
RAMANUJAN AND PI

JONATHAN M. BORWEIN

Abstract. This contribution highlights the progress made re-
garding Ramanujan’s work on Pi since the centennial of his birth
in 1987.

1. Ramanujan and Pi

Since Ramanujan’s 1987 centennial, much new mathematics has been
stimulated by uncanny formulas in Ramanujan’s Notebooks (lost and
found). In illustration, I mention the exposition by Moll and his
colleagues [1] that illustrates various neat applications of Ramanu-
jan’s Master Theorem, which extrapolates the Taylor coefficients of
a function—and relates it to methods of integration used in particle
physic]. I also note lovely work on the modular functions behind Apéry
and Domb numbers by Chan and others [6], and finally I mention my
own work with Crandall on Ramanujan’s arithmetic-geometric contin-
ued fraction [12].

For reasons of space herein, I now only discuss work related directly
to Pi—and so continue a story started in [9, 11]. Truly novel series for
1/π, based on elliptic integrals, were found by Ramanujan around 1910
[19, 5, 7, 21]. One is:

1

π
=

2
√

2

9801

∞∑
k=0

(4k)! (1103 + 26390k)

(k!)43964k
. (1.1)

Each term of (1.1) adds eight correct digits. Though then unproven,
Gosper used (1.1) for the computation of a then-record 17 million dig-
its of π in 1985—thereby completing the first proof of (1.1) [7, Ch. 3].
Soon after, David and Gregory Chudnovsky found the following vari-
ant, which relies on the quadratic number field Q(

√
−163) rather than
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Q(
√

58) as is implicit in (1.1):

1

π
= 12

∞∑
k=0

(−1)k (6k)! (13591409 + 545140134k)

(3k)! (k!)3 6403203k+3/2
. (1.2)

Each term of (1.2) adds 14 correct digits. (Were a larger imaginary
quadratic field to exist with class number one, there would be an even
more extravagant rational series for some surd divided by π [10].) The
brothers used this formula several times, culminating in a 1994 calcu-
lation of π to over four billion decimal digits. Their remarkable story
was told in a prizewinning New Yorker article [18]. Remarkably, (1.2)
was used again in 2010 and 2011 for the current record computations
of π to five and ten trillion decimal digits respectively.

1.1. Quartic algorithm for π. The record for computation of π has
gone from 29.37 million decimal digits in 1986, to ten trillion digits
in 2011. Since the algorithm below—which found its inspiration in
Ramanujan’s 1914 paper—was used as part of computations both then
and as late as as 2009, it is interesting to compare the performance in
each case: Set a0 := 6− 4

√
2 and y0 :=

√
2− 1, then iterate

yk+1 =
1− (1− y4k)1/4

1 + (1− y4k)1/4
,

ak+1 = ak(1 + yk+1)
4 − 22k+3yk+1(1 + yk+1 + y2k+1). (1.3)

Then ak converges quartically to 1/π—each iteration quadruples the
number of correct digits. Twenty-one iterations produce an algebraic
number that coincides with π to well more than six trillion places.

This scheme and the 1976 Salamin–Brent scheme [7, Ch. 3] have
been employed frequently over the past quarter century. Here is a
highly abbreviated chronology (based on http://en.wikipedia.org/

wiki/Chronology_of_computation_of_pi).

• 1986: David Bailey used (1.3) to compute 29.4 million digits
of π. This required 28 hours on one CPU of the new Cray-
2 at NASA Ames Research Center. Confirmation using the
Salamin-Brent scheme took another 40 hours. This computation
uncovered hardware and software errors on the Cray-2.
• Jan. 2009: Takahashi used (1.3) to compute 1.649 trillion dig-

its (nearly 60,000 times the 1986 computation), requiring 73.5
hours on 1024 cores (and 6.348 Tbyte memory) of a Appro
Xtreme-X3 system. Confirmation via the Salamin-Brent scheme
took 64.2 hours and 6.732 Tbyte of main memory.
• Apr. 2009: Takahashi computed 2.576 trillion digits.
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• Dec. 2009: Bellard computed nearly 2.7 trillion decimal digits
(first in binary), using (1.2). This took 131 days, but he only
used a single four-core workstation with lots of disk storage and
even more human intelligence!
• Aug. 2010: Kondo and Yee computed 5 trillion decimal digits

again using equation (1.2). This was done in binary, then con-
verted to decimal. The binary digits were confirmed by comput-
ing 32 hexadecimal digits of π ending with position 4,152,410,118,610,
using BBP-type formulas for π due to Bellard and Plouffe [7,
Chapter 3]. Additional details are given at http://www.numberworld.
org/misc_runs/pi-5t/announce_en.html. See also [4] in which
analysis, showing these digits appear to be ‘very normal’, is
made.

Daniel Shanks, who in 1961 computed π to over 100,000 digits, once
told Phil Davis that a billion-digit computation would be “forever im-
possible.” But both Kanada and the Chudnovskys achieved that in
1989. Similarly, the intuitionists Brouwer and Heyting asserted the
“impossibility” of ever knowing whether the sequence 0123456789 ap-
pears in the decimal expansion of π, yet it was found in 1997 by Kanada,
beginning at position 17387594880. As late as 1989, Roger Penrose ven-
tured, in the first edition of his book The Emperor’s New Mind, that
we likely will never know if a string of ten consecutive sevens occurs in
the decimal expansion of π. This string was found in 1997 by Kanada,
beginning at position 22869046249.

Figure 1 shows the progress of π calculations since 1970, superim-
posed with a line that charts the long-term trend of Moore’s Law. It is
worth noting that whereas progress in computing π exceeded Moore’s
Law in the 1990s, it has lagged a bit in the past decade. Most of this
progress is still in mathematical debt to Ramanujan.

As noted, one billion decimal digits were first computed in 1989 and
the ten (actually 50) billion digit mark was first passed in 1997. Fifteen
years later one can explore—in real time—multi-billion step walks on
the hex digits of π at http://carmaweb.newcastle.edu.au/piwalk.
shtml as drawn by Fran Aragon.

1.2. Formulas for 1/π2 and more. About ten years ago Jésus Guillera
found various Ramanujan-like identities for 1/πN , using integer rela-
tion methods. The three most basic—and entirely rational—identities
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Figure 1. Plot of π calculations, in digits (dots), com-
pared with the long-term slope of Moore’s Law (line).

are:

4

π2
=

∞∑
n=0

(−1)nr(n)5(13 + 180n+ 820n2)

(
1

32

)2n+1

(1.4)

2

π2
=

∞∑
n=0

(−1)nr(n)5(1 + 8n+ 20n2)

(
1

2

)2n+1

(1.5)

4

π3

?
=

∞∑
n=0

r(n)7(1 + 14n+ 76n2 + 168n3)

(
1

8

)2n+1

, (1.6)

where r(n) := (1/2 · 3/2 · · · · · (2n− 1)/2)/n! .
Guillera proved (1.4) and (1.5) in tandem, by very ingeniously us-

ing the Wilf-Zeilberger algorithm [20, 17] for formally proving hyper-
geometric-like identities [7, 15, 21]. No other proof is known. The
third, (1.6), is almost certainly true. Guillera ascribes (1.6) to Goure-
vich, who found it using integer relation methods in 2001.

There are other sporadic and unexplained examples based on other
symbols, most impressively a 2010 discovery by Cullen:

211

π4
?
=

∞∑
n=0

(14)n(12)7n(34)n

(1)9n
(21 + 466n+ 4340n2 + 20632n3 + 43680n4)

(
1

2

)12n

(1.7)

We shall revisit this formula below.

1.3. Formulae for π2. In 2008 Guillera [15] produced another lovely, if
numerically inefficient, pair of third-millennium identities—discovered
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with integer relation methods and proved with creative telescoping—
this time for π2 rather than its reciprocal. They are based on:

∞∑
n=0

1

22n

(
x+ 1

2

)3
n

(x+ 1)3n
(6(n+ x) + 1) = 8x

∞∑
n=0

(
1
2

)2
n

(x+ 1)2n
, (1.8)

and
∞∑
n=0

1

26n

(
x+ 1

2

)3
n

(x+ 1)3n
(42(n+ x) + 5) = 32x

∞∑
n=0

(
x+ 1

2

)2
n

(2x+ 1)2n
. (1.9)

Here (a)n = a(a+ 1) · · · (a+n− 1) is the rising factorial. Substituting
x = 1/2 in (1.8) and (1.9), he obtained respectively the formulae
∞∑
n=0

1

22n

(1)3n(
3
2

)3
n

(3n+2) =
π2

4
,

∞∑
n=0

1

26n

(1)3n(
3
2

)3
n

(21n+13) = 4
π2

3
. (1.10)

1.4. Calabi-Yao equations and super-congruences. Motivated by
the theory of Calabi-Yao differential equations [2], Almkvist and Guillera
have discovered many new identities. One of the most pleasing is:

1

π2

?
=

32

3

∞∑
n=0

(6n)!

(n!)6
(532n2 + 126n+ 9)

106n+3
. (1.11)

This is yet one more case where mysterious connections have been
found between disparate parts of mathematics and Ramanujan’s work
[21, 13, 14].

As a final example, we mention the existence of super-congruences
of the type described in [3, 16, 23]. These are based on the empirical
observation that a Ramanujan series for 1/πN , if truncated after p− 1
terms for a prime p, seems always to produce congruences to a higher
power of p. The formulas below are taken from [22]:

p−1∑
n=0

(1
4
)n(1

2
)3n(3

4
)n

24n (1)5n

(
3 + 34n+ 120n2

)
≡ 3p2( mod p5) (1.12)

p−1∑
n=0

(14)n(12)7n(34)n

212n (1)9n

(
21 + 466n+ 4340n2 + 20632n3 + 43680n4

) ?≡ 21p4( mod p9).

(1.13)

We note that (1.13) is the super-congruence corresponding to (1.6),
while for (1.12) the corresponding infinite series sums to 32/π4. We

conclude by reminding the reader that all identities marked with ‘
?
=’

are assuredly true but remain to be proven. Ramanujan might well be
pleased.
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and Calabi-Yau differential equations. Computer Science Journal of Moldova,
17, no.1 (49), (2009), 100–120.

[3] G. Almkvist and A. Meurman. “Jesus Guillera’s formula for 1/π2 and
supercongruences.” (Swedish) Normat 58 no. 2 (2010), 49–62.

[4] D.H. Bailey, J.M. Borwein, C. S. Calude, M. J. Dinneen, M. Dumitrescu, and
A. Yee. “An empirical approach to the normality of pi.” Experimental
Mathematics. Accepted February 2012.

[5] N.D. Baruah, B.C. Berndt, and H.H. Chan. “Ramanujan’s series for 1/π: A
survey.” Amer. Math. Monthly 116 (2009), 567–587.

[6] B.C. Berndt, H.H. Chan and S.S. Huang. “Incomplete Elliptic Integrals in
Ramanujan’s Lost Notebook.” Pp. 79–126 in “q-series from a contemporary
perspective”. Contemp. Math., 254, Amer. Math. Soc., Providence, RI, 2000.

[7] J.M. Borwein and D.H. Bailey. Mathematics by Experiment: Plausible
Reasoning in the 21st Century. Ed 2, A K Peters, Natick, MA, 2008.

[8] J.M. Borwein, D.H. Bailey and R. Girgensohn. Experimentation in
Mathematics: Computational Roads to Discovery. A K Peters, 2004.

[9] J.M. Borwein and P.B. Borwein. “Ramanujan and Pi.” Scientific American,
February 1988, 112–117. Reprinted in pp. 187-199 of Ramanujan: Essays and
Surveys, B.C. Berndt and R.A. Rankin Eds., AMS-LMS History of
Mathematics, vol. 22, 2001.

[10] J.M. Borwein and P.B. Borwein. “Class number three Ramanujan type series
for 1/π.” Journal of Computational and Applied Math (Special Issue), 46
(1993), 281–290.

[11] J.M. Borwein, P.B. Borwein, and D.A. Bailey. “Ramanujan, modular
equations and pi or how to compute a billion digits of pi.” MAA Monthly, 96
(1989), 201–219. Reprinted in www.cecm.sfu.ca/organics, 1996.

[12] J.M. Borwein and R.E. Crandall. “On the Ramanujan AGM fraction. Part II:
the Complex-parameter Case.” Experimental Mathematics, 13 (2004),
287–296.

[13] H.H. Chan, J. Wan and W. Zudilin. “Legendre polynomials and
Ramanujan-type series for 1/π.” Israel J. Math. . In presss, 2012.

[14] H.H. Chan, J. Wan and W. Zudilin. “Complex series for 1/π.” Ramanujan J.
In press, 2012.

[15] J. Guillera. “Hypergeometric identities for 10 extended Ramanujan-type
series.” Ramanujan Journal, vol. 15 (2008), pp. 219–234.

[16] J. Guillera and W. Zudilin. “ ‘Divergent’ Ramanujan-type
supercongruences.” Proc. Amer. Math. Soc. 140 (2012), 765–767.

[17] M. Petkovsek, H. S. Wilf, D. Zeilberger. A = B. A K Peters, 1996.
[18] R. Preston. (1992) “The Mountains of Pi.” New Yorker, 2 Mar 1992, http:

//www.newyorker.com/archive/content/articles/050411fr_archive01.
[19] S. Ramanujan, “Modular equations and approximations to Pi.” Quart. J.

Pure. Appl. Math. 45 (1913-1914), 350–372.
[20] H. S. Wilf and D. Zeilberger, “Rational Functions Certify Combinatorial

Identities.” Journal of the AMS, 3 (1990), 147–158.



RAMANUJAN AND PI 7

[21] W. Zudilin. “Ramanujan-type formulae for 1/π: a second wind? Modular
forms and string duality.” Pages 179–188 in Fields Inst. Commun., 5, Amer.
Math. Soc., Providence, RI, 2008.

[22] W. Zudilin. “Arithmetic hypergeometric series.” Russian Math. Surveys 66:2
(2011), 1–51.

[23] W. Zudilin. Ramanujan-type supercongruences. J. Number Theory 129
(2009), 1848–1857.


