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Abstract

This paper examines “Stoneham constants,” namely real numbers of the
form αb,c =

∑
n≥1 1/(cnbc

n
), for coprime integers b ≥ 2 and c ≥ 2. These

are of interest because, according to previous studies, αb,c is known to be b-
normal, meaning that every m-long string of base-b digits appears in the base-b
expansion of the constant with precisely the limiting frequency b−m. So, for
example, the constant α2,3 =

∑
n≥1 1/(3n23

n
) is 2-normal. More recently it

was established that αb,c is not bc-normal, so, for example, α2,3 is provably
not 6-normal. In this paper, we extend these findings by showing that αb,c
is not B-normal, where B = bpcqr, for integers b and c as above, p, q, r ≥ 1,
neither b nor c divide r, and the condition D = cq/pr1/p/bc−1 < 1 is satisfied.
It is not known whether or not this is a complete catalog of bases to which
αb,c is nonnormal. We also show that the sum of two B-nonnormal Stoneham
constants as defined above, subject to some restrictions, is B-nonnormal.

1 Introduction

The question of whether (and why) the digits of well-known constants of mathematics
are statistically random in some sense has fascinated mathematicians from the dawn
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of history. Indeed, one prime motivation in computing and analyzing digits of π is
to explore the age-old question of whether and why these digits appear “random.”
The first computation on ENIAC in 1949 of π to 2037 decimal places was proposed
by John von Neumann so as to shed some light on the distribution of π (and of
e) [12, pg. 277–281]. Since then, numerous computer-based statistical checks of the
digits of π, for instance, so far have failed to disclose any deviation from reasonable
statistical norms.

Analyses of the digits of π and related constants are discussed in greater length in
[6], and by using graphical tools in [4]. We should mention that using the graphical
tools described in [4], at least one of the results proved in this paper, namely Theorem
2, is visually quite compelling.

In the following, we say a real constant α is b-normal if, given the positive integer
b ≥ 2, every m-long string of base-b digits appears in the base-b expansion of α
with precisely the expected limiting frequency 1/bm. It is a well-established albeit
counter-intuitive fact that given an integer b ≥ 2, almost all real numbers, in the
measure theory sense, are b-normal. What’s more, almost all real numbers are b-
normal simultaneously for all positive integer bases (a property known as “absolutely
normal”).

Nonetheless, it has been frustratingly difficult to exhibit explicit and natural
examples of normal numbers, even of numbers that are normal just to a single given
base b. The first constant to be proven 10-normal was the Champernowne number,
namely the constant 0.12345678910111213141516 . . ., produced by concatenating the
decimal representation of all positive integers in order. Fine additional results of this
sort were established in the 1940s by Copeland and Erdös [18].

The situation with regards to other, more “natural” constants of mathematics
remains singularly grim. Normality proofs are not available for any well-known
constant such as π, e, log 2,

√
2. We do not even know, say, that a 1 appears 1/2 of

the time, in the limit, in the binary expansion of
√

2 (although it certainly appears to,
from extensive empirical analysis). For that matter, it is widely believed that every
irrational algebraic number (i.e., every irrational root of an algebraic polynomial
with integer coefficients) is b-normal to all positive integer bases b, but there is no
proof, not for any specific algebraic number to any specific base.

Recently the present authors, together with Richard Crandall and Carl Pomer-
ance, proved the following: If a real y has algebraic degree D > 1, then the number
#(|y|, N) of 1-bits in the binary expansion of |y| through bit position N satisfies
#(|y|, N) > CN1/D, for a positive number C (depending on y) and all sufficiently
large N [7]. Related results and extensions have been obtained in [1, 20], and an inter-
esting extension to non-zero integers in general bases is to be found in [2]. However,
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these results all fall far short of establishing b-normality for any irrational algebraic
in any base b, even in the single-digit sense.

It is known that whenever α is b-normal, then so is rα and r+α for any nonzero
positive rational r [13, pg. 165–166]. It is also easy to see that if there is a positive
integer n such that integers a ≥ 2 and b ≥ 2 satisfy a = bn, then any real constant
that is a-normal is also b-normal. Recently Hertling proved an interesting converse: If
there is no such n, then there are an uncountable number of counterexamples, namely
constants that are a-normal but not b-normal [19]. Moving in the other direction,
Greg Martin has succeeded in constructing an absolutely nonnormal number, namely
one which fails to be b-normal for any integer base b ≥ 2 [21].

2 A recent normality result

Given a real number r in [0, 1), with rk denoting the k-th binary digit of r, [8] showed
the real number

α2,3(r) : =
∞∑
k=1

1

3k23k+rk
(1)

is 2-normal. If r 6= s, then α2,3(r) 6= α2,3(s), so these constants are all dis-
tinct; and the class is uncountable. For example, the constant α2,3 = α2,3(0) =∑

k≥1 1/(3k23k) = 0.0418836808315030 . . . is provably 2-normal (as proven by Stone-
ham in 1973 [22]). A similar result applies if 2 and 3 in formula (1) are replaced by
any pair of coprime integers (b, c) with b ≥ 2 and c ≥ 2 [8]. More recently, [9] estab-
lished 2-normality of α2,3 by a simpler argument, by utilizing the “hot spot” Lemma
1 below, proven using ergodic theory methods. In [5], this proof was extended to the
more general case αb,c, The result itself was already [8].

Let A(α, y, n,m) denote the count of occurrences where the m-long binary string
y is found to start at position p in the base-b expansion of α, where 1 ≤ p ≤ n.

Lemma 1 (“Hot Spot” Lemma): If x is not b-normal, then there is some y ∈
[0, 1) with the property

lim inf
m→∞

lim sup
n→∞

bmA(x, y, n,m)

n
= ∞. (2)

Conversely, if for all y ∈ [0, 1),

lim inf
m→∞

lim sup
n→∞

bmA(x, y, n,m)

n
< ∞, (3)
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then x is b-normal.

Note that Lemma 1 implies that if tα is not b-normal, there must exist some
interval [r1, s1) in which successive shifts of the base-b expansion of α visit [r1, s1)
ten times more frequently, in the limit, relative to its length s1 − r1; there must be
another interval [r2, s2) that is visited 100 times more often relative to its length; and
so on. Indeed, there is at least one real number y (a “hot spot”) such that sufficiently
small neighborhoods of y are visited too often by an arbitrarily large factor, relative
to the lengths of these neighborhoods. On the other hand, if it can be established
that no subinterval of the unit interval is visited, say, 1,000 times more often in the
limit relative to its length, this suffices to prove that the constant in question is
b-normal. This idea leads to:

Theorem 1 For every coprime pair of integers (b, c) with b ≥ 2 and c ≥ 2, the
constant αb,c =

∑
m≥1 1/(cmbc

m
) is b-normal.

Proof outline [5]: We write the fraction immediately following position n in the
base-b expansion of αb,c as:

bnαb,c mod 1 =

(
∞∑
m=1

bn−c
m

mod cm

cm

)
mod 1 (4)

=

blogc nc∑
m=1

bn−c
m

mod cm

cm

 mod 1 +
∞∑

m=blogc nc+1

bn−c
m

cm
. (5)

Now, the first expression can be generated by the recursion z0 = 0 and, for n ≥ 1,

zn = (bzn−1 + rn) mod 1, (6)

where rn = 1/n if n = ck for some integer k, and zero otherwise. Consider the case
b = 3 and c = 4. The first few members of the sequence (6) are:

0, 0, 0, (once)
1

4
, 3

4
, (repeated 6 times)

5

16
, 15

16
, 13

16
, 7

16
, (12 times),

21

64
, 63

64
, 61

64
, 55

64
, 37

64
, 47

64
, 13

64
, 39

64
, 53

64
, 31

64
, 29

64
, 23

64
, 5

64
, 15

64
, 45

64
, 7

64
,

(12 times), etc. (7)

Note that 1/2 is omitted in the first set, 1/8, 3/8, 5/8, 7/8 in the second, and the
fractions with 32 in the denominator in the third set. This pattern holds so long as
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b ≥ 2 and c ≥ 2 are coprime [8]: if n < cp+1 then zn is a multiple of 1/cp, and the
set (zk, 1 ≤ k ≤ n) contains at most t repetitions of any particular value. (Here t
depends only on b and c. For (b, c) = (2, 3), the factor t = 3. For the case (3, 4),
t = 12.) These fractions (zk) yield accurate approximations to the shifted fractions
bnαb,c mod 1 of αb,c. On examining (5) it transpires that for (b, c) as above and n ≥ c,

|bnαb,c mod 1− zn| <
1

9n
(8)

(and in most cases is much smaller than this).
To establish that αb,c is b-normal via Lemma 1, we find an upper bound for

bmA(αb,c, y, n,m)/n, good for all y ∈ [0, 1) and all m ≥ 1 and appeal to Lemma 1 to
show αb,c is b-normal. QED

3 A general nonnormality result

By Theorem 1, the Stoneham constant α2,3 =
∑

k≥0 1/(3k23k) is 2-normal. Almost
as interesting is the fact that α2,3 is not 6-normal. This was first demonstrated in
[5]. Next, we briefly sketch why this is so. After this we prove a rigorous theorem
for general Stoneham constants.

First note that the digits immediately following position n in the base-6 expansion
of α2,3 can be obtained by computing 6nα2,3 mod 1, which can be written as

6nα2,3 mod 1 =

blog3 nc∑
m=1

3n−m2n−3
m

 mod 1 +
∞∑

m=blog3 nc+1

3n−m2n−3
m

. (9)

Note that the first portion of this expression is zero, since all terms of the summation
are integers. That leaves the second expression.

Consider the case when n = 3m, where m ≥ 1 is an integer, and examine just the
first term of the second summation. We see that this expression is

33m−(m+1)23m−3m+1

= 33m−m−12−2·3
m

= (3/4)3
m

/3m+1. (10)

We can generously bound the sum of all terms of the second summation by 1.00001
times this amount, for all m ≥ 1, and by many times closer to unity for all m ≥ 2,
etc. Thus, we have

63mα2,3 mod 1 ≈
(
3
4

)3m
3m+1

. (11)
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0.
0130140430003334251130502130000001243555045432233011500243525320551352
3435410104300000000000000005141130054040555455303144250433435101241345
2351125142125134505503545015053522052044340452151505102411552500425130
0511244540010441311500324203032130000000000000000000000000000000000000
0000014212034311121452013525445342113412240220525301054204423552411055
4150155204350414555400310145303033532002534340401301240104453254343502
1420204324150255551010040433000455441145010313314511510144514123443342
3412400551313335045423530553151153501533452435450250055521453054234342
1530350125024205404135451231323245353031534552304115020154242121145201
5422225343403404505301233255344404431033324453321414150142334545424124
3203125340050134150245514404300000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000
0000000000313350542444431111055534141052014540213412313001424333133115
. . .

Table 1: Base-6 expansion of α2,3.

This approximation is as accurate as one wishes (in ratio) for sufficiently large m.
Given the very small size of the expression (3/4)3

m
/3m+1 for even moderate-sized

m, it is clear the base-6 expansion will have very long stretches of zeroes beginning
at positions 3m + 1. For example, by explicitly computing α2,3 to high precision, one
can produce the counts of consecutive zeroes Zm that immediately follow position
3m in the base-6 expansion of α2,3—see Tables 1 and 2.

In total, there 14256 zeroes in the first ten segments of zeroes, which, including
the last segment, span the first 59049 + 9487 = 68536 base-6 digits of α2,3. In this
tabulation we have of course ignored the many zeroes in the large “random” segments
of the expansion. Thus, the fraction of the first 68536 digits that is zero is at least
14256/68536 = 0.20800747 . . .. This is significantly more than the expected value
1/6 = 0.166666 . . .. A careful estimate of the limiting fraction yields the desired
nonnormality result.

It is worth pointing out that in the parlance of Lemma 1, zero is a “hot spot”
for the base-6 expansion of α2,3. This is because all sufficiently small neighborhoods
of zero are visited too often, by an arbitrarily large factor, in a subsequence of the
shifted fractions of its base-6 expansion. The nonnormality of α2,3 and some related
constants is explored graphically in [4], where the patterns shown above in Table 1
can be seen even more clearly.

We turn to the promised generalization for general Stoneham constants αb,c:
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m 3m Zm
1 3 1
2 9 3
3 27 6
4 81 16
5 243 42
6 729 121
7 2187 356
8 6561 1058
9 19683 3166

10 59049 9487

Table 2: Counts Zm of consecutive zeroes immediately following position 3m in the
base-6 expansion of α2,3.

Theorem 2 Given coprime integers b ≥ 2 and c ≥ 2, and integers p, q, r ≥ 1,
with neither b nor c dividing r, let B = bpcqr. Assume that the condition
D = cq/pr1/p/bc−1 < 1 is satisfied. Then the constant αb,c =

∑
k≥0 1/(ckbc

k
) is

B-nonnormal.

Proof. Let n = bcm/pc, and let w = np/cm, so that n = wcm/p. Note that for even
moderately large m, relative to p, the fraction w is very close to one. Let Qm be
the shifted fraction of αb,c immediately following position n in its base-B expansion.
One can write

Qm = Bnαb,c mod 1

=

(
m∑
k=0

bpn−c
k

cqn−krn

)
mod 1 +

∞∑
k=m+1

bpn−c
k

cqn−krn (12)

=
∞∑

k=m+1

bpn−c
k

cqn−krn =
∞∑

k=m+1

cqwc
m/p−krwc

m/p

bck−wcm
. (13)

(The first summation in (12) vanishes because all summands are integers.) Thus Qm

is accurately approximated (in ratio) by the first term of the series (13), namely

S1 =
1

cm+1

(
cqw/prw/p

bc−w

)cm
, (14)
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and this in turn is very accurately approximated (in ratio) by

S ′1 =
Dcm

cm+1
, (15)

where D = cq/pr1/p/bc−1 as defined in the hypothesis. So for all sufficiently large
integers m,

S ′1(1− 1/10) < Qm < S ′1(1 + 1/10). (16)

Given that D < 1, as assumed in the hypothesis, it is clear from (15) that Qm

will be very small for even moderate-sized m, and thus the base-B expansion of αb,c
will feature long stretches of zeroes beginning immediately after position n, where
n = bcm/pc. In particular, given m ≥ 1, let Zm = blogB 1/Qmc be the number
of zeroes that immediately follow position bcm/pc. Then after noting that B ≥ 6
(implied by the definition of b, c, p, q, r above), we can rewrite (16) as

cm logB(1/D) + (m+ 1) logB c− 2 < Zm < cm logB(1/D) + (m+ 1) logB c+ 2.

(17)

Now let Fm be the fraction of zeroes up to position cm + Zm. Clearly

Fm >

∑m
k=1 Zk

cm + Zm
, (18)

since the numerator only counts zeroes in the long stretches, ignoring many others
in the “random” stretches. The summation in the numerator satisfies

m∑
k=1

Zk >
c

c− 1

(
cm − 1

c

)
logB(1/D) +

m(m+ 3)

2
logB c− 2m

>
cm+1

c− 1

(
1− 1

cm+1

)
logB(1/D)− 2m. (19)

Thus given any ε > 0, we can write, for all sufficiently large m,

Fm >
cm+1

c−1

(
1− 1

cm+1

)
logB(1/D)− 2m

cm + cm logB(1/D) + (m+ 1) logB c

=
c
c−1

(
1− 1

cm+1

)
logB(1/D)− 2m

cm

1 + logB(1/D) + m+1
cm

logB c

≥
c
c−1 logB(1/D)

1 + logB(1/D)
− ε = T − ε, (20)
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where

T =
c

c− 1
· logB(1/D)

1 + logB(1/D)
. (21)

To prove our result, it suffices to establish that Fm > T > 1/B. This implies that
infinitely often (namely on segments up to position cm +Zm for positive integers m)
the fraction of zeroes exceeds the “normal” frequency of a zero, namely 1/B, by the
nonzero amount T − 1/B.

Depending on the particular values of b, c, p, q and r, the condition T > 1/B need
not hold. (Recall that the calculation above ignores the many zeroes in the “random”
portions of the expansion, and thus the estimate T might not be sufficiently accurate
to establish nonnormality, at least not in the single-digit frequency sense.) However,
a simple modification of the argument establishes nonnormality in the multi-digit
frequency sense.

Note that given any integer M > 1, then for all m with Zm > M , we will
encounter an M -long string of zeroes beginning immediately after position n, where
n = bcm/pc as above. Indeed, the condition that an M -long string of zeroes begins
at position t will be fulfilled for Z̄m = Zm −M + 1 consecutive positions beginning
with t = n + 1 = bcm/pc+ 1. Note that for sufficiently large m, the modified count
Z̄m is nearly as large as Zm. What is more, when we sum Z̄k for k = 1 to m, we
obtain, as in (19) above,

m∑
k=1

Z̄k >
c

c− 1

(
cm − 1

c

)
logB(1/D) +

m(m+ 3)

2
logB c− (M + 1)m

>
cm+1

c− 1

(
1− 1

cm+1

)
logB(1/D)− (M + 1)m. (22)

But the small term (M+1)m in this expression disappears when we divide by cm and
take the limit as in (20) above. Thus we obtain exactly the same limiting bound T
as we calculated above in (21) for individual zeroes. Note that the natural frequency
for an M -long string of zeroes is 1/BM . Since T > 1/BM for all sufficiently large M ,
we conclude that αb,c is B-nonnormal. QED

The following less general result than Theorem 2 first appeared in [5]:

Corollary 1 Given coprime integers b ≥ 2 and c ≥ 2, αb,c is bc-nonnormal.

Proof: This is a special case of Theorem 2 where p = q = r = 1. It follows by
checking the condition (see the hypothesis of Theorem 2) that D = c/bc−1 < 1, or,
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equivalently, that log c < (c−1) log b. This condition can be verified as follows. First
assume that b ≥ 2 and c ≥ 3. In this case, the function f(c) = log c−(c−1) log 2 < 0,
so that log c < (c − 1) log 2 ≤ (c − 1) log b. Similarly, when b ≥ 3 and c ≥ 2, the
function g(c) = log c − (c − 1) log 3 < 0, so that log c < (c − 1) log 3 ≤ (c − 1) log b.
The remaining case b = 2 and c = 2 is not allowable, since b and c must be coprime.
Thus the key condition c/bc−1 < 1 in the hypothesis of Theorem 2 is satisfied by all
allowable pairs (b, c). Hence αb,c is not bc-normal. QED

Example 1 (Normality and nonnormality in various bases) According to
Theorem 1, the constant α2,3 is normal base 2, and thus is also normal in base
4, 8, 16, 32, · · · (i.e., all powers of two). According to Theorem 2, α2,3 is nonnormal
base 6, 12, 24, 36, 48, 60, 72, 96, 120, 144, 168, 192, 216, 240, · · · . This list can be ob-
tained by checking the condition 3q/pr1/p < 4 for various candidate bases B = 2p3qr,
where p, q, r ≥ 1. Note that while all integers in this list are divisible by 6, not all
multiples of 6 are in the list.

There are, however, many integer bases not included in either list. For example,
it is not known at the present time whether or not α2,3 is 3-normal, although it
appears to be. For example, statistical analysis of the first 83,736 base-3 digits of α2,3

(both single digits and 6-long strings of digits) found no deviations from reasonable
statistical norms. But there is no proof of 3-normality. Similar questions remain in
the more general case of αb,c, where b and c and coprime and at least two. 3

4 Sums of Stoneham constants

We now examine the normality or nonnormality of the sum of two Stoneham con-
stants.

Under the hypothesis b, c1, c2 ≥ 2, with (b, c1) coprime and (b, c2) coprime, we
know from Theorem 1 that αb,c1 and αb,c2 are each b-normal. But it is not known
at the present time whether the sum αb,c1 + αb,c2 is b-normal. However, (under
the hypothesis of Theorem 2) the sum of two such constants that individually are
B-nonnormal, for some base B is also B-nonnormal:

Theorem 3 Let αb1,c1 and αb2,c2 be two Stoneham constants satisfying the conditions
of Theorem 2 to be B-nonnormal: b1 ≥ 2 and c1 ≥ 2 are coprime; B = bp11 c

q1
1 r1 for

integers p1, q1, r1 ≥ 1 with neither b1 nor c1 dividing r1; and D1 = c
q1/p1
1 r

1/p1
1 /bc1−11 <

1 (with similar conditions on b2, c2, p2, q2, r2 and D2). Assume further there are no
integers s and t such that cs1 = ct2. Then αb1,c1 + αb2,c2 is B-nonnormal.
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Proof. Given the hypothesized conditions, the proof of Theorem 2 established
that the base-B expansion of αb1,c1 has long stretches of zeroes beginning at
positions P1,m = bcm1 /p1c + 1 (for positive integers m), extending for length

Z1,m ≈ cm1 logB(1/D1) ≈ P1,mp1 logB(1/D1), where D1 = c
q1/p1
1 r

1/p1
1 /bc1−11 . Simi-

larly, the base-B expansion of αb2,c2 has long stretches of zeroes beginning at po-
sitions P2,n = bcn2/p2c + 1 (for positive integers n), extending for length Z2,n ≈
cn2 logB(1/D2) ≈ P2,np2 logB(1/D2), where D2 = c

q2/p2
2 r

1/p2
2 /bc2−12 . In each case, the

approximation indicated is as accurate in ratio as desired, for all sufficiently large m
or n, respectively.

Note that the base-B expansions of the two constants will share a long stretch of
zeroes, provided there exists some pair of integers (m,n) such that the corresponding
starting points P1,m and P2,n are very close in ratio. In that case, the corresponding
strings of zeroes will overlap for a length L that is close in ratio to the shorter of the
two lengths. In other words,

L ≈ min (Z1,m, Z2,n) ≈ min (P1,mp1 logB(1/D1), P2,np2 logB(1/D2))

≈ P1,m min (p1 logB(1/D1), p2 logB(1/D2)) = P1,mE, (23)

where E = min (p1 logB(1/D1), p2 logB(1/D2)), and where the approximations
shown are as close in ratio as desired for all sufficiently large m and n.

What’s more, since the base-B expansions of αb1,c1 and αb2,c2 share this section
of zeroes, beginning at position P1,m ≈ P2,n and continuing for length L, so will the
base-B expansion of αb1,c1 + αb2,c2 .

Now suppose that we can construct a sequence of pairs of integers (mk, nk), where
the above condition, namely P1,mk

≈ P2,nk
culminating with Lk ≈ P1,mk

E, is met
for each k. At each k, even if we count only the zeroes in the common stretch Lk
(ignoring all zeroes in all stretches and all “random” segments that precede it), we
obtain, as an estimate of the fraction Fk of zeroes up to position P1,mk

+ Lk,

Fk ≥
Lk

P1,mk
+ Lk

≈ P1,mk
E

P1,mk
+ P1,mk

E
=

E

1 + E
, (24)

where the approximation is as accurate as desired (in absolute terms, not just in ratio)
for all sufficiently large k. Recall that E = min (p1 logB(1/D1), p2 logB(1/D2)) > 0
by hypothesis, so that that the expression E/(1+E) is independent of k and strictly
greater than zero.

Such a sequence of integer pairs (mk, nk) can be constructed as follows: First
consider the simpler special case where p1 = p2. Given ε > 0, we require that for all
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sufficiently large pairs (mk, nk),

1− ε <
P1,mk

P2,nk

< 1 + ε. (25)

But this can equivalently be rewritten in any of the forms

1− ε <
cmk
1

cnk
2

< 1 + ε

−ε < mk log c1 − nk log c2 < ε∣∣∣∣mk

nk
− log c2

log c1

∣∣∣∣ <
ε

nk log c1
. (26)

This last condition is fulfilled if we specify, for the sequence of pairs (mk, nk), the
sequence of fractions produced by the infinite continued fraction approximation for
log c2/ log c1 (note the continued fraction is infinite, since by assumption there are
no integers s and t such that cs1 = ct2, which is the same as saying that log c2/ log c1
is not rational). Recall that the error in the continued fraction approximation at
each step is less than the square of the reciprocal of the current denominator [15, pg.
373]. Thus we can write,∣∣∣∣mk

nk
− log c2

log c1

∣∣∣∣ <
1

n2
k

<
ε

nk log c1
, (27)

for all sufficiently large k, which satisfies the condition in (26), and thus in (25) also.
Now consider the more general case where p1 is not necessarily the same as p2.

Given ε > 0, we require that for all sufficiently large pairs (mk, nk),

1− ε <
P1,mk

P2,nk

< 1 + ε

1− ε <
cmk
1 /p1
cnk
2 /p2

< 1 + ε

−ε < mk log c1 − nk log c2 + (log p2 − log p1) < ε. (28)

In this case, we can apply a generalization of the continued fraction algorithm pre-
sented as Algorithm 0.3 in [14] (see also Lemma 2.5.9 in [3]) to construct the requisite
sequence of integer pairs (mk, nk). A simple normalization of (28) reduces it to the
form required in [14].

In short, for any choice of coprime pairs of integers (b1, c1) and (b2, c2) satisfying
the hypothesis, we can construct an infinite sequence of positions (P1,mk

+ Lk) in
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the base-B expansion of αb1,c1 + αb2,c2 such that the fraction Fk of zeroes up to
position P1,mk

+ Lk exceeds the fixed bound E/(1 + E). If this bound satisfies
E/(1 +E) > 1/B, we are done. If not, a simple extension of the preceding argument
to count the number of indices where an M -long strings of zeroes begins, as was done
near the end of the proof of Theorem 2, shows that the asymptotic bound E/(1+E)
also applies to the frequency of M -long strings of zeroes. Since for sufficiently large
M , the condition E/(1 + E) > 1/BM is satisfied, we are done. QED

Example 2 (Nonnormality of sums in various bases) Consider the Stoneham
constants α2,3 and α2,5. By Theorem 1, both are 2-normal. Consider base 60 =
2p · 3q · r, where p = 2, q = 1 and r = 5. By checking the condition 31/2 · 51/2 < 22,
we verify that α2,3 is 60-nonnormal, according to Theorem 2. In a similar way, write
60 = 2p · 5q · r, where p = 2, q = 1 and r = 3. Then by checking the condition
51/2 ·31/2 < 24, we verify that α2,5 is also 60-nonnormal. Thus, according to Theorem
3, α2,3 + α2,5 is 60-nonnormal. 3

5 Alternate proofs

The referee of our original manuscript pointed out that Theorems 2 and 3 could both
be proven by means of the following lemma:

Lemma 2 (Adamczewski) Given the positive integer b ≥ 2 and α in the unit
interval, let α = 0.a1a2a3 . . . give the base-b expansion of α. Assume that there is an
increasing sequence of positive integers (nk)k≥1 and a real number 0 < δ < 1 such
that

|bnkα mod 1| < δnk . (29)

Then α is not b-normal.

Proof. Let us assume that α is b-normal, so that

lim
n→∞

#{1 ≤ n ≤ N : an = 0}
N

=
1

b
. (30)

Assuming the given condition (29), there is a block of bτnkc consecutive zeroes
starting at position nk in the base-b expansion of α, where τ = − logb δ. Thus

lim
k→∞

#{1 ≤ n ≤ nk + bτnkc : an = 0}
nk + bτnkc

= lim
k→∞

#{1 ≤ n ≤ nk : an = 0}+ bτnkc
nk + bτnkc

=
1/b+ τ

1 + τ
=

1

b
+
τ(1− 1/b)

1 + τ
>

1

b
, (31)
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which contradicts the assumption that α is b-normal. QED

We now briefly sketch how Theorems 2 and 3 can be proven using Lemma 2:

Alternate proof of Theorem 2: For integers k ≥ 1, define nk = bck/pc. Following
the first few paragraphs of the earlier proof of Theorem 2, observe that

Bnkαb,c mod 1 <
Dnk

cnk+1
< Dnk , (32)

where

D =
cq/pr1/p

bc−1
(33)

as before. By the hypothesis of Theorem 2, D < 1. Thus the conclusion follows by
Lemma 2, where B takes the place of b, and D takes the place of δ. QED

Alternate proof of Theorem 3: Set mk = bck1/p1c and nk = bck2/p2c. According
to the earlier proof of Theorem 2, there exist two real numbers δ1 and δ2 in (0, 1)
such that, for every k ≥ 1,

Bmkαb1,c1 mod 1 < δmk
1

Bnkαb2,c2 mod 1 < δnk
2 . (34)

Given the assumed fact that there do not exist integers s and t such that cs1 = ct2,
we note from the earlier proof of Theorem 3, in particular from equation (28), that
given any ε > 0, there exist two increasing sequences of integers (kj) and (lj) such
that

1− ε < c
kj
1 /p1

c
lj
2 /p2

< 1 + ε (35)

for every j. It further can be seen that sequences can be found ensuring 1 − ε <
mkj/nlj < 1+ε for every j, since mkj is very close (in ratio) to c

kj
1 /p1 for all sufficiently

large kj, and nlj is very close (in ratio) to c
lj
2 /p2, for all sufficiently large lj. Choose

ε sufficiently small so that Bεδ1−ε2 < δ1. Then

Bmkj (αb1,c1 + αb2,c2) mod 1 = Bmkjαb1,c1 mod 1 +Bmkjαb2,c2 mod 1

< δ
mkj

1 +Bmkj
−nljBnljαb2,c2 < δ

mkj

1 + (Bε)mkδ
nlj

2

< δ
mkj

1 + (Bε)mkj δ
mkj

2 δ
nlj
−mkj

2

< δ
mkj

1 + (Bεδ1−ε2 )mkj < 2δ
mkj

1 = (21/mkj δ1)
mkj . (36)
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But since 21/mkj δ1 < 1 for all sufficiently large j, Lemma 2 applies, with B in the
place of b and 21/mkj δ1 in the place of δ, to establish that αb1,c1 + αb2,c2 cannot be
B-normal. QED

Lemma 2 potentially could be quite useful in establishing normality (or nonnor-
mality) of real numbers.

6 Conclusion

As mentioned above, under the hypothesis that integers b ≥ 2, c1 ≥ 2 and c2 ≥ 2 are
coprime, we know from Theorem 1 that αb,c1 and αb,c2 are each b-norma. We do not
know a whether the sum αb,c1 +αb,c2 is b-normal (although from substantial empirical
analysis of specific cases, this appears to be true). Such a result, if it could be proven
and extended, might yield a construction of an explicit computable constant that is
absolutely normal, that is b-normal for all integer bases b ≥ 2 simultaneously.

One example of an absolutely normal constant is Chaitin’s omega constant. Fix
a prefix-free universal Turing machine U : (i.e., if instances U(p) and U(q) each halt,
then neither p nor q is a prefix of the other.) Then Chaitin’s omega is defined by

Ω =
∑

{U(p) halts}

2−|p|,

where |p| is the length of the program p in bits. In 1994, Cristian Calude [16]
demonstrated that Ω is absolutely normal. Although a scheme is known to explicitly
compute the value of an initial segment of Chaitin’s constant (for a certain encoding
of a Turing machine), fewer than 100 bits are known [17].

Another explicit construction has been given by Becher and Figueira [10]. How-
ever, unlike Chaitin’s constant, while it is possible in principle to compute digits of
the the Becher-Figueira constant, it is nearly impossible in practice. It transpires
that Alan Turing visited this same issue many decades ago — as described in [11].

In any event, there is continuing interest in explicitly constructive real numbers
that are both absolutely normal and which can be computed to high precision without
unreasonable effort.
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