401292827178723552313686416679400496732724398645\
281318049205395359975228111566927152868448071109074725231099364462870585759813\
556902978872565904144131678520932714670485915457952903632539044753282675876388\
907155605577942802185807693082037352029464106611766295390181652454662447301630\
713439212117681586103054903158367238849822578085297095188604662478455941495488\
61626904327749455571. . .

We performed a similar extreme computation in Maple. This value agrees with the value we
originally determined using Richardson extrapolation in equation (3), up through the penulti-
mate digit of the latter.

In a similar manner, we were able to compute an extreme-precision value for the second
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asymptotic coefficient ¢, using (28) and the above value for ¢; (which equals zp). Our result
is:

c_2 =
-0.104685459433071176262158436583950361566306188422928659240897990324451611646\
049956678924019508712254741131782837113318385807645036593844552606807472804809\
193640629123367231215766692473696840868519081552791498099029321533320429423372\
222519943924577142774704178956453114975865296722998849486644107032106079890568\
782500057836909812999673831634689635298191481907545029851790835207345173819686\
123307000222448421419493798532254450206713840469715701195194420211009180095272\
144623726428767145060743241789968236338690043646356239576319389604890876316488\
659231949305701716411742822220451754191278466550877434545428589049468919278630\
852476250406722600314745466601452011540333340653782854651596414264093672094851\
881517355638228487397832489624269688592683645393687460149384302086483000953259\
064265548812220671948499661345036887136145544268556752530593107400537900544405\
596764859072509235611912060376431002707985999037345580831405988651775997745988\
004892699896596361719001377875900107219982999835250170177194227551679304535912\
806909557679144890878412717757513744374485712627585637860619513057529062580708\
326879780377619570682205991109156748475268757429641639579541461726838556213569\
039310789110992527025393628014024602024800604564734861041182394315228679431896\
6804326394277897095153735969140797904084476 ...

An extreme-precision value for the ancillary constant C' is a straightforward Hurwitz-zeta
computation:

C =
2.0381693797021506217106484597282955162787139618052080700470445643828797115246\
514768685742783149625886669444341128535140447643798503409782578073167775550150\
416439762723592629172346988260278224598889559085214728884733770547577308195794\
504935238479223052080392621538058028555060292839643982947789392716783815030164\
235812447284567463200970560145427537696364303092747566093352954489921303660334\
802844081413538201842814864727350456392328724904908909642037158255780316539311\
700396083119879377268429156711448843430471273241910671131491125695154365315839\
268167262898466344021169327824266469648167388132014185268786770251197160205159\
778357484172131134236231582561305953793108360225742011895345717913713047009900\
340856947654673291245208429113901484302919893417270109446316786436540341480683\
665456861781522955319022948489493525358075042761950648761778251632537541659777\
136590014640121450007486011446029189620949274312909609126264640548204583785467\
75797563210175228731470501519422004568794868500041268732541282751. . .
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Figure 1: Plots of the offset-periodic and Hurwitz zetas Qo(z) and —((1/2, 2/2)/V/2, respec-
tively (vertical) vs. z (horizontal) on (0,4). The Q;/, function has a discontinuity at z = 2, to
the left of which the two functions precisely coincide, are strictly monotone, and exhibit a zero
zy =~ 0.6.
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