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Abstract

We remedy the under-appreciated role of the Lambert W function in
convex analysis and optimization. We first discuss the role of little-known
special functions in optimization and then illustrate the relevance of W
in a series problem posed by Donald Knuth. We then provide a basic
overview of the convex analysis of YW and go on to explore its role in
duality theory where it appears quite naturally in the closed forms of the
convex conjugates for certain functions. We go on to discover a useful
class of functions for which this is the case and investigate their use in
optimization, providing some code and examples.

1 Introduction

This paper and its accompanying lecture could be entitled “Meetings with W
and other too little known functions.” It is provided in somewhat of a tutorial
form so as to allow us to meet a wider audience.

Throughout our discussion, we explain the role computer assistance played in
our discoveries, with particular attention to our Maple package Symbolic Convex
Analysis Tools and its numerical partner CCAT. We also note that, superficially,
W provides an excellent counterexample to Stigler’s law of eponomy [25] which
states that a scientific discovery is named after the last person to discover it.

For us, the Lambert W function is the real analytic inverse of  — x exp(x).
The real inverse is two-valued, as shown in Figure 1, while the complex inverse
has countably many branches. We are interested in the principal branch. This
is the analytic branch of W that has the following Taylor series

X k-1
W)=Y %xk (1)

k
k=1

with radius of convergence 1/e. This is the solution that reversion of the series
(otherwise called the Lagrange inversion theorem) produces from z-e*. Implicit
differentiation leads to

W (z)
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Figure 1: The real branches of the Lambert W function.

1.1 The power of naming

In the current mathematical world, it matters less what you know about a given
function than whether your computer package of choice (say Maple, Mathemat-
ica or SAGE) or online source, say Wikipedia [26] does. We illustrate this first
with the Meijer G function (see, for example, [27]) before focusing in more de-
tail on W. Our intent in so doing is not to wander far afield of our principal
focus on W but rather to illuminate the role of computer assisted discovery in
the modern research climate by highlighting its important role in solving opti-
mization problems with special functions in general. With this motivation of
emphasizing the computational role, we can then begin our serious attack on

W.

1.2 Meeting Meijer-G

The Meijer-G function is very useful, if a bit difficult for a human to remember
the exact definition for. Often one’s computer can help. In 2002, Nick Trefethen,
as described in [3], published a list of ten numerical challenge problems in STAM
Review. The ninth problem is in optimization.

Example 1 (Trefethen’s ninth problem [3]). The problem is posed as follows.
The integral

I(a) = /02[2+sin(10a)]:ca sin (21;) da

depends on the parameter a. What is the value « € [0,5] at which
I(«) achieves its maximum?

Answer. I(«) is expressible in terms of a Meijer-G function: a special function
with a solid history that lets us solve the problem. While researchers who have



prior experience with these special functions may come to the same conclusions
by hand, Mathematica and Maple will figure it out as well. As in Figure 2, help
files, a web search, or Maple’s Function Advisor then inform the scientist. This
is another measure of the changing environment: naiveté need no longer impair
to the same extent when the computer may aid in the discovery. It is usually a
good idea—and not at all immoral—to data mine. The exact form of I(«a) as
given by Maple is in Equation 3.

Q2| et2 atd
I(a) =4y7 T(a) G (16 S 120>[sin(10a>+2]. (3)
27954

If the Meijer-G function is well implemented, one can use any good numerical
optimiser. The authors of [19] have written about the use of special functions
for integration and credit Michael Monagan and Greg Fee with the original
implementation in Maple. o

Example 2 (Moments of random walks [11]). The moment function of an
n—step random walk in the plane is:

Mn(s) = /
[071]n

The first breakthrough in our study of short random walks [11] is given in
Theorem 1.

Theorem 1 (Meijer-G form for Ms). For s not an odd integer,
r(1+3%) 1,1,1 |1
2 1) ()

— G ) )
M3(S) \/771' F( %) 33 (%’ s s

Equation (4) was first found by Crandall via CAS and proven using residue
calculus methods.
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Indeed, M3(s) is among the first non-trivial higher order Meijer-G functions
to be placed in closed form. We were then led to the results of Theorem 2.

Theorem 2 (Meijer form for My). For Rs > —2 and s not an odd integer
25 T'(1 + 1,1=21.1
(1+3) G* ( 2 ( 1) . (5)

7w D(=3) )

Armed with these two results we were ready to mount our serious attack
on the moment functions and corresponding densities. This led to such useful
results as a closed hypergeometric form for the radial density of a three-step
walk:

My(s) =

230 12
p3(a) = 2 (3 3

7T (B+a?)> 1

a? (9 — a2)2
(3+a2)?® )’

The Meijer-G function has been instrumental in producing a new result on a

hundred-year-old topic. o

Of course, many special functions are unknown to most of us. We list, for
example, the Painlevé transcendents [18], the Lerch transcendent, and the Heun
equations. In each of these cases the CAS can enlighten us.



MeijerG - Meijer G function

¥ Calling Sequence

MeijerG([as, bs], [cs, ds]l, z)

Y Parameters
as - listof theform [al, ..., am]; first group of numerator I" parameters
bs - listof the form [bl, ..., bn]; first group of denominator I' parameters
cs - listof the form [cl, ..., cpl; second group of numerator I parameters
ds - listof the form [dl, ..., dql; second group of denominator I' parameters
z - expression

¥ Description

* The Meijer G function is defined by the inverse Laplace transform

MeijerG ([as, bs], [es, ds ], 2) = 21? f EE;__”;)JFF?I 1:(;2 ;’y)) 24
L

where
as=[al,..,am], T'(1—as+y)=T(1—al+y)..I[(1 —am +y)
bs = [bl,..,bn),I'(bs —y) =T'(bl —y)..T'(bn—y)
es=[cl,..,epl, T(es —p)=T(cl —y)..T(cp — )
ds=1[dl,..,dql,T(1—ds+y)=T(1 —dl+y)..I'(1—dg+y)

and L is one of three types of integration paths LY ,L,,and L _

ot

+ ol
Contour L, starts at « + I ¢/ and finishes at « +1¢2(¢/ < ¢2).

ContourL _ starts at - +1¢/ and finishes at - e +162(¢/ < ¢2).

ContourLy . Starts aty— o andfinishes aty + « L

+

Figure 2: What Maple knows about Meijer-G.

2 Knuth’s Series Problem: Experimental math-
ematics and W

We continue with an account of the solution in [5], to a problem posed by

Donald E. Knuth of Stanford in the November 2000 issues of the American

Mathematical Monthly. See [21] for the published solution. We initially follow
the discussion in [5] quite closely.

Problem 10832 Evaluate
=/ Kk 1
S = _— .

Solution: We first attempted to obtain a numerical value for S. Using Maple,



Figure 3: The complex moment function My as drawn from (5) in the Calendar
Complex Beauties 2016.

we produced the approximation
S ~ —0.08406950872765599646.

Based on this numerical value, the Inverse Symbolic Calculator, available at
the URL http://isc.carma.newcastle.edu.au/, with the “Smart Lookup”
feature, yielded the result

s~ 2o L(hy,
3 Voro\2
Calculations to even higher precision (50 decimal digits) confirmed this approx-
imation. Thus within a few minutes we “knew” the answer.

Why should such an identity hold? One clue was provided by the surprising
speed with which Maple was able to calculate a high-precision value of this
slowly convergent infinite sum. Evidently, the Maple software knew something
that we did not. Peering under the hood, we found that Maple was using the
Lambert W function, which, as we know, is the functional inverse of z — ze*.

Another clue was the appearance of ((1/2) in the above experimental iden-
tity, together with an obvious allusion to Stirling’s formula in the original prob-
lem. This led us to conjecture the identity

i 1 @2ty g<1>

—\Vork  (k—1)WV2 Varo\2)’
where ()" denotes z(xz + 1) -+ (z +n — 1), we say “x to the n rising,”[20] and
where the binomial coefficients in the LHS of (6) are the same as those of the



http://isc.carma.newcastle.edu.au/

function 1/4/2 — 2. Moreover, Maple successfully evaluated this summation,
as shown on the RHS and as is further discussed in Remark 1. We now needed

to establish that
ke (k-1)lv2) 3

k=1

Guided by the presence of the Lambert W function, as in (1),

- >

k=1

klk

an appeal to Abel’s limit theorem suggested the conjectured identity

) dW(—z/e) 1 2
| = -.
limy < = Ao 3 (©6)
Here again, Maple was able to evaluate this limit and establish the identity (6)

which relies on the following reversion [16]. Let p = \/2(1 + ez) with z = We"V
so that

2
p k
k>1
and revert to
Lew=p- P B
Peg il
for [p| < v/2. Now (2) lets us prove (6). O

As can be seen from this account, the above manipulation took considerable
human ingenuity, in addition to computer-based symbolic manipulation. We
include this example to highlight a challenge for the next generation of math-
ematical computing software—these tools need to more completely automate
this class of operations, so that similar derivations can be accomplished by a
significantly broader segment of the mathematical community.

Remark 1 ({(s) for 0 < s < 00,8 # 1). More generally, for 0 < Re s < 1 in
the complex plane, we discovered empirically that

> () o

Now Maple’s summation tools can reduce this to

(N+1-5)
st AT <O

For any given rational s € (0,00) Maple will evaluate the limit by the Euler-
Maclaurin method. Consulting the DLMF at http://dlmf .nist.gov/25.2#E8

we discover N
1 Nl—s _
= Z — — s/ z— lz] dz.
ks s—1 N st
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Figure 4: The function & to the left and right of s = 1/2.

Since the integral tends to zero for s > 0 and

I'(N+1-s) N'=s

li — =0
NS 1-s)I'(N) 1-s 7
we can also produce an explicit human proof. o

We end this section with an open question:

Question 1. Can one find an extension of (6) for general s # 1/2 in (0,1)7
Based on (7) and the Stirling approximation for T'(k + s) ~ /21 e *kkt+s=1/2
we obtain

OO 1 Jk+1/2—s ¢ (S) _
Z(mk o)~ e )

We have that £(1/2) = 2/3, but it remains to evaluate x(s) € R more generally,
as drawn in Figure 4.

For s # 1/2 we have not found an analogue to (6), and there is no reason to
be sure such an analog exists. Numerically to 25 places we record:

k(1/3) = 0.5051265122136281644488407

k(2/3) = 1.044357456635617976159955
k(1/4) = 0.4742404657846664773555294
k(3/4) = 1.435469800298317747887340
k(1/6) = 0.4899050094518209209997454

k(5/6) = 2.226651254233652670106746.

Thus our question is closely allied to that of asking whether
s kk+1/2—s

W(z;s) = Z i zk
k=1 ’

for s # 1/2, can be analysed in terms of W.



3 The convex analysis of W (as a real function)

The Maple package Symbolic Convex Analysis Tools, or SCAT, which performs
convex analysis symbolically, and its partner CCAT (which performs convex
analysis numerically) are described in [7] and are available together at http://
carma.newcastle.edu.au/ConvexFunctions/SCAT.ZIP. We refer to [8, 12, 14]
for any background convex analysis not discussed herein.

3.1 Basic properties
1. W is concave on (—1/e,o0) and positive on (0, c0).
2. (logoW)(z) = log(z) — W(z) is concave, as W is log concave on (0, c0).
3. (expoW)(z) = z/W(z) is concave.

In order to prove these, we will make use of the following lemma, which is
quite convenient.

Lemma 3. An invertible real valued function f with domain X C R is concave
if its inverse function f~1' is convexr and monotone increasing on its domain

fHX).

Proof. Other variations of this result are readily available (see, for example,
[24]), and it is often left as an exercise in texts (see, for example, [15, Exercise
3.3]). Let x,y € X. By the bijectivity of the function f, there exist u,v such
that f~*(u) = x and f~!(v) = y. Thus we have that

PO+ (1= N)y) = FOS ) + (1— N7 w).
By the convexity of f~!, we have that
A 7Hu) + (1 =N o) < FH O+ +(1 = A)o) (7)

Since f~! is monotone increasing, f is monotone increasing. Using this fact
together with Equation 7 shows that

FOFTHw) + A =N 0) < FFT Ou+ +(1 = A)w) = du+ (1= Nv. (8)

Finally, we have
A+ (L=XNv=Af(z)+ (1 =N f(y).
This result greatly simplifies the following propositions. O

Corollary 4. An invertible real valued function f with domain X C R is con-
cave if its inverse function f~! is convex and monotone decreasing on its domain

fHX).

Proof. The proof is the same as that of Lemma 3 with the exception that the
direction of the inequality is reversed in Equation (8) beause the inverse is now
decreasing instead of increasing. O

Proposition 5. W is concave on (—1/e,00).
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Proof. Notice that W™1((1,00)) = (—1,00). By Lemma 3, it suffices to show
that the inverse of W is convex and monotone increasing on (—1,00). Since
the inverse of W is xe”, we differentiate; the convexity and monotonicity are
clear from the fact that the first two derivatives are both positive on the entire
domain. O

Definition 1. A function f is called logarithmically concave if it is strictly
greater than zero on its domain and logof is concave. Similarly f is called
logarithmically convex if it is strictly greater than zero on its domain and log o f
is convex.[15]

Remark 2. The function (logoW)(z) = log(z) — W(z) is concave. This is
true since W is concave and its restriction to (0, 00) = dom(logoW) is strictly
greater than zero everywhere.

Proposition 6. The function given by (exp oW)(x) = x/W(x) is concave.
Proof. Consider the inverse of this function
log(z)e'°8®) = zlog(x).

Again, by Lemma 3, it suffices to show that this function is convex and monotone
increasing on its domain (%7 o0). Differentiating, we again find that both the
first and second derivatives are strictly greater than zero, showing the result. [

Proposition 7. (expo(—W))(z) = W(x)/x is conve.
Proof. By Corollary 4, it suffices to show that the inverse function
—log(z)e™ 98 = _log(x)/x

is convex and decreasing on its domain (0,e). Indeed, on this interval the
first derivative is always negative and the second always positive, showing both
traits. O

3.2 The convex conjugate

The convex conjugate — or Fenchel-Moreau—Rockafellar conjugate or dual func-
tion — plays much the role in convex analysis and optimization that the Fourier
transform plays in harmonic analysis. For a function f: X — [—o0, 00| we define

f7i X" = [—o00,00] by (9)
[ (y) = §2§{<y7w> — f(@)}.

The function f* is always convex (if possibly always infinite), and if f is lower
semicontinuous, convex and proper then f** = f. In particular if we show a
function g = f* then g is necessarily convex.

Directly from (9) we have the Fenchel-Young inequality, for all y, z

)+ f(x) > (y, x).
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Figure 5: Here the construction of f* is shown for the function f(z) = (1/4)z*—
(1/3)23 — (1/2)2%. The real-valued inputs of f* may be thought of as the slopes
of the lines through the origin in each image. For each input, we can imagine
obtaining the corresponding output by taking a line parallel to the one through
the origin and sliding it down as far away from the original line as as it can go
while still touching the curve of the function f. The output is represented by
the vertical distance between the two lines. This and several other graphical
examples may be found in [22].

Thus, for 1/p+ 1/q¢ = 1 with p,q > 0, we have that the dual to the function

flx) = % is f*(y) = Iy{)q. We also have that the energy function defined by

_ =P

fla) == (10)
is the only self-conjugate function.

We also have another dual pair which we will make use of several times. For
the function f(z) = exp(z), we have f*(y) = ylog(y) —y. We call ylog(y) — y
the (negative) Boltzmann-Shannon entropy. Conversely, since exp is a convex
function, we also have that exp is the conjugate of the Boltzmann-Shannon
entropy. We may, for the sake of simplicity, express convex conjugacy in the

following way:

(exp)*(y) = ylog(y) —y (11)
(zlog(z) — )" (y) = exp(y).

Here the star indicates that the function under consideration is the convex
conjugate of that enclosed in the brackets. Another important example is the
log barrier f(x) = —loga for z > 0 with conjugate f*(y) = —1—logy for x < 0.
Notice that this is essentially self dual on changing x to —z. These conjugates
can be computed directly from the definition, as illustrated below in Example
3, or in the SCAT software package.

The convex conjugate produces a duality between compactness of lower level
sets and continuity, between strict convexity and differentiability, and also much
else [12, Ch. 4]. We illustrate this for the energy (10), negative entropy (11),
and log barrier in Figure 6.

10



Figure 6: The energy, log barrier and negative entropy (L) and duals (R).

Expressed in the same form as specified in Equation (11), an apparently new
dual pair is

1-W(—e/z) 1 o .
W) = W (SEA)) + ok —1 e <0
00 otherwise

Once a computationally effective closed form is available, all of classical convex
duality theory is accessible. This is illustrated for W in Section 4 and Section
5.

The convex conjugate also exchanges addition of functions with their infimal
convolution

(fOg)(y) = inf {f(y — ) +g(2)}-
Indeed (fOg)* = f* + ¢g* always holds, and, under mild hypotheses,
(f+g9)=f"0g"

See [8, 12, 14] for details.

3.3 The convex conjugate for log convex functions

We next consider the conjugate exponents of log convezr functions. These func-
tions appear frequently in statistical settings. Recalling Definition 1, we may
think of a log convex function g as being equal to expof for some convex func-
tion f. Explicitly,

g(z) = /@

The Gamma function is a nice example of such a function. Recalling Equa-
tion (9), the convex conjugate g* is just

9" (y) = sup{yz — e/} (12)
rzeX

11



By differentiating the inner term yz — e/ (®) and setting equal to zero to find the
point at which the function is maximized, we obtain

y = f'(x)e! @) (13)

If we can solve this equation for = = s(y), we will be able to write the conjugate
function more clearly as

9" (y) =y s(y) —g(s(y))
How nice the answer is depends on how well this expression simplifies.

Example 3. A first and lovely example is:

y(logy —W(y) —1/W(y)) y>0

(expoexp)” (y) = { —1 y=0
00 y <0
We will deduce this in the way described above. o

Starting from the definition,

9" (y) = sup{yz — e},
zER

we take the derivative of the inner term on the right and set equal to zero to
obtain

x

y=e" e .

Notice that what we have here is just e* = W(y) and so we may actually solve
for x explicitly as follows:
z = (logoW)(y).

Thus we can substitute back into the original equation and have our closed form
solution

g (y) =y (logoW)(y) — W = y(log(y) — W(y)) —y/W(y). (14)

Example 4. A second example is related to the normal distribution. We take:

22
g(z) =¢7 for all z,

and we have that

7 (y) = |y|< w@?)%) for all y.

We derive this below. o

We can compute this result in the same way. Starting with the definition

" (4) = supye - (%), (15)

12



Differentiating and setting equal to zero, we obtain

x

y=x~e(72) (16)

Squaring both sides, we have 3% = 22 - e**. We can now see a way to use the

Lambert W function: 22 = W(y?). Thus we arrive at an expression for x:

x = sign(y) - VW(y?).

This we can work with. If we instead asked Maple to solve Equation (16) for z,
it gives us the solution
2
xT=y: e_%W(y )
We can easily check to see this is an equivalent expression. Recall, as first noted
in Proposition 6, that (expoW)(z) = /W(z). Thus we may write

e 3W () — (ew(yz))_% — ( v )é _ W) \/W

W(y?) y? |yl
Thus we have that
(2 W(y? .
y-e 2V =y |y(|) = sign(y) VW(»2).

Since we have an expression for x in terms of y, we can substitute back into the
original formulation from Equation (15) to obtain our closed-form expression

2
9" (y) = lylvVW(y?) — exp <W(2y)|) (17)

We can simplify this even further. W(y?) is always positive since y? is always
positive, so we can lose the absolute value signs in the right most term and
further simplify it as follows:

N _ owos [ v
exp( 5 >—m— W(yQ)—|y| W2

Thus Equation (17) simplifies to

* _ 2\ _ 1
9" (y) = ly| ( W(y?) W(y2)> : (18)

We can check this answer using SCAT. We ask Maple to compute

nl:=convert (exp((x~2)/2) ,PWF) ;Conj(nl,y);
which yields the answer

weH -1
{|y| N L

This matches our solution for g*(y) from Equation (18).

13



3.4 Conjugate of expof, 11

Let us now unpack Examples 3 and 4 in more generality. Suppose we desire to
find the convex conjugate of a function of the form g(x) = (expof)(z) where f
is either invertible (such as in Example 3) or locally invertible (as in Example 4).
Then, if we can first solve the equation

fl@) ™t =vf(x) (19)

for any a and nonzero v, we will be able to express ¢g* in closed form by using
the W function. To see why this is so, recall from Equation (13) that, for a
function of the form g(z) = (expof)(z), we can obtain a closed-form of the
convex conjugate if we can solve for z in the equation y = f'(x)ef(®). Now
suppose that we can solve Equation (19). Then we can raise both sides of
Equation (13) to the power a + 1 to obtain

yotl = f/(x)a-&-le(a-&-l)f(ﬂf) - ,yf(x)e(a-&-l)f(af)_

a+t1l

We can then multiply both sides by - to obtain

yaJrl

(a+1) = (a+ 1) f(a)el* DI,

Now we can see how to use the W function:

(a+1)f(z) =W ((a + 1)“7“) .

We thus arrive at the solution

W ((a+1)22)

f@) = ———
W (o 002)
r=> 'Y
a+1

where b(z,y) = f~1(2) in the case where f is invertible and b(z,%) is the pre-
image choice f~1(2) such that z -y is maximized otherwise. In the case where f
is convex, there will be at most two such pre-image choices; we are excluding the
case where f is a constant function because, in that case, v = 0 (note that the
convex conjugate is then trivial). We can substitute this back into Equation (12)
to obtain:

9" (y) =y - b(d(y),y) — (expod)(y) where (20)
W (a + 1) ya’;—l
d(y) - ( a—+1 )

In the case of Example 3, immediately b(z,y) = f~'(z) = log(z). In the
case of f(x) = % (as in Example 4), we have

b(Z )_ (pz)% lfyZO
9= —(p-2)7 ify<0

14



We can further simplify Equation (20) by again using the fact that (exp oW)(z) =

_1
a+41 at1

L) (et

fexpod)(s) = exp (W (a1

Thus Equation (20) simplifies to

W ((e+ 1252 (@Dt \ 7T

* _ v Y

gy =y-b 1 | - — (2D
a+ W ((a+1)222)

Since this form is quite explicit, we may well ask for what kind of function f we
can solve Equation (19).

Here Maple is again useful, though a pencil-and-paper separation of variables
computation will arrive at the same place. We use the built-in differential
equation solver dsolve, subject to appropriate conditions on the parameters

f(0) =5,
dsolve ({(diff (f(x), x))~(alpha+l) = gammaxf(x),f(0)=beta}, f(x))
and Maple provides the result

a+1

1@ = (i (am @ e e )
«

In the limit as o« — 0, Maple returns f(z) = (exp(yz)) which we recognize as
the familiar form of Example 3. Also, if we let

a=1, and y =2

and ask Maple for the limit as 8 approaches 0, we recover our familiar function
f(z) = 7"2—2 from Example 4. Thus, we have obtained a large class of closed forms
from which f(z) = 8-exp(yx) (as in Example 3) and f(z) = %, (p>1) (asin
Example 4) arise as special limiting cases. These are the two cases where the
final closed forms of g* turn out to be particularly clean and pleasant.

We consider first the explicit closed form of the convex conjugates for func-
tions of form [ - exp(yx). Because g(yx) has convex conjugate g*(2) (see 8,
Table 3.2]), it suffices to simply show the form for the case v = 1. In this case,
a+ 1 =1, so the form of the convex conjugate simplifies to

y (108 (5) = W (y) = by — log(8)) ify >0
g (y) =4 -1 ify=0-
o0 ify<o0
This can be easily compared to Equation (14) from Example 4 in which case we

had v = 1. Indeed, the conjugate of Sf(yz),s > 0 is always easily computed
from that of f.

15
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Turning our attention to functions of the general form f(z) = |xp| ,(p>1),

we have that o +1 = ﬁ and v = p, so Equation (21) becomes

p=1
1 P
* y|% ! 1
9" (y) = lyl <(p—1)W<|p_1>> - " - (22)
2
(p - I)W < yp_1 )

Compare this more general form of the convex conjugate to that for the specific
case p = 2 which we saw in Equation (18) from Example 4. We can also rewrite
the convex conjugate using the conjugate exponent q. Where % + % =1, we

have ¢ = 1% and g = p — 1, so Equation (22) becomes

ror=n((w(pur) - () 7).

These simpler forms make the conjugates much easier to analyse and to compute.

Remark 3. Suppose f is variable separable. That is to say that
f(x17x25 v ,In) = Zf](x])
j=1

where each f; is convex. Then f is convex and

n

Fnye ) = S Fr;):

Jj=1

From such building blocks and the Fenchel duality theorem [8, 12, 14] many
other convex conjugates engaging WV are accessible.

The conjugate has many and diverse uses. For instance, one can establish the
convexity of a function through the smoothness of its conjugate. In Proposition 8
we explore one such a situation which arises as a special case of [12, Cor 4.5.2].

Proposition 8. Suppose f: X — (—o0, +0o0] is such that f** is proper. Suppose
f* is Fréchet differentiable and f is lower semicontinuous. Then f is convex.

Example 5. We illustrate Proposition 8 for
f(x) = 2] log (2 |z|) — 2|z| + 1
which has convex conjugate
. exp (¥) -1 ify>0
fy) =P ) =1 ify=0
exp(—§)—1 ify<0

More simply, f*(y) = exp(|y|/2) — 1. This is drawn in Figure 7. The function
f** is the convex hull of f. Tt is zero on the interval [~1/+/2,1/v/2] and agrees
with f elsewhere. o

For more connections between the Boltzmann-Shannon entropy and the
Lambert W function, see [10, p. 180].
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Figure 7: Here Example 5 is illustrated: f is non convex and f* is not smooth.

4 Occurrences in Composition, Homotopy, and
Infimal Convolution

Rather than computing the conjugate ab initio we may use one of many convex
calculus rules. We choose one such rule from [8, 4.3 Exercise 12] which is
especially nice for log convex functions.

Theorem 9 (Conjugates of Compositions [8]). Consider the convex composition
hog of a nondecreasing convex function h : (—oo, 00] — (—00,00] with a convex
function f: X — (—o0,00]. We interpret f(+ ) +00, and we assume there
is a point & in X satisfying f(&) € intdom(h). Then for ¢ in X*,

(ho () = inf {n* )+ 457 (9) },
where we interpret

07*(%) = thoms (9)

in terms of the convex indicator function 1§, which is zero on domf and is
“+oo otherwise.

We may use Theorem 9 with
h(t) = exp(t)
h*(t) = tlogt — t (the Boltzmann-Shannon entropy)

to compute the conjugate for g(x) = (exp of)(z) with various f. We will do so
in the following few examples.

Example 6 (Composition: Conjugate of expof III). Consider again the case
of the function

|z|”
g(x) =exp s for (p > 1)
as in Example 4. Keeping the same notation as Theorem 9, let
h(z) = exp(x)
|z[”
flx) = —.
p
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Then we have that

h*(xz) = xlogx — = (the Boltzmann-Shannon entropy)

g 1 1
ff(z) = i where — + — = 1.
q p q
Since g = h o f, we may solve for g* by solving (ho f)*. From Theorem 9 we
have that, for ¢ # 0,

(ho ) (¢) = tig(f){h*(t) +tf*(¢)} = inf {tlogtftth (|¢>q/q}.

t t>0 t

Thus, if we can find a solution for ¢t = s(p, ¢) which minimizes
t

tlogt—t+t(|¢|)q/q, (24)

we will be able to substitute s(p,y) for ¢ and obtain a closed form for g*, namely:

9" (y) = s(p,y) - <log lolpg)] =1+ é (S(Lf'y))q) |

Differentiating Equation (24) with respect to t, setting the differentiated form
equal to zero, and solving for ¢, we arrive at the optimal

LICEBTN

tS(zny)eXp( .

We may then substitute this value back into the objective function in Equa-
tion (24) to obtain our closed form for g*. The output from Maple appears
quite complicated, but this solution may be checked to be equivalent to that
expressed in Equation (23). o

Any positively p-homogeneous convex function can be similarly treated.

Example 7 (Homotopy). Consider

2

fi(z) = (1 - t)(zlogz — ) +t% (25)

for 0 <t < 1 so that fj is the Shannon entropy and f; is the energy. We arrive
at

(1) B o

fily) =

In the limit at ¢ = 1 we recover the positive energy which is infinite for y < 0.
In the limit at ¢ = 0 we reobtain zlog(z) — x. o

We will return to this function in Section 5.

Example 8 (Infimal Convolution). Consider the infimal convolutions

gy = (z = zlog(zx) —z)O (x - “;’2)

18



Figure 8: The convolution of entropy zlogz — = and energy puz?/2 for y =
1/10, 10, and 100.

for p > 0. This family is also called the Moreau envelope of xlog(x) — x. Then,
using the InfConv command in SCAT we arrive at

poo 1 1 2
9u(y) = Yy~ — = W(ue!?) — —W(uet?)=.
p(y) = U7 = I W(uet™) = 5 W ()

and g, is fully explicit in terms of W. o

In Figure 8 we show how the infimal convolution produces a regularisation
of everywhere finite approximations whose epigraphs converge back to that of
xlogx—x as u — +oo. This is a special case of the Moreau- Yosida regularisation
or resolvent [14].

Again each time W enters very naturally indeed.

5 Homotopy and entropy solution of inverse prob-
lems

In [14, §4.7] we reprise the entropy solution of inverse problems. Consider the
(negative) entropy functional® defined as follows:

Iy : L*([0,1],A\) = R by

/f

where X is Lebesgue measure and f is a proper, closed convex function.

1We chose to solve convex minimization problems rather than maximizing the entropy.
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Suppose we wish to minimize Iy subject to finitely many continuous linear
constraints of the form

1
(ag,x) = / ai(s)x(s) ds = by

0

for 1 < k <n. We may write this as

A: LY([0,1]) — R™ by

Az = (/Olal(s)x(s) ds,...,/olan(s)x(s) ds) — b,

Here necessarily a; € L*([0,1],\). When f* is smooth and everywhere finite
on the real line, our problem

inf {I;(@)| A = b) (27)

reduces to solving a finite nonlinear equation

1 n
/0 (f* ijaj(s) ar(s)ds=b, (1 <k<n). (28)

The details of why all this is true are given in Section 7, and more information
can be found in [9] including the matter of primal attainment and of constraint
qualification.? See also [13], [14, §4.7], [21], and [12, Theorem 6.3.4].

Let us consider a function f; of the form from Equation (25). If ¢ = 1, then
f(x) = 2%/2 and (f*)'(x) = z and we are actually solving the classical Gram
equations for a least square problem. If t = 0, then f is the Shannon Entropy
and (f*)" = exp. Thus we restrict to considering cases where 0 < ¢ < 1. Note
that Equation (28) relies only on (f;*)". Most satisfactorily

5w =0 (e (1), (29

This is especially simple when ¢ = 1/2 [8, p. 58]. As ¢ tends to 0, we recover

lim (f7) (y) = exp(y)

t—0

as in the entropy case. Similarly, when ¢ tends to 1, we obtain

lim (f;) (y) = max{y, 0}

t—1

which is the conjugate of the positive energy.

5.1 A general implementation

We illustrate by solving Equation (28) and Equation (29) for various values of
t in the unit interval. We choose algebraic moments with ax(s) = s*~! for

2When the moments are sufficiently analytic then feasibility assures the quasi-relative-
interior CQ.
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1 < k < 10 — though our methods work much more generally — and try to
approximate z(s) = 1—60 + sin (37732) given the algebraic moments

b = /01 x(s)a(s)ds = /01 (160 + sin (3%52)> -sF1ds.

We do so by solving for A € R™ in the dual problem from Equation (28). In
other words, we wish to find the values A;...Ajo for which the subgradient

values
n

1
[y [ vase) | ats - (30)
0 -
Jj=1
for k = 1..10 all evaluate to zero. By Equation (29), our subgradient (dual
problem) is represented more explicitly by the set of equations

Y-t t i NSt
/0( - Jw XD Zf—ll_]t $*lds — b =0.  (31)

for k=1...10. We can solve for A using any standard numerical solver or, say,
by a Newton-type method. We decide, largely for the sake of simplicity, to first
use a classical Newton method. Indeed the Hessian computes nicely:

H(A) = (hik)
L= " ai(s
hi :/ i) W( ! exp <ZJ_1)\J i )>> ar(s)a;(s)ds
0

t 1-t¢ 1-t¢

1 nooy g1
B (1-1) t D1 NS k+i—2
= /o " w ¢ exp 11 S ds.

Our Hessian then turns out to be a Hankel matrix, greatly simplifying the
computation. For each iteration, we need only to compute the 19 cases k +1i =
2...20 in order to fully populate our matrix. In fact, the gradient G(\) may be
obtained by taking the first row (or column) of the Hessian and subtracting by,
from the kth entry. Thus, we need only to compute the Hessian and we obtain
the gradient for free. So in this case there is little extra work in using a second
order method. In the case of trigonometric moments we similarly arrive at a
Toeplitz matrix.

5.2 Efficient computation of the dual

While there are reduced complexity methods for solving for A as in Equation (30)
with a Hankel matrix, they are less robust than more standard methods. In any
event, it is advisable to solve Equation (30) without explicitly taking the inverse
because taking the inverse is significantly more computationally expensive for
higher order matrices.

The Newton direction is determined by solving

HM) (= A") + G(A") = 0 (32)

for p and then setting A1 = A" + «a,,(u — A\") for an appropriate step size
oy, > 0, which in the pure Newton method is ay, = 1. See [1] and [2] for more
general options.
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Since the actual computation of each of the 19 distinct Hessian terms requires
numerical integration of the function

1 n L oj—1
(1—1%) t > :j:1 Ajs
hi :h'L —a) = O‘(i7
& (i+k=a) /0 ; 4% =P 11 s%ds

where only the power « changes from one computation to the next, we can
reduce the expense of computation quite easily.

Suppose we adopt a quadrature rule with weights {a;}]", and abcissas
{z;}]>,. Then, where

n ‘,’Ej_l
Flay) = (1—1t) W( t op (Zj_l ATy >>’ (33)

t 1-t¢ 1-t¢

for a single iteration of Newton’s method we need only use numerical integration
on the W function m times rather than order m - n times.

To see more clearly why this is the case, notice that we can reuse the values
aF(z;), l=1...m as follows:

hl,l = ZalF(xl)
=0

h’(i-‘rk‘:a) = Z CLZF(I:CZ)I'?(_Q.
=0

Thus we need only compute each of them once for each iteration. We can also
store each values x?‘Q forl=1...m,a=2...20 in a matrix at the beginning.

Our optimized process is then to take a fixed® (Gaussian) quadrature rule
and to:

1. Precompute the weights {a;}7* ;, and the abscissas raised to various powers
z,l=1...m,a=0...18, storing the weights in a vector and the powers
of the abscissas in a matrix.

2. At each step compute the function values a;F(x;), I = 1...m, storing
them in a vector.

3. Compute the necessary 19 Hessian values >," a;F (z1)x{ %, o = 2.... 20.
If we properly create our matrix - of stored abscissa values raised to powers
- we will be able to compute the Hessian values by simply multiplying our
vector from Step (2) by this matrix.

4. Use the resultant 19 values to build the Hessian and gradient and then
solve for the next iterate as in Equation (32).

The primal solution z; is then given in terms of the optimal multipliers in (31):

z(s) = (1-1) w ( ! exp <Zj_1 S )) . (34)

t 1-1¢ 1-1¢

Note that this provides a functional form for the solution at all s in [0, 1], not
only for the quadrature points.

3We do not wish to allow automated decisions for adaptive methods without our control.
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5.3 Some computed examples

The Maple code we used for computing the following examples is given in Ap-
pendix 8. For the sake of consistency, all examples in this subsection were
computed with 24 digits of precision, 20 abscissas, and a Newton step size of
1/2. This reduced step dramatically improved convergence for ¢ near 1. While
this precision is higher than would be used in production code, it allows us to
see the optimal performance of the algorithm.

Example 9 (Visualization Accuracy). With ¢ = % and 8 moments, we ask
Maple to compute until the error, as measured by the norm of the gradient, is
less than 10710, This error is needed for a reasonable visual fit given the small
number of moments used.

At 46 iterations we obtain the following values for A:

[—0.7079161355, 10.64405426, —126.5979784, 656.6020449,
— 1458.868219, 1329.347874, —299.1180785, —112.3114246]

where the error is about 6.84330e — 11. The associated primal solutions (func-
tions) for iterates 6, 12, and 46 are shown in Figure 9. o

|— - — 6 Iterates — - 12 Iterates
1.5

46 Iterates x(s) |

0.5

Figure 9: Example 9 illustrated for various iterates.

Example 10 (Variation of t). Next we consider five different possible values
for ¢: 0,.25,.5,.75,1. We run Newton’s Method for each case until meeting the
requirement that the norm of the gradient is less than or equal to 10710, This
yields the following solutions.
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t 0 .25 5 .75 1

A1 -.707916 -.404828 -.101065 .204002 .512307
Ao 10.6440 9.46383 8.23003 6.90162 5.36009
A3 -126.597 -114.651 -101.923 -87.8556 -70.8919
A 656.602 605.686 550.755 488.934 412.561
A5 -1458.86 -1368.32 -1269.02 -1154.26 -1007.13
6 1329.34 1282.68 1227.95 1157.70 1054.85
A7 -299.118 -329.937 -358.596 -381.447 -391.764
A -112.311 -85.1887 -57.6202 -30.1516 -3.12491
Error  6.84330e-11 9.81661e-11  8.26865e-11  9.6666e-11  7.05698e-11
Iterates 46 46 47 47 47

The associated primal solutions (functions) are shown in Figure 10. Notice that
as t increases the visual fit increases substantially. One cannot determine this

from looking at the numerical error alone. o
""" =0 —-— t=0.25 — — t=0.50 — - t=.75 — t=1
X(s)
1.2 o
PN
1 ]
0.8 1
0.6 */‘
0.4 1
° &:
02- V
0 T T T T 1
0 0.2 0.4 0.6 0.8 1

Figure 10: Example 10 is illustrated. Shown are the primal solutions corre-
sponding to various choices of t.

Example 11 (Variation in number of moments). In this example, we consider
how the choice for the number of moments affects our results. Specifically, we
consider the choices of 4, 8, 12, and 20 moments. We again use t = % and run
Newton’s Method for each case until meeting the requirement that the norm of
the gradient is less than or equal to 10710, It bears noting that, while we used

26 digits of precision for all of these examples in order to be consistent, this was
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the only case wherein we used 20 moments and so necessitated the employment
of such high precision.

— = 4 Moments — — 8 Moments —— - 12 Moments
— 20 Moments x(s)
1.2

/ -~

| [/ /

O\
~ Zd
0.6*\(/'7/
/
041/
0.2
0 T T T T 1
0 0.2 0.4 0.6 0.8 1

Figure 11: Example 11 is illustrated. Shown are the primal solutions corre-
sponding to various choices for the number of moments.

Example 12 (Reconstructing a pulse). We conclude by computing with a more
challenging function, the pulse

#(5) = Xj0,41(9)

The pulse is a more computationally challenging example because of its jump
discontinuity — which results in a form of the Gibbs Phenomenon — and con-
stancy on an open interval which forces some multipliers to infinity. This slowed
the convergence of the gradient when we used more moments, especially for val-
ues of t nearer to 1 which more successfully reduce the phenomenon. The desired
properties can still be seen visually. We use only 8 moments, and we instruct
Maple to stop computing once the norm of the gradient is less than 10719 or
after reaching 200 iterates, whichever happens first.

t 0 .25 .5 75 1
Error 6.87225e-11  7.45516e-11  9.69259e-11 1.9136e-11  .21252e-5
Iterates 70 62 55 48 200

In the case of t = 1, we reached 200 iterates before the norm of the gradient
was less than 107!°, but the primal solution we obtained is still a good proxy
for the pulse. This can be seen in Figure 12, where the Gibbs Phenomenon may
also be clearly observed for the the other values of t.
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For t = 0, we see the Gibbs Phenomenon more clearly presented while the
primal solution for ¢ = 1 further overshoots the pulse on the right side. The
other values of ¢ afforded us by the Lambert W function provide other useful
choices for approximating the pulse. Whether one wishes to accentuate the

overshooting at the discontinuity or not depends on the application. o
""" t=0 —-— t=0.25 ——t=0.50 — - t=.75 — t=1
Pulse
1.2 o
R
P .

0.8 ]

0.6 |
.‘\‘
04- i

0] |

Figure 12: Example 12 is illustrated. Shown are the primal solutions corre-
sponding to various choices for .

6 Conclusion

We hope that we have made a good advertisement for the value of W in opti-
mization and elsewhere. We note that, even when one is not able to produce a
closed form for a conjugate, SCAT and its numerical partner CCAT may still
be very helpful. We illustrate with two such examples.

Example 13 (Without a simple closed form). Consider the function

fi=(0,00) = R by f(z) = (%)

To examine its conjugate, we again make use of SCAT with the following code.

restart:alias(W=LambertW):

read("scat.mpl") :read("ccat.mpl"):

with (SCAT) :with (CCAT) :

xx:=PWF ([infinity, 0, 1, (y/exp(1))"yl, [yl, {y::reall);
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0.6

0.5

0.4

Figure 13: The function (x/e)* (L) and its conjugate (R).

Plot(xx,y=-1..2);
yy:=Conj (xx,x);
Plot(yy,x=-2..2);

This produces the two plots in Figure 13, even though it returns the conjugate
in the unevaluated form

z— zR(z) — exp(—R(z))R(z) @
where R(z) = RootO f(x — exp(—2)z* log(2))

Thus SCAT allows us to visualize the conjugate even in the case where a closed

form is not immediately forthcoming. o
254 204
2]
151
1.5
10+
.
s
0.5
10 8 6 4 2 0 2
1 0 N~ 3
¥y

Figure 14: The function logI" (L) and its conjugate (R).
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Example 14 (logI" on (0,00) and its conjugate). Likewise, for the conjugate
of logI", SCAT returns

RootOf (=¥ (_Z) + x) x — log (T (RootOf (=¥ (_Z) + z))) .

Its plot is shown in Figure 14. Here V is the Psi function. The ‘noise’ on the
right is a region in which Maple’s built in root finder struggles. This can be
obviated be a good Newton solver for a solution « > 0 of ¥(x) = y. Set

_ exp(y) +1/2 ify>—-2.2
—1/(y — ¥(1)) otherwise

r — 0 V(zy) —y
n+1 n \I/I(Z'n)

Here ¥ and ¥’ are also known as the digamma and trigamma functions. Maple
and Mathematica both have good built-in polygamma routines. The function
and its conjugate are shown in Figure 14. o

Finally, we note that the notion of a closed form for a given function is an
always-changing issue [6]. Moreover, while zexp x is elementary W(zx) is not,
since arbitrary inversion is not permitted in the definition of elementary.

Acknowledgements. The authors thank Paul Vrbik for his computational
assistance.
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7 Appendix on Conjugate duality

To see why solving Equation (27) reduces to solving Equation (28), we recall
several results. We first recall from [14, Theorem 4.7.1] that:

Proposition 10. Suppose X is a Banach space, F : X — R U {400} is a
lower semicontinuous convex function, A : X — Y is a linear operator, and
b € core(A domF). Then

inf, {F(@)| Az = b} = max {(¢.8) ~ (F)" (A7)}

where AT denotes the adjoint map which satisfies
(Au, p)rn = <U7AT<P>L1- (35)

This allows us to reformulate many primal problems as dual problems, mak-
ing their solutions simpler to compute. In particular, the problem from Equa-
tion (27) can be reformulated as

inf {I;(z)|Azx =b} = by — (I;)*(ATp)}. 36
Jnf {17(@)|Ae = b} = max {{p,b) — (I7)"(A")} (36)
To the end of simplifying this further, we introduce another useful result. We
recall from [12, Theorem 6.3.4] that:

Proposition 11. If Iy is defined as above and f : R — (—00,00] is closed,
proper, and convezx, we have

(Lp)" = Iy~
This allows us to express the dual problem more explicitly. In particular,

since we have (Iy)* = I-, Equation (36) simplifies to

(G0} = - (470} = mx { (o) = [ (T} as @)

Now in Equation (35), the inner product on the left is on R™ while the inner
product on the right is the inner product on L!([0,1]). Thus Equation (35)
expands to

n

Z ((Pk /01 ak(s)u(s) ds) = /Ol(ATgo)u(S) ds.

k=1

This expansion should make it clear why we may simplify A% ¢ further by writing
n
AT =" prar(s).
k=1

Thus solving Equation (37) amounts to finding ¢ € R™ which maximizes

n 1 n
> enb */ [ (Z @kak(5)> ds. (38)
k=1 0 k=1
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This is an equation which we can subdifferentiate. We maximize it by finding
the values of ¢y, for which the subdifferential with respect to ¢ is zero. We first
recall an equivalent characterisation for the convex subgradient. Recall that
y € OF(x) if

(y,z —xz) < F(z) — F(z) for all z € X.
For more preliminaries on subgradients, see, for Example, [23].
Lemma 12. For a convex function F, y is a subgradient of F' at x if and only
if

0=F(z)+ F(y) — (v, z).

Proof. Taking the negative of both sides, we simply have

0=—F@)+(y2) - sup{{y,7) - F@)}

TE

Thus we have that
Fz) =y, 2) = = sup{ly, ) - (@)} = nf {F(@) = (,7)}
which is equivalent to
(y,T —x) < F(T) — F(x) for all T € X.
This is the definition of the subgradient. O

This makes it much easier for us to compute the subdifferential. In our
context, since (I¢)* = I+, we have from that Lemma 12 that y is a subgradient
of Iy at x if and only if

0=1Ip(@) + I (y) = (y,2) = /f(x(S)) + [ (y(s)) = 2(s)y(s) ds.

Now the integrand on the right is nonnegative by Fenchel-Young and so must
be zero almost everywhere. However, Lemma 12 gives us that

Fx(s)) + f (y(s)) — z(s)y(s) = 0 almost everywhere

if and only if y(s) is a subgradient of f at x(s) for almost all s. Thus we can
subdifferentiate with respect to each ¢y, in Equation (38) and set equal to zero,
obtaining n equations of the form

1 n
0="by— / ()| D wiai(s) | an(s) ds.
0 -
7j=1
Thus we have reduced the problem to that of solving Equation (28).

8 Appendix on Computation

8.1 Construction

We present the basic construction of the code in enough detail to reproduce
Example 9 and using the corresponding Initialization values. It is straightfor-
ward to adapt the basic code to reproduce the other examples. We elect, for
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many reasons, to use a Gaussian non-adaptive Quadrature rule. We first build
an initialization list wherein the user can specify the parameters of the example
they wish to construct. We specified the entries as follows.

List Entry  Significance

[1] Number of moments

2] Choice of ¢

[3] Number of abscissas and weights

[4] Digits of precision

[5] Digits to display

[6] Stop computing more iterates when the norm of the gradient is
less than or equal to 10 to the negative of this value

[7] Save the value of A\ at this iterate in order to print an example.

[8] Save the value of A at this iterate in order to print an example.

[9] Stop computing more iterates if the number of iterates computed
reaches this number.

[10] Newton step size

We show the code with the user entries from Example 9.

Initialization:=[8,1/2,20,26,10,10,6,12,50,1/2]:
Digits:=Initialization[4]:
interface(displayprecision=Initialization[5]):

Computing the abscissas and their corresponding weights is easy using Maple’s
built-in Legendre polynomials in the orthopoly package.

with(orthopoly): abscissas:= fsolve(P(Initialization[3],x)=0,x):
weights:=NULL:
for i from 1 to Initialization[3] do
expr := (x-abscissas[j])/(abscissas[i]-abscissas[j]);
expr := (product(expr, j = 1 .. i-1))*(product(expr, j = i+l
Initialization[3]));
f[i] := unapply(expr, x);
c[i] := int(f[i](x), x = -1 .. 1);
weights := weights, c[i]
od:

Now because our integral is over [0,1] and we must use the interval [—1,1]
for our Gaussian quadrature, we apply the these weights and abscissas to a
translation of the abscissa values raised to powers and a translation and scaling
of the function from Equation (33):

%F (;(xl + 1))

<;(ml 4 1)) "

We define the function we wish to approximate, store a list of the moments, and
compute the matrix of abscissa values raised to powers as follows.
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Objective:=y -> .6+.5%sin(3.1415926%3%y"2) :

b:=convert(Vector(Initialization[1], i-> add((1/2)*weights[j]*
Objective ((1/2)*abscissas[jl+1/2)*((1/2)*abscissas[jl+1/2) " (i-1),
j = 1..Initialization[3])), list):

M := Matrix(2*Initialization[1]-1, Imnitialization[3], (i,j) ->
((1/2)*abscissas[j1+1/2)"(i-1) ):

We construct a function WeightedF' which takes in a list A and a ¢ value and
computes the values a;F(z;), l = 1...m returning them as a row vector.

F := proc (c, t, s)
local N, output;
N := nops(c);
if t = 0 then
output := (1/2)*exp(add(c[jI*((1/2)*s+1/2)"(j-1), j =1 .. N));
elif t = 1 then
output := (1/2)*max(add(c[jl1*((1/2)*s+1/2)"(j-1), j =1 .. N, 0);
else
output := (1/2)*(1-t)*LambertW(t*exp(add(c[jI*x((1/2)*s+1/2)"(j-1),
j=1 .. 0/-t))/(1-t))/t;
fi;
output;
end:

WeightedF := proc (c, t)
local j, output, weight;
output := Vector[row] (Initialization[3]);
for j to Imitialization[3] do
weight := weights[j];
output[j] := weight*F(c, t, abscissas[jl);
od;
output;
end:

We can now easily obtain the 19 values we need to populate our Hessian matrix
and gradient at A by asking Maple for the value

M.WeightedF (lambda,Initialization[2]) " (%4T)

where we recall that Initialization[2] is our chosen value for t. We create a
function which constructs our Hessian matrix procedurally.

HessianBuilder:=proc(c,t)
local A,H;
A:=M.WeightedF(c,t) ~(%T);
H:=Matrix(Initialization[1],Initialization[1],(i,j)->A[i+j-11);
end;

Recalling that our gradient is just the first row of our Hessian with b subtracted
from the kth entry for k = 1...m, we can build our gradient from the Hessian in
the Newton procedure. We construct the Newton procedure with the following
code. Instead of a list, it receives a vector as its input and passes a converted
list to the previous functions. This nuance allows for the indexing to be much
simpler in all of the prior scripting.
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with(LinearAlgebra):
NextIteration := proc (c, t)
local H, G, RHS, output, mu, L;
L := convert(c, list);
H := HessianBuilder(L, t);
G := Vector(Initialization[1], j-> H[1, jI-b[j];
RHS := H.c-G;
mu := LinearSolve(H, RHS);
output := c+Initialization[10]* (mu-c);
output, G;
end:

Notice that this function returns a list, the first element of which is the next
iterate and the second element of which is the value of the gradient at the current
iterate, both in vector form. The reason we have built the function to return
this pair is that the gradient values for each iterate are, in fact, the L? norms
of that iterate’s distance from each of the respective moments. This provides
a useful gauge for checking our convergence, although it is far from conclusive
(recall Example 10). We use it in the construction of the complete Newton
procedure.

Newtons := proc (c, t, userlimit)
local pair, iterate, err, counter, grad;
iterate c;
counter := 0;
err := 1;
to userlimit while is(10"(-Initialization[6]) <= err) do
pair := NextIteration(iterate, t);
iterate := pair[1];
grad := pair[2];
err := Norm(pair[2]);
counter := counter+l
od;
iterate, grad, err, counter;
end:

We have built our Newton’s Method procedure to return a list which consists
of our approximation, the gradient value at the previous iterate, the norm of
said gradient, and the number of iterations it calculated before terminating. We
can now, for instance, recreate the numbers from Example 9 with the following
code.

start:=Vector(Initialization[1],j->1):
Newtons(start, Initialization[2], Initialization[9])

Maple returns our solution, our gradient at the second to last step, its cor-
responding norm, and the number of steps it ran for. Recalling that where
Newton’s method returns X - in this case as the first entry of our list - our
primal solution z; is given by Equation (34). We may write a procedure which
takes our return from Newton’s Method and creates a primal solution.

Primal := proc (c, t, s)
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local sumterm, L, output;

L := convert(c, list);

sumterm := add(L[jl*s~(j-1), j = 1 .. Initialization[1]);
if t = 0 then

output := exp(sumterm);
elif t = 1 then
output := max(sumterm, 0);
else
output := (1-t)*LambertW(t*exp(sumterm/(1-t))/(1-t))/t
fi;
output;

end:

This procedure - which we have appropriately named ”Primal” - takes in a list
and returns a function in one variable, s, when given our solution from the
Newton procedure as the first item and our choice of ¢ as the second item.

start:=Vector(Initialization[1],j->1):
solution:=Newtons(start, Initialization[2], Initialization[9])[1];
PRIM:=Primal (solution,Initialization[2],s);

In the above code, PRIM is a function in a single variable s. We can use
the procedures Primal and Newtons to recreate Figure 9. The construction is
straightforward.

GenerateExample := proc (c, t, userlimit)
local PRIM1, PRIM2, PRIM3, finish, N3, IMG;
PRIM1 := Newtons(c, t, Initialization[7]);

PRIM1 := PRIM1[1];

PRIM2 := Newtons(c, t, Initialization[8]);
PRIM2 := PRIM2[1];

PRIM3 := Newtons(c, t, userlimit);

N3 := PRIM3[4];

PRIM3 := PRIM3[1];
plot ([Primal (PRIM1, t, s), Primal(PRIM2, t, s), Primal(PRIM3, t, s),
Objective(s)],
s=0..1,0 .. 1.5,
color = [orange, red, blue, green],
linestyle = [dashdot, longdash, solid, solid],
legend = [typeset(Initialization[7], " Iterates"),
typeset(Initialization[8], " Iterates"),
typeset (N3, " Iterates"), typeset("x(s)")],
legendstyle = [location = topl);
end:

Reconstructing Figure 9 is then as easy as asking for
GenerateExample (Vector(Initialization[1]j->1),Initialization[2],Initialization[9])

A similar procedure can be written to recreate Example 10. Some re-designing
is necessary in order to accommodate the creation of examples with varying
moments (such as Example 11), but the fundamental aspects of optimizing the
performance remain the same.
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