
Noname manuscript No.
(will be inserted by the editor)

Applications of Convex Analysis within Mathematics

Francisco J. Aragón Artacho · Jonathan M. Borwein ·
Victoria Mart́ın-Márquez · Liangjin Yao

July 19, 2013

Abstract In this paper, we study convex analysis and its theoretical applications. We first apply important
tools of convex analysis to Optimization and to Analysis. We then show various deep applications of convex
analysis and especially infimal convolution in Monotone Operator Theory. Among other things, we recapture
the Minty surjectivity theorem in Hilbert space, and present a new proof of the sum theorem in reflexive
spaces. More technically, we also discuss autoconjugate representers for maximally monotone operators.
Finally, we consider various other applications in mathematical analysis.

Keywords Adjoint · Asplund averaging · autoconjugate representer · Banach limit · Chebyshev set · convex
functions · Fenchel duality · Fenchel conjugate · Fitzpatrick function · Hahn–Banach extension theorem ·
infimal convolution · linear relation · Minty surjectivity theorem · maximally monotone operator · monotone
operator ·Moreau’s decomposition ·Moreau envelope ·Moreau’s max formula ·Moreau–Rockafellar duality ·
normal cone operator · renorming · resolvent · Sandwich theorem · subdifferential operator · sum theorem ·
Yosida approximation

Mathematics Subject Classification (2000) Primary 47N10 · 90C25; Secondary 47H05 · 47A06 ·
47B65

Francisco J. Aragón Artacho
Centre for Computer Assisted Research Mathematics and its Applications (CARMA), University of Newcastle, Callaghan, NSW
2308, Australia.
E-mail: francisco.aragon@ua.es

Jonathan M. Borwein
Centre for Computer Assisted Research Mathematics and its Applications (CARMA), University of Newcastle, Callaghan, NSW
2308, Australia. Laureate Professor at the University of Newcastle and Distinguished Professor at King Abdul-Aziz University,
Jeddah.
E-mail: jonathan.borwein@newcastle.edu.au

Victoria Mart́ın-Márquez
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1 Introduction

While other articles in this collection look at the applications of Moreau’s seminal work, we have opted
to illustrate the power of his ideas theoretically within optimization theory and within mathematics more
generally. Space constraints preclude being comprehensive, but we think the presentation made shows how
elegantly much of modern analysis can be presented thanks to the work of Jean-Jacques Moreau and others.

1.1 Preliminaries

Let X be a real Banach space with norm ‖ · ‖ and dual norm ‖ · ‖∗. When there is no ambiguity we suppress
the ∗. We write X∗ and 〈 · , · 〉 for the real dual space of continuous linear functions and the duality paring,
respectively, and denote the closed unit ball by BX := {x ∈ X | ‖x‖ ≤ 1} and set N := {1, 2, 3, . . .}. We
identify X with its canonical image in the bidual space X∗∗. A set C ⊆ X is said to be convex if it contains
all line segments between its members: λx+ (1− λ)y ∈ C whenever x, y ∈ C and 0 ≤ λ ≤ 1.

Given a subset C of X, intC is the interior of C and C is the norm closure of C. For a set D ⊆ X∗, Dw*

is the weak∗ closure of D. The indicator function of C, written as ιC , is defined at x ∈ X by

ιC(x) :=

{
0, if x ∈ C;

+∞, otherwise.
(1)

The support function of C, written as σC , is defined by σC(x∗) := supc∈C〈c, x∗〉. There is also a naturally
associated (metric) distance function, that is,

dC(x) := inf {‖x− y‖ | y ∈ C} . (2)

Distance functions play a central role in convex analysis, both theoretically and algorithmically.
Let f : X → ]−∞,+∞] be a function. Then dom f := f−1(R) is the domain of f , and the lower level

sets of a function f : X → ]−∞,+∞] are the sets {x ∈ X | f(x) ≤ α} where α ∈ R. The epigraph of f
is epi f := {(x, r) ∈ X × R | f(x) ≤ r}. We will denote the set of points of continuity of f by cont f . The
function f is said to be convex if for any x, y ∈ dom f and any λ ∈ [0, 1], one has

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

We say f is proper if dom f 6= ∅. Let f be proper. The subdifferential of f is defined by

∂f : X ⇒ X∗ : x 7→ {x∗ ∈ X∗ | 〈x∗, y − x〉 ≤ f(y)− f(x), for all y ∈ X}.

By the definition of ∂f , even when x ∈ dom f , it is possible that ∂f(x) may be empty. For example ∂f(0) = ∅
for f(x) := −

√
x whenever x ≥ 0 and f(x) := +∞ otherwise. If x∗ ∈ ∂f(x) then x∗ is said to be a subgradient

of f at x. An important example of a subdifferential is the normal cone to a convex set C ⊆ X at a point
x ∈ C which is defined as NC(x) := ∂ιC(x).

Let g : X → ]−∞,+∞]. Then the inf-convolution f�g is the function defined on X by

f�g : x 7→ inf
y∈X

{
f(y) + g(x− y)

}
.

(In [45] Moreau studied inf-convolution when X is an arbitrary commutative semigroup.) Notice that, if
both f and g are convex, so it is f�g (see, e.g., [49, p. 17]).

We use the convention that (+∞) + (−∞) = +∞ and (+∞) − (+∞) = +∞. We will say a function
f : X → ]−∞,+∞] is Lipschitz on a subset D of dom f if there is a constant M ≥ 0 so that |f(x)− f(y)| ≤
M‖x− y‖ for all x, y ∈ D. In this case M is said to be a Lipschitz constant for f on D. If for each x0 ∈ D,
there is an open set U ⊆ D with x0 ∈ U and a constant M so that |f(x) − f(y)| ≤ M‖x − y‖ for all
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x, y ∈ U , we will say f is locally Lipschitz on D. If D is the entire space, we simply say f is Lipschitz or
locally Lipschitz respectively.

Consider a function f : X → ]−∞,+∞]; we say f is lower-semicontinuous (lsc) if lim infx→x̄ f(x) ≥ f(x̄)
for all x̄ ∈ X, or equivalently, if epi f is closed. The function f is said to be sequentially weakly lower
semi-continuous if for every x̄ ∈ X and every sequence (xn)n∈N which is weakly convergent to x̄, one has
lim infn→∞ f(xn) ≥ f(x̄). This is a useful distinction since there are infinite dimensional Banach spaces
(Schur spaces such as `1) in which weak and norm convergence coincide for sequences, see [22, p. 384, esp.
Thm 8.2.5].

1.2 Structure of this paper

The remainder of this paper is organized as follows. In Section 2, we describe results about Fenchel conjugates
and the subdifferential operator, such as Fenchel duality, the Sandwich theorem, etc. We also look at some
interesting convex functions and inequalities. In Section 3, we discuss the Chebyshev problem from abstract
approximation. In Section 4, we show applications of convex analysis in Monotone Operator Theory. We
reprise such results as the Minty surjectivity theorem, and present a new proof of the sum theorem in
reflexive spaces. We also discuss Fitzpatrick’s problem on so called autoconjugate representers for maximally
monotone operators. In Section 5 we discuss various other applications.

2 Subdifferential operators, conjugate functions & Fenchel duality

We begin with some fundamental properties of convex sets and convex functions. While many results hold
in all locally convex spaces, some of the most important such as (iv)(b) in the next Fact do not.

Fact 1 (Basic properties [22, Ch. 2 and 4].) The following hold.

(i) The (lsc) convex functions form a convex cone closed under pointwise suprema: if fγ is convex (and lsc)
for each γ ∈ Γ then so is x 7→ supγ∈Γ fγ(x).

(ii) A function f is convex if and only if epi f is convex if and only if ιepi f is convex.
(iii) Global minima and local minima in the domain coincide for proper convex functions.
(iv) Let f be a proper convex function and let x ∈ dom f . (a) f is locally Lipschitz at x if and only f is

continuous at x if and only if f is locally bounded at x. (b) Additionally, if f is lower semicontinuous,
then f is continuous at every point in int dom f .

(v) A proper lower semicontinuous and convex function is bounded from below by a continuous affine function.
(vi) If C is a nonempty set, then dC(·) is non-expansive (i.e., is a Lipschitz function with constant one).

Additionally, if C is convex, then dC(·) is a convex function.
(vii) If C is a convex set, then C is weakly closed if and only if it is norm closed.
(viii) Three-slope inequality: Suppose f : R→]−∞,∞] is convex and a < b < c. Then

f(b)− f(a)

b− a
≤ f(c)− f(a)

c− a
≤ f(c)− f(b)

c− b
.

The following trivial fact shows the fundamental significance of subgradients in optimization.

Proposition 1 (Subdifferential at optimality) Let f : X → ]−∞,+∞] be a proper convex function.
Then the point x̄ ∈ dom f is a (global) minimizer of f if and only if 0 ∈ ∂f(x̄).

The directional derivative of f at x̄ ∈ dom f in the direction d is defined by

f ′(x̄; d) := lim
t→0+

f(x̄+ td)− f(x̄)

t
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if the limit exists. If f is convex, the directional derivative is everywhere finite at any point of int dom f , and
it turns out to be Lipschitz at cont f . We use the term directional derivative with the understanding that it
is actually a one-sided directional derivative.

If the directional derivative f ′(x̄, d) exists for all directions d and the operator f ′(x̄) defined by 〈f ′(x̄), · 〉 :=
f ′(x̄; · ) is linear and bounded, then we say that f is Gâteaux differentiable at x̄, and f ′(x̄) is called the
Gâteaux derivative. Every function f : X → ]−∞,+∞] which is lower semicontinuous, convex and Gâteaux
differentiable at x, it is continuous at x. Additionally, the following properties are relevant for the existence
and uniqueness of the subgradients.

Proposition 2 (See [22, Fact 4.2.4 and Corollary 4.2.5].) Suppose f : X → ]−∞,+∞] is convex.

(i) If f is Gâteaux differentiable at x̄, then f ′(x̄) ∈ ∂f(x̄).
(ii) If f is continuous at x̄, then f is Gâteaux differentiable at x̄ if and only if ∂f(x̄) is a singleton.

Example 1 We show that part (ii) in Proposition 2 is not always true in infinite dimensions without continuity
hypotheses.

(a) The indicator of the Hilbert cube C := {x = (x1, x2, . . .) ∈ `2 : |xn| ≤ 1/n,∀n ∈ N} at zero or any other
non-support point has a unique subgradient but is nowhere Gâteaux differentiable.

(b) Boltzmann-Shannon entropy x 7→
∫ 1

0
x(t) log(x(t))dt viewed as a lower semicontinuous and convex func-

tion on L1[0, 1] has unique subgradients at x(t) > 0 a.e. but is nowhere Gâteaux differentiable (which for
a lower semicontinuous and convex function in Banach space implies continuity).

That Gâteaux differentiability of a convex and lower semicontinuous function implies continuity at the point
is a consequence of the Baire category theorem. ♦

The next result proved by Moreau in 1963 establishes the relationship between subgradients and directional
derivatives, see also [49, page 65]. Proofs can be also found in most of the books in variational analysis, see
e.g. [25, Theorem 4.2.7].

Theorem 1 (Moreau’s max formula [46]) Let f : X → ]−∞,+∞] be a convex function and let d ∈ X.
Suppose that f is continuous at x̄. Then, ∂f(x̄) 6= ∅ and

f ′(x̄; d) = max{〈x∗, d〉 | x∗ ∈ ∂f(x̄)}. (3)

Let f : X → [−∞,+∞]. The Fenchel conjugate (also called the Legendre-Fenchel conjugate1 or transform)
of f is the function f∗ : X∗ → [−∞,+∞] defined by

f∗(x∗) := sup
x∈X
{〈x∗, x〉 − f(x)}.

We can also consider the conjugate of f∗ called the biconjugate of f and denoted by f∗∗. This is a convex
function on X∗∗ satisfying f∗∗|X ≤ f . A useful and instructive example is σC = ι∗C .

Example 2 Let 1 < p < ∞ . If f(x) := ‖x‖p
p for x ∈ X then f∗(x∗) =

‖x∗‖q∗
q , where 1

p + 1
q = 1. Indeed, for

any x∗ ∈ X∗, one has

f∗(x∗) = sup
λ∈R+

sup
‖x‖=1

{
〈x∗, λx〉 − ‖λx‖

p

p

}
= sup
λ∈R+

{
λ‖x∗‖∗ −

λp

p

}
=
‖x∗‖q∗
q

.

♦

1 Originally the connection was made between a monotone function on an interval and its inverse. The convex functions then
arise by integration.



Applications of Convex Analysis within Mathematics 5

By direct construction and Fact 1 (i), for any function f , the conjugate function f∗ is always convex
and lower semicontinuous, and if the domain of f is nonempty, then f∗ never takes the value −∞. The
conjugate plays a role in convex analysis in many ways analogous to the role played by the Fourier transform
in harmonic analysis with infimal convolution, see below, replacing integral convolution and sum replacing
product [22, Chapter 2.].

2.1 Inequalities and their applications

An immediate consequence of the definition is that for f, g : X → [−∞,+∞], the inequality f ≥ g implies
f∗ ≤ g∗. An important result which is straightforward to prove is the following.

Proposition 3 (Fenchel–Young) Let f : X → ]−∞,+∞]. All points x∗ ∈ X∗ and x ∈ dom f satisfy the
inequality

f(x) + f∗(x∗) ≥ 〈x∗, x〉. (4)

Equality holds if and only if x∗ ∈ ∂f(x).

Example 3 (Young’s inequality) By taking f as in Example 2, one obtains directly from Proposition 3

‖x‖p

p
+
‖x∗‖q∗
q
≥ 〈x∗, x〉,

for all x ∈ X and x∗ ∈ X∗, where p > 1 and 1
p + 1

q = 1. When X = R one recovers the original Young
inequality. ♦

This in turn leads to one of the workhorses of modern analysis:

Example 4 (Hölder’s inequality) Let f and g be measurable on a measure space (X,µ). Then∫
X

fg dµ ≤ ‖f‖p‖g‖q, (5)

where 1 < p < ∞ and 1
p + 1

q = 1. Indeed, by rescaling, we may assume without loss of generality that

‖f‖p = ‖g‖q = 1. Then Young’s inequality in Example 3 yields

|f(x)g(x)| ≤ |f(x)|p

p
+
|g(x)|q

q
for x ∈ X,

and (5) follows by integrating both sides. The result holds true in the limit for p = 1 or p =∞. ♦

We next take a brief excursion into special function theory and normed space geometry to emphasize that
“convex functions are everywhere.”

Example 5 (Bohr–Mollerup theorem) The Gamma function defined for x > 0 as

Γ (x) :=

∫ ∞
0

e−ttx−1dt = lim
n→∞

n!nx

x(x+ 1) · · · (x+ n)

is the unique function f mapping the positive half-line to itself and such that (a) f(1) = 1, (b) xf(x) =
f(x+ 1) and (c) log f is a convex function.

Indeed, clearly Γ (1) = 1, and it is easy to prove (b) for Γ by using integration by parts. In order to show
that logΓ is convex, pick any x, y > 0 and λ ∈ (0, 1) and apply Hölder’s inequality (5) with p = 1/λ to the
functions t 7→ e−λttλ(x−1) and t 7→ e−(1−λ)tt(1−λ)(y−1). For the converse, let g := log f . Then (a) and (b)
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imply g(n+ 1 + x) = log [x(1 + x) . . . (n+ x)f(x)] and thus g(n+ 1) = log(n!). Convexity of g together with
the three-slope inequality, see Fact 1(viii), implies that

g(n+ 1)− g(n) ≤ g(n+ 1 + x)− g(n+ 1)

x
≤ g(n+ 2 + x)− g(n+ 1 + x),

and hence,
x log(n) ≤ log (x(x+ 1) · · · (x+ n)f(x))− log(n!) ≤ x log(n+ 1 + x);

whence,

0 ≤ g(x)− log

(
n!nx

x(x+ 1) · · · (x+ n)

)
≤ x log

(
1 +

1 + x

n

)
.

Taking limits when n→∞ we obtain

f(x) = lim
n→∞

n!nx

x(x+ 1) · · · (x+ n)
= Γ (x).

As a bonus we recover a classical and important limit formula for Γ (x).
Application of the Bohr–Mollerup theorem is often automatable in a computer algebra system, as we now

illustrate. Consider the beta function

β(x, y) :=

∫ 1

0

tx−1(1− t)y−1 d t (6)

for Re(x),Re(y) > 0. As is often established using polar coordinates and double integrals

β(x, y) =
Γ (x)Γ (y)

Γ (x+ y)
. (7)

We may use the Bohr–Mollerup theorem with

f := x→ β(x, y)Γ (x+ y)/Γ (y)

to prove (7) for real x, y.
Now (a) and (b) from Example 5 are easy to verify. For (c) we again use Hölder’s inequality to show f is

log-convex. Thus, f = Γ as required. ♦

Example 6 (Blaschke–Santaló theorem) The volume of a unit ball in the ‖ · ‖p-norm, Vn(p) is

Vn(p) = 2n
Γ (1 + 1

p )n

Γ (1 + n
p )

. (8)

as was first determined by Dirichlet. When p = 2, this gives

Vn = 2n
Γ ( 3

2 )n

Γ (1 + n
2 )

=
Γ ( 1

2 )n

Γ (1 + n
2 )
,

which is more concise than that usually recorded in texts.
Let C in Rn be a convex body which is symmetric around zero, that is, a closed bounded convex set with

nonempty interior. Denoting n-dimensional Euclidean volume of S ⊆ Rn by Vn(S), the Blaschke–Santaló
inequality says

Vn(C)Vn(C◦) ≤ Vn(E)Vn(E◦) = V 2
n (Bn(2)) (9)

where maximality holds (only) for any symmetric ellipsoid E and Bn(2) is the Euclidean unit ball. It is
conjectured the minimum is attained by the 1-ball and the ∞-ball. Here as always the polar set is defined
by C◦ := {y ∈ Rn : 〈y, x〉 ≤ 1 for all x ∈ C}.

The p-ball case of (9) follows by proving the following convexity result:
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Theorem 2 (Harmonic-arithmetic log-concavity) The function

Vα(p) := 2αΓ

(
1 +

1

p

)α
/Γ

(
1 +

α

p

)
satisfies

Vα(p)λ Vα(q)1−λ < Vα

(
1

λ
p + 1−λ

q

)
, (10)

for all α > 1, if p, q > 1, p 6= q, and λ ∈ (0, 1).

Set α := n, 1
p + 1

q = 1 with λ = 1−λ = 1/2 to recover the p−norm case of the Blaschke–Santaló inequality. It
is amusing to deduce the corresponding lower bound. This technique extends to various substitution norms.
Further details may be found in [16, §5.5]. Note that we may easily explore Vα(p) graphically. ♦

2.2 The biconjugate and duality

The next result has been associated by different authors with the names of Legendre, Fenchel, Moreau and
Hörmander; see, e.g., [22, Proposition 4.4.2].

Proposition 4 (Hörmander2) (See [66, Theorem 2.3.3] or [22, Proposition 4.4.2(a)].) Let f : X →
]−∞,+∞] be a proper function. Then

f is convex and lower semicontinuous ⇔ f = f∗∗|X .

Example 7 (Establishing convexity) (See [12, Theorem 1].) We may compute conjugates by hand or using the
software SCAT [20]. This is discussed further in Section 5.3. Consider f(x) := ex. Then f∗(x) = x log(x)−x
for x ≥ 0 (taken to be zero at zero) and is infinite for x < 0. This establishes the convexity of x log(x) − x
in a way that takes no knowledge of x log(x).

A more challenging case is the following (slightly corrected) conjugation formula [21, p. 94, Ex. 13] which
can be computed algorithmically: Given real α1, α2, . . . , αm > 0, define α :=

∑
i αi and suppose a real µ

satisfies µ > α+ 1. Now define a function f : Rm × R 7→ ]−∞,+∞] by

f(x, s) :=


µ−1sµ

∏
i x
−αi
i if x ∈ Rm++, s ∈ R+;

0 if ∃xi = 0, x ∈ Rm+ , s = 0;

+∞ otherwise.

, ∀x := (xn)mn=1 ∈ Rm, s ∈ R.

It transpires that

f∗(y, t) =


ρν−1tν

∏
i(−yi)−βi if y ∈ Rm−−, t ∈ R+

0 if y ∈ Rm− , t ∈ R−
+∞ otherwise

, ∀y := (yn)mn=1 ∈ Rm, t ∈ R.

for constants

ν :=
µ

µ− (α+ 1)
, βi :=

αi
µ− (α+ 1)

, ρ :=
∏
i

(αi
µ

)βi
.

We deduce that f = f∗∗, whence f (and f∗) is (essentially strictly) convex. For attractive alternative proof
of convexity see [42]. Many other substantive examples are to be found in [21,22]. ♦

2 Hörmander first proved the case of support and indicator functions in [38] which led to discovery of general result.
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The next theorem gives us a remarkable sufficient condition for convexity of functions in terms of the
Gâteaux differentiability of the conjugate. There is a simpler analogue for the Fréchet derivative.

Theorem 3 (See [22, Corollary 4.5.2].) Suppose f : X → ]−∞,+∞] is such that f∗∗ is proper. If f∗ is
Gâteaux differentiable at all x∗ ∈ dom ∂f∗ and f is sequentially weakly lower semicontinuous, then f is
convex.

Let f : X → ]−∞,+∞]. We say f is coercive if lim‖x‖→∞ f(x) = +∞. We say f is supercoercive if

lim‖x‖→∞
f(x)
‖x‖ = +∞.

Fact 2 (See [22, Fact 4.4.8].) If f is proper convex and lower semicontinuous at some point in its domain,
then the following statements are equivalent.

(i) f is coercive.
(ii) There exist α > 0 and β ∈ R such that f ≥ α‖ · ‖+ β.
(iii) lim inf‖x‖→∞ f(x)/‖x‖ > 0.
(iv) f has bounded lower level sets.

Because a convex function is continuous at a point if and only if it is bounded above on a neighborhood
of that point (Fact 1(iv)), we get the following result; see also [38, Theorem 7] for the case of the indicator
function of a bounded convex set.

Theorem 4 (Hörmander–Moreau–Rockafellar) Let f : X → ]−∞,+∞] be convex and lower semicon-
tinuous at some point in its domain, and let x∗ ∈ X∗. Then f −x∗ is coercive if and only if f∗ is continuous
at x∗.

Proof. “⇒”: By Fact 2, there exist α > 0 and β ∈ R such that f ≥ x∗+α‖·‖+β. Then f∗ ≤ −β+ι{x∗+αBX∗},
from where x∗ + αBX∗ ⊆ dom f∗. Therefore, f∗ is continuous at x∗ by Fact 1(iv).

“⇐”: By the assumption, there exists β ∈ R and δ > 0 such that

f∗(x∗ + z∗) ≤ β, ∀z∗ ∈ δBX∗ .

Thus, by Proposition 3,
〈x∗ + z∗, y〉 − f(y) ≤ β, ∀z∗ ∈ δBX∗ , ∀y ∈ X;

whence, taking the supremum with z∗ ∈ δBX∗ ,

δ‖y‖ − β ≤ f(y)− 〈x∗, y〉, ∀y ∈ X.

Then, by Fact 2, f − x∗ is coercive. �

Example 8 Given a set C in X, recall that the negative polar cone of C is the convex cone

C− := {x∗ ∈ X∗ | sup〈x∗, C〉 ≤ 0}.

Suppose that X is reflexive and let K ⊆ X be a closed convex cone. Then K− is another nonempty closed
convex cone with K−− := (K−)− = K. Moreover, the indicator function of K and K− are conjugate to
each other. If we set f := ιK− , the indicator function of the negative polar cone of K, Theorem 4 applies to
get that

x ∈ intK if and only if the set {x∗ ∈ K− | 〈x∗, x〉 ≥ α} is bounded for any α ∈ R.

Indeed, since x ∈ intK = int dom ι∗K− if and only if ι∗K− is continuous at x, from Theorem 4 we have that this
is true if and only if the function ιK− − x is coercive. Now, Fact 2 assures us that coerciveness is equivalent
to boundedness of the lower level sets, which implies the assertion. ♦
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Theorem 5 (Moreau–Rockafellar duality [47]) Let f : X → (−∞,+∞] be a lower semicontinuous
convex function. Then f is continuous at 0 if and only if f∗ has weak∗-compact lower level sets.

Proof. Observe that f is continuous at 0 if and only if f∗∗ is continuous at 0 ([22, Fact 4.4.4(b)])if and only
if f∗ is coercive (Theorem 4) if and only if f∗ has bounded lower level sets (Fact 2) if and only if f∗ has
weak∗-compact lower level sets by the Banach-Alaoglu theorem (see [59, Theorem 3.15]). �

Theorem 6 (Conjugates of supercoercive functions) Suppose f : X → ]−∞,+∞] is a lower semi-
continuous and proper convex function. Then

(a) f is supercoercive if and only if f∗ is bounded (above) on bounded sets.
(b) f is bounded (above) on bounded sets if and only if f∗ is supercoercive.

Proof. (a) “⇒”: Given any α > 0, there exists M such that f(x) ≥ α‖x‖ if ‖x‖ ≥M . Now there exists β ≥ 0
such that f(x) ≥ −β if ‖x‖ ≤ M by Fact 1(v). Therefore f ≥ α‖ · ‖ + (−αM − β). Thus, it implies that
f∗ ≤ α(‖ · ‖)∗( ·α ) + αM + β and hence f∗ ≤ αM + β on αBX∗ .

“⇐”: Let γ > 0. Now there exists K such that f∗ ≤ K on γBX∗ . Then f ≥ γ‖ · ‖ − K and so

lim inf‖x‖→∞
f(x)
‖x‖ ≥ γ. Hence lim inf‖x‖→∞

f(x)
‖x‖ = +∞.

(b): According to (a), f∗ is supercoercive if and only if f∗∗ is bounded on bounded sets. By [22,
Fact 4.4.4(a)] this holds if and only if f is bounded (above) on bounded sets. �

We finish this subsection by recalling some properties of infimal convolutions. Some of their many ap-
plications include smoothing techniques and approximation. We shall meet them again in Section 4. Let
f, g : X → ]−∞,+∞]. Geometrically, the infimal convolution of f and g is the largest extended real-valued
function whose epigraph contains the sum of epigraphs of f and g (see example in Figure 1), consequently
it is a convex function. The following is a useful result concerning the conjugate of the infimal convolution.

Fact 3 (See [22, Lemma 4.4.15] and [49, pp. 37-38].) If f and g are proper functions on X, then (f�g)∗ =
f∗+ g∗. Additionally, suppose f, g are convex and bounded below. If f : X → R is continuous (resp. bounded
on bounded sets, Lipschitz), then f�g is a convex function that is continuous (resp. bounded on bounded
sets, Lipschitz).

Remark 1 Suppose C is a nonempty convex set. Then dC = ‖ · ‖�ιC , implying that dC is a Lipschitz convex
function. ♦

Example 9 Consider f, g : R→ ]−∞,+∞] given by

f(x) :=

{
−
√

1− x2, for − 1 ≤ x ≤ 1,
+∞ otherwise,

and g(x) := |x|.

The infimal convolution of f and g is

(f�g)(x) =

{
−
√

1− x2, −
√

2
2 ≤ x ≤ −

√
2

2 ;

|x| −
√

2, otherwise.
,

as shown in Figure 1. ♦
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Fig. 1 Infimal convolution of f(x) = −
√

1− x2 and g(x) = |x|.

2.3 The Hahn-Banach circle

Let T : X → Y be a linear mapping between two Banach spaces X and Y . The adjoint of T is the linear
mapping T ∗ : Y ∗ → X∗ defined, for y∗ ∈ Y ∗, by

〈T ∗y∗, x〉 = 〈y∗, Tx〉 for all x ∈ X.

A flexible modern version of Fenchel’s celebrated duality theorem is:

Theorem 7 (Fenchel duality) Let Y be another Banach space, let f : X → ]−∞,+∞] and g : Y →
]−∞,+∞] be convex functions and let T : X → Y be a bounded linear operator. Define the primal and dual
values p, d ∈ [−∞,+∞] by solving the Fenchel problems

p := inf
x∈X
{f(x) + g(Tx)}

d := sup
y∗∈Y ∗

{−f∗(T ∗y∗)− g∗(−y∗)}. (11)

Then these values satisfy the weak duality inequality p ≥ d.
Suppose further that f , g and T satisfy either⋃

λ>0

λ [dom g − T dom f ] = Y and both f and g are lower semicontinuous, (12)

or the condition
cont g ∩ T dom f 6= ∅. (13)

Then p = d, and the supremum in the dual problem (11) is attained when finite. Moreover, the perturbation
function h(u) := infx f(x) + g(Tx+ u) is convex and continuous at zero.

Generalizations of Fenchel duality Theorem can be found in [27,26]. An easy consequence is:

Corollary 1 (Infimal convolution) Under the hypotheses of the Fenchel duality theorem 7 (f +g)∗(x∗) =
(f∗�g∗)(x∗) with attainment when finite.
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Another nice consequence of Fenchel duality is the ability to obtain primal solutions from dual ones, as
we now record.

Corollary 2 Suppose the conditions for equality in the Fenchel duality Theorem 7 hold, and that ȳ∗ ∈ Y ∗
is an optimal dual solution. Then the point x̄ ∈ X is optimal for the primal problem if and only if it satisfies
the two conditions T ∗ȳ∗ ∈ ∂f(x̄) and −ȳ∗ ∈ ∂g(T x̄).

The regularity conditions in Fenchel duality theorem can be weakened when each function is polyhedral,
i.e., when their epigraph is polyhedral.

Theorem 8 (Polyhedral Fenchel duality) (See [21, Corollary 5.1.9].) Suppose that X is a finite-
dimensional space. The conclusions of the Fenchel duality Theorem 7 remain valid if the regularity con-
dition (12) is replaced by the assumption that the functions f and g are polyhedral with

dom g ∩ T dom f 6= ∅.

Fenchel duality applied to a linear programming program yields the well-known Lagrangian duality.

Corollary 3 (Linear programming duality) Given c ∈ Rn, b ∈ Rm and A an m × n real matrix, one
has

inf
x∈Rn
{cTx | Ax ≤ b} ≥ sup

λ∈Rm+
{−bTλ | ATλ = −c}, (14)

where Rm+ :=
{

(x1, x2, · · · , xm) | xi ≥ 0, i = 1, 2, · · · ,m
}

. Equality in (14) holds if b ∈ ranA+Rm+ . Moreover,
both extrema are obtained when finite.
Proof. Take f(x) := cTx, T := A and g(y) := ιb≥(y) where b≥ := {y ∈ Rm | y ≤ b}. Then apply the
polyhedral Fenchel duality Theorem 8 observing that f∗ = ι{c}, and for any λ ∈ Rm,

g∗(λ) = sup
y≤b

yTλ =

{
bTλ, if λ ∈ Rm+ ;
+∞, otherwise;

and (14) follows, since dom g ∩A dom f = {Ax ∈ Rm | Ax ≤ b}. �
One can easily derive various relevant results from Fenchel duality, such as the Sandwich theorem, the

subdifferential sum rule, and the Hahn-Banach extension theorem, among many others.

Theorem 9 (Extended sandwich theorem) Let X and Y be Banach spaces and let T : X → Y be a
bounded linear mapping. Suppose that f : X → ]−∞,+∞], g : Y → ]−∞,+∞] are proper convex functions
which together with T satisfy either (12) or (13). Assume that f ≥ −g ◦ T . Then there is an affine function
α : X → R of the form α(x) = 〈T ∗y∗, x〉 + r satisfying f ≥ α ≥ −g ◦ T . Moreover, for any x̄ satisfying
f(x̄) = (−g ◦ T )(x̄), we have −y∗ ∈ ∂g(T x̄).

Proof. With notation as in the Fenchel duality Theorem 7, we know d = p, and since p ≥ 0 because
f(x) ≥ −g(Tx), the supremum in d is attained. Therefore there exists y∗ ∈ Y ∗ such that

0 ≤ p = d = −f∗(T ∗y∗)− g∗(−y∗).

Then, by Fenchel-Young inequality (4), we obtain

0 ≤ p ≤ f(x)− 〈T ∗y∗, x〉+ g(y) + 〈y∗, y〉, (15)

for any x ∈ X and y ∈ Y . For any z ∈ X, setting y = Tz in the previous inequality, we obtain

a := sup
z∈X

[−g(Tz)− 〈T ∗y∗, z〉] ≤ b := inf
x∈X

[f(x)− 〈T ∗y∗, x〉]

Now choose r ∈ [a, b]. The affine function α(x) := 〈T ∗y∗, x〉+ r satisfies f ≥ α ≥ −g ◦ T , as claimed.



12 Francisco J. Aragón Artacho et al.

The last assertion follows from (15) simply by setting x = x̄, where x̄ satisfies f(x̄) = (−g ◦ T )(x̄). Then
we have supy∈Y {〈−y∗, y〉 − g(y)} ≤ (−g ◦ T )(x̄)− 〈T ∗y∗, x̄〉. Thus g∗(−y∗) + g(T x̄) ≤ −〈y∗, T x̄〉 and hence
−y∗ ∈ ∂g(T x̄). �

When X = Y and T is the identity we recover the classical Sandwich theorem. The next example shows
that without a constraint qualification, the sandwich theorem may fail.

Example 10 Consider f, g : R→ ]−∞,+∞] given by

f(x) :=

{
−
√
−x, for x ≤ 0,

+∞ otherwise,
and g(x) :=

{
−
√
x, for x ≥ 0,

+∞ otherwise.

In this case,
⋃
λ>0 λ [dom g − dom f ] = [0,+∞[ 6= R and it is not difficult to prove there is not any affine

function which separates f and −g, see Figure 2. ♦

The prior constraint qualifications are sufficient but not necessary for the sandwich theorem as we illustrate
in the next example.

Example 11 Let f, g : R→ ]−∞,+∞] be given by

f(x) :=

{
1
x , for x > 0,
+∞ otherwise,

and g(x) :=

{
− 1
x , for x < 0,

+∞ otherwise.

Despite that
⋃
λ>0 λ [dom g − dom f ] = ]−∞, 0[ 6= R, the affine function α(x) := −x satisfies f ≥ α ≥ −g,

see Figure 2. ♦

f

−g f

−g

Fig. 2 On the left we show the failure of the sandwich theorem in the absence of the constraint qualification; of the right we
show that the constraint qualification is not necessary.

Theorem 10 (Subdifferential sum rule) Let X and Y be Banach spaces, and let f : X → ]−∞,+∞]
and g : Y → ]−∞,+∞] be convex functions and let T : X → Y be a bounded linear mapping. Then at any
point x ∈ X we have the sum rule

∂(f + g ◦ T )(x) ⊇ ∂f(x) + T ∗(∂g(Tx))

with equality if (12) or (13) hold.
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Proof. The inclusion is straightforward by using the definition of the subdifferential, so we prove the reverse
inclusion. Fix any x ∈ X and let x∗ ∈ ∂(f + g ◦T )(x). Then 0 ∈ ∂(f −〈x∗, · 〉+ g ◦T )(x). Conditions for the
equality in Theorem 7 are satisfied for the functions f(·) − 〈x∗, · 〉 and g. Thus, there exists y∗ ∈ Y ∗ such
that

f(x)− 〈x∗, x〉+ g(Tx) = −f∗(T ∗y∗ + x∗)− g∗(−y∗).

Now set z∗ := T ∗y∗ + x∗. Hence, by the Fenchel-Young inequality (4), one has

0 ≤ f(x) + f∗(z∗)− 〈z∗, x〉 = −g(Tx)− g∗(−y∗)− 〈T ∗y∗, x〉 ≤ 0;

whence,

f(x) + f∗(z∗) = 〈z∗, x〉
g(Tx) + g∗(−y∗) = 〈−y∗, Tx〉.

Therefore equality in Fenchel-Young occurs, and one has z∗ ∈ ∂f(x) and −y∗ ∈ ∂g(Tx), which completes
the proof. �

The subdifferential sum rule for two convex functions with a finite common point where one of them
is continuous was proved by Rockafellar in 1966 with an argumentation based on Fenchel duality, see [55,
Th. 3]. In an earlier work in 1963, Moreau [46] proved the subdifferential sum rule for a pair of convex and
lsc functions, in the case that infimal convolution of the conjugate functions is achieved, see [49, p. 63] for
more details. Moreau actually proved this result for functions which are the supremum of a family of affine
continuous linear functions, a set which agrees with the convex and lsc functions when X is a locally convex
vector space, see [44] or [49, p. 28]. See also [36,37,27,19] for more information about the subdifferential
calculus rule.

Theorem 11 (Hahn–Banach extension) Let X be a Banach space and let f : X → R be a continuous
sublinear function with dom f = X. Suppose that L is a linear subspace of X and the function h : L→ R is
linear and dominated by f , that is, f ≥ h on L. Then there exists x∗ ∈ X∗, dominated by f , such that

h(x) = 〈x∗, x〉, for all x ∈ L.

Proof. Take g := −h+ ιL and apply Theorem 7 to f and g with T the identity mapping. Then, there exists
x∗ ∈ X∗ such that

0 ≤ inf
x∈X
{f(x)− h(x) + ιL(x)}

= −f∗(x∗)− sup
x∈X
{〈−x∗, x〉+ h(x)− ιL(x)}

= −f∗(x∗) + inf
x∈L
{〈x∗, x〉 − h(x)}; (16)

whence,

f∗(x∗) ≤ 〈x∗, x〉 − h(x), for all x ∈ L.

Observe that f∗(x∗) ≥ 0 since f(0) = 0. Thus, being L a linear subspace, we deduce from the above inequality
that

h(x) = 〈x∗, x〉, for all x ∈ L.

Then (16) implies f∗(x∗) = 0, from where

f(x) ≥ 〈x∗, x〉, for all x ∈ X,

and we are done. �
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Remark 2 (Moreau’s max formula, Theorem 1)—a true child of Cauchy’s principle of steepest descent—
can be also derived from Fenchel duality. In fact, the non-emptiness of the subdifferential at a point of
continuity, Moreau’s max formula, Fenchel duality, the Sandwich theorem, the subdifferential sum rule, and
Hahn-Banach extension theorem are all equivalent, in the sense that they are easily inter-derivable.

In outline, one considers h(u) := infx
(
f(x)+g(Ax+u)

)
and checks that ∂h(0) 6= ∅ implies the Fenchel and

Lagrangian duality results; while condition (12) or (13) implies h is continuous at zero and thus Theorem 1
finishes the proof. Likewise, the polyhedral calculus [21, §5.1] implies h is polyhedral when f and g are
and shows that polyhedral functions have domh = dom ∂h. This establishes Theorem 8. This also recovers
abstract LP duality (e.g., semidefinite programming and conic duality) under condition (12). See [21,22] for
more details. ♦

Let us turn to two illustrations of the power of convex analysis within functional analysis.

A Banach limit is a bounded linear functional Λ on the space of bounded sequences of real numbers `∞

such that

(i) Λ((xn+1)n∈N) = Λ((xn)n∈N) (so it only depends on the sequence’s tail),
(ii) lim infk xk ≤ Λ

(
(xn)n∈N

)
≤ lim supk xk

where (xn)n∈N = (x1, x2, . . .) ∈ `∞ and (xn+1)n∈N = (x2, x3, . . .). Thus Λ agrees with the limit on c, the
subspace of sequences whose limit exists. Banach limits care peculiar objects!

The Hahn-Banach extension theorem can be used show the existence of Banach limits (see Sucheston [65]
or [22, Exercise 5.4.12]). Many of its earliest applications were to summability theory and related fields. We
sketch Sucheston’s proof as follows.

Theorem 12 (Banach limits) (See [65].) Banach limits exist.

Proof. Let c be the subspace of convergent sequences in `∞. Define f : `∞ → R by

x := (xn)n∈N 7→ lim
n→∞

(
sup
j

1

n

n∑
i=1

xi+j

)
. (17)

Then f is sublinear with full domain, since the limit in (17) always exists (see [65, p. 309]). Define h on
c by h := limn xn for every x := (xn)n∈N in c. Hence h is linear and agrees with f on c. Applying the
Hahn-Banach extension Theorem 11, there exists Λ ∈ (`∞)∗, dominated by f , such that Λ = h on c. Thus Λ
extends the limit linearly from c to `∞. Let S denote the forward shift defined as S((xn)n∈N) := (xn+1)n∈N.
Note that f(Sx− x) = 0, since

|f(Sx− x)| =
∣∣∣∣ lim
n→∞

(
sup
j

1

n
(xj+n+1 − xj+1)

)∣∣∣∣ ≤ lim
n→∞

2

n
sup
j
|xj | = 0.

Thus, Λ(Sx)−Λ(x) = Λ(Sx− x) ≤ 0, and Λ(x)−Λ(Sx) = Λ(x− Sx) ≤ f(x− Sx) = 0; that is, Λ is indeed
a Banach limit. �

Remark 3 One of the referees kindly pointed out that in the proof of Theorem 12, the function h can be
simply defined by h : {0} → R with h(0) = 0.

Theorem 13 (Principle of uniform boundedness) (See ([22, Example 1.4.8].) Let Y be another Banach
space and Tα : X → Y for α ∈ A be bounded linear operators. Assume that supα∈A ‖Tα(x)‖ < +∞ for each
x in X. Then supα∈A ‖Tα‖ < +∞.



Applications of Convex Analysis within Mathematics 15

Proof. Define a function fA by

fA(x) := sup
α∈A
‖Tα(x)‖

for each x in X. Then, as observed in Fact 1(i), fA is convex. It is also lower semicontinuous since
each mapping x 7→ ‖Tα(x)‖ is continuous. Hence fA is a finite, lower semicontinuous and convex (ac-
tually sublinear) function. Now Fact 1(iv) ensures fA is continuous at the origin. Select ε > 0 with
sup{fA(x) | ‖x‖ ≤ ε} ≤ 1 + fA(0) = 1. It follows that

sup
α∈A
‖Tα‖ = sup

α∈A

1

ε
sup
‖x‖≤ε

‖Tα(x)‖ =
1

ε
sup
‖x‖≤ε

sup
α∈A
‖Tα(x)‖ ≤ 1

ε
.

Thus, uniform boundedness is revealed to be continuity of fA. �

3 The Chebyshev problem

Let C be a nonempty subset of X. We define the nearest point mapping by

PC(x) := {v ∈ C | ‖v − x‖ = dC(x)}.

A set C is said to be a Chebyshev set if PC(x) is a singleton for every x ∈ X. If PC(x) 6= ∅ for every x ∈ X,
then C is said to be proximal; the term proximinal is also used.

In 1961 Victor Klee [39] posed the following fundamental question: Is every Chebyshev set in a Hilbert
space convex? At this stage, it is known that the answer is affirmative for weakly closed sets. In what follows
we will present a proof of this fact via convex duality. To this end, we will make use of the following fairly
simple lemma.

Lemma 1 (See [22, Proposition 4.5.8].) Let C be a weakly closed Chebyshev subset of a Hilbert space H.
Then the nearest point mapping PC is continuous.

Theorem 14 Let C be a nonempty weakly closed subset of a Hilbert space H. Then C is convex if and only
if C is a Chebyshev set.

Proof. For the direct implication, we will begin by proving that C is proximal. We can and do suppose that
0 ∈ C. Pick any x ∈ H. Consider the convex and lsc functions f(z) := −〈x, z〉+ ιBH (z) and g(z) := σC(z).
Notice that

⋃
λ>0 λ [dom g − dom f ] = H (in fact f is continuous at 0 ∈ dom f ∩dom g). With the notation of

Theorem 7, one has p = d, and the supremum of the dual problem is attained if finite. Since f∗(y) = ‖x+y‖
and g∗(y) = ιC(y), as C is closed, the dual problem (11) takes the form

d = sup
y∈H
{−‖x+ y‖ − ιC(−y)} = − dC(x).

Choose any c ∈ C. Observe that 0 ≤ dC(x) ≤ ‖x − c‖. Therefore the supremum must be attained, and
PC(x) 6= ∅. Uniqueness follows easily from the convexity of C.

For the converse, consider the function f := 1
2‖ · ‖

2 + ιC . We first show that

∂f∗(x) = {PC(x)}, for all x ∈ H. (18)
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Indeed, for x ∈ H,

f∗(x) = sup
y∈C

{
〈x, y〉 − 1

2
〈y, y〉

}
=

1

2
〈x, x〉+

1

2
sup
y∈C
{−〈x, x〉+ 2〈x, y〉 − 〈y, y〉}

=
1

2
‖x‖2 − 1

2
inf
y∈C
‖x− y‖2 =

1

2
‖x‖2 − 1

2
d2
C(x)

=
1

2
‖x‖2 − 1

2
‖x− PC(x)‖2 = 〈x, PC(x)〉 − 1

2
‖PC(x)‖2

= 〈x, PC(x)〉 − f(PC(x)).

Consequently, by Proposition 3, PC(x) ∈ ∂f∗(x) for x ∈ X. Now suppose y ∈ ∂f∗(x), and define xn =
x + 1

n (y − PC(x)). Then xn → x, and hence PC(xn) → PC(x) by Lemma 1. Using the subdifferential
inequality, we have

0 ≤ 〈xn − x, PC(xn)− y〉 =
1

n
〈y − PC(x), PC(xn)− y〉.

This now implies:

0 ≤ lim
n→∞

〈y − PC(x), PC(xn)− y〉 = −‖y − PC(x)‖2.

Consequently, y = PC(x) and so (18) is established.
Since f∗ is continuous and we just proved that ∂f∗ is a singleton, Proposition 2 implies that f∗ is Gâteaux

differentiable. Now −∞ < f∗∗(x) ≤ f(x) = 1
2‖x‖

2 for all x ∈ C. Thus, f∗∗ is a proper function. One can
easily check that f is sequentially weakly lsc, C being weakly closed. Therefore, Theorem 3 implies that f is
convex; whence, dom f = C must be convex. �

Observe that we have actually proved that every Chebyshev set with a continuous projection mapping is
convex (and closed). We finish the section by recalling a simple but powerful “hidden convexity” result.

Remark 4 (See [5].) Let C be a closed subset of a Hilbert space H. Then there exists a continuous and
convex function f defined on H such that d2

C(x) = ‖x‖2 − f(x), ∀x ∈ H. Precisely, f can be taken as
x 7→ supc∈C{2〈x, c〉 − ‖c‖2}.

4 Monotone operator theory

Let A : X ⇒ X∗ be a set-valued operator (also known as a relation, point-to-set mapping or multifunction),
i.e., for every x ∈ X, Ax ⊆ X∗, and let graA :=

{
(x, x∗) ∈ X ×X∗ | x∗ ∈ Ax

}
be the graph of A. The

domain of A is domA :=
{
x ∈ X | Ax 6= ∅

}
and ranA := A(X) is the range of A. We say that A is

monotone if

〈x− y, x∗ − y∗〉 ≥ 0, for all (x, x∗), (y, y∗) ∈ graA, (19)

and maximally monotone if A is monotone and A has no proper monotone extension (in the sense of graph
inclusion). Given A monotone, we say that (x, x∗) ∈ X ×X∗ is monotonically related to graA if

〈x− y, x∗ − y∗〉 ≥ 0, for all (y, y∗) ∈ graA.

Monotone operators have frequently shown themselves to be a key class of objects in both modern Opti-
mization and Analysis; see, e.g., [13,14,15,24], the books [7,22,28,53,61,62,58,66,67,68] and the references
given therein.
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Given sets S ⊆ X and D ⊆ X∗, we define S⊥ by S⊥ := {x∗ ∈ X∗ | 〈x∗, x〉 = 0, ∀x ∈ S} and D⊥ by
D⊥ := {x ∈ X | 〈x, x∗〉 = 0, ∀x∗ ∈ D} [54]. Then the adjoint of A is the operator A∗ : X∗∗ ⇒ X∗ such
that

graA∗ :=
{

(x∗∗, x∗) ∈ X∗∗ ×X∗ | (x∗,−x∗∗) ∈ (graA)⊥
}
.

Note that the adjoint is always a linear relation, i.e. its graph is a linear subspace.
The Fitzpatrick function [33] associated with an operator A is the function FA : X ×X∗ → ]−∞,+∞]

defined by

FA(x, x∗) := sup
(a,a∗)∈graA

(
〈x, a∗〉+ 〈a, x∗〉 − 〈a, a∗〉

)
. (20)

Fitzpatrick functions have been proved to be an important tool in modern monotone operator theory. One
of the main reasons is shown in the following result.

Fact 4 (Fitzpatrick) (See ([33, Propositions 3.2&4.2, Theorem 3.4 and Corollary 3.9].) Let A : X ⇒ X∗ be
monotone with domA 6= ∅. Then FA is proper lower semicontinuous in the norm × weak∗-topology ω(X∗, X),
convex, and FA = 〈·, ·〉 on graA. Moreover, if A is maximally monotone, for every (x, x∗) ∈ X × X∗, the
inequality

〈x, x∗〉 ≤ FA(x, x∗) ≤ F ∗A(x∗, x)

is true, and the first equality holds if and only if (x, x∗) ∈ graA.

The next result is central to maximal monotone operator theory and algorithmic analysis. Originally it
was proved by more extended direct methods than the concise convex analysis argument we present next.

Theorem 15 (Local boundedness) (See [53, Theorem 2.2.8].) Let A : X ⇒ X∗ be monotone with
int domA 6= ∅. Then A is locally bounded at x ∈ int domA, i.e., there exist δ > 0 and K > 0 such
that

sup
y∗∈Ay

‖y∗‖ ≤ K, ∀y ∈ x+ δBX .

Proof. Let x ∈ int domA. After translating the graphs if necessary, we can and do suppose that x = 0 and
(0, 0) ∈ graA. Define f : X → ]−∞,+∞] by

y 7→ sup
(a,a∗)∈graA, ‖a‖≤1

〈y − a, a∗〉.

By Fact 1(i), f is convex and lower semicontinuous. Since 0 ∈ int domA, there exists δ1 > 0 such that
δ1BX ⊆ domA. Now we show that δ1BX ⊆ dom f . Let y ∈ δ1BX and y∗ ∈ Ay. Thence, we have

〈y − a, y∗ − a∗〉 ≥ 0, ∀(a, a∗) ∈ graA, ‖a‖ ≤ 1

⇒ 〈y − a, y∗〉 ≥ 〈y − a, a∗〉, ∀(a, a∗) ∈ graA, ‖a‖ ≤ 1

⇒ +∞ > (‖y‖+ 1) · ‖y∗‖ ≥ 〈y − a, a∗〉, ∀(a, a∗) ∈ graA, ‖a‖ ≤ 1

⇒ f(y) < +∞ ⇒ y ∈ dom f.

Hence δ1BX ⊆ dom f and thus 0 ∈ int dom f . By Fact 1(iv), there is δ > 0 with δ ≤ min{ 1
2 ,

1
2δ1} such that

f(y) ≤ f(0) + 1, ∀y ∈ 2δBX .

Now we show that f(0) = 0. Since (0, 0) ∈ graA, then f(0) ≥ 0. On the other hand, by the monotonicity of A,
〈a, a∗〉 = 〈a−0, a∗−0〉 ≥ 0 for every (a, a∗) ∈ graA. Then we have f(0) = sup(a,a∗)∈graA, ‖a‖≤1〈0−a, a∗〉 ≤ 0.
Thence f(0) = 0.
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Thus,

〈y, a∗〉 ≤ 〈a, a∗〉+ 1, ∀y ∈ 2δBX , (a, a
∗) ∈ graA, ‖a‖ ≤ δ,

whence, taking the supremum with y ∈ 2δBX ,

2δ‖a∗‖ ≤ ‖a‖ · ‖a∗‖+ 1 ≤ δ‖a∗‖+ 1, ∀(a, a∗) ∈ graA, a ∈ δBX

⇒ ‖a∗‖ ≤ 1

δ
, ∀(a, a∗) ∈ graA, a ∈ δBX .

Setting K := 1
δ , we get the desired result. �

Generalizations of Theorem 15 can be found in [62,18] and [23, Lemma 4.1].

4.1 Sum theorem and Minty surjectivity theorem

In the early 1960s, Minty [43] presented an important characterization of maximally monotone operators in
a Hilbert space; which we now reestablish. The proof we give of Theorem 16 is due to Simons and Zălinescu
[63, Theorem 1.2]. We denote by Id the identity mapping from H to H.

Theorem 16 (Minty) Suppose that H is a Hilbert space. Let A : H ⇒ H be monotone. Then A is
maximally monotone if and only if ran(A+ Id) = H.

Proof. “⇒”: Fix any x∗0 ∈ H, and let B : H ⇒ H be given by graB := graA−{(0, x∗0)}. Then B is maximally
monotone. Define F : H ×H → ]−∞,+∞] by

(x, x∗) 7→ FB(x, x∗) +
1

2
‖x||2 +

1

2
‖x∗||2. (21)

Fact 4 together with Fact 1(v) implies that F is coercive. By [66, Theorem 2.5.1(ii)], F has a minimizer.
Assume that (z, z∗) ∈ H×H is a minimizer of F . Then we have (0, 0) ∈ ∂F (z, z∗). Thus, (0, 0) ∈ ∂FB(z, z∗)+
(z, z∗) and (−z,−z∗) ∈ ∂FB(z, z∗). Then〈

(−z,−z∗), (b, b∗)− (z, z∗)
〉
≤ FB(b, b∗)− FB(z, z∗), ∀(b, b∗) ∈ graB,

and by Fact 4, 〈
(−z,−z∗), (b, b∗)− (z, z∗)

〉
≤ 〈b, b∗〉 − 〈z, z∗〉, ∀(b, b∗) ∈ graB;

that is,

0 ≤ 〈b, b∗〉 − 〈z, z∗〉+ 〈z, b〉+ 〈z∗, b∗〉 − ‖z‖2 − ‖z∗‖2, ∀(b, b∗) ∈ graB. (22)

Hence, 〈
b+ z∗, b∗ + z

〉
= 〈b, b∗〉+ 〈z, b〉+ 〈z∗, b∗〉+ 〈z, z∗〉 ≥ ‖z + z∗‖2 ≥ 0, ∀(b, b∗) ∈ graB,

which implies that (−z∗,−z) ∈ graB, since B is maximally monotone. This combined with (22) implies
0 ≤ −2〈z, z∗〉 − ‖z‖2 − ‖z∗‖2. Then we have z = −z∗, and (z,−z) = (−z∗,−z) ∈ graB, whence (z,−z) +
(0, x∗0) ∈ graA. Therefor x∗0 ∈ Az + z, which implies x∗0 ∈ ran(A+ Id).

“⇐”: Let (v, v∗) ∈ H × H be monotonically related to graA. Since ran(A + Id) = H, there exists
(y, y∗) ∈ graA such that v∗ + v = y∗ + y. Then we have

−‖v − y‖2 =
〈
v − y, y∗ + y − v − y∗

〉
=
〈
v − y, v∗ − y∗

〉
≥ 0.

Hence v = y, which also implies v∗ = y∗. Thus (v, v∗) ∈ graA, and therefore A is maximally monotone. �
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Remark 5 The extension of Minty’s theorem to reflexive spaces (in which case it asserts the surjectivity of
A + JX for the normalized duality mapping JX defined below) was originally proved by Rockafellar. The
proof given in [22, Proposition 3.5.6, page 119] which uses Fenchel’s duality theorem more directly than the
one we gave here, is only slightly more complicated than that of Theorem 16.

Let A and B be maximally monotone operators from X to X∗. Clearly, the sum operator A + B : X ⇒
X∗ : x 7→ Ax + Bx :=

{
a∗ + b∗ | a∗ ∈ Ax and b∗ ∈ Bx

}
is monotone. Rockafellar established the fol-

lowing important result in 1970 [57], the so-called “sum theorem”: Suppose that X is reflexive. If
domA∩ int domB 6= ∅, then A+B is maximally monotone. We can weaken this constraint qualification to
be that

⋃
λ>0 λ [domA− domB] is a closed subspace (see [4,62,64,22,2]).

We turn to a new proof of this generalized result. To this end, we need the following fact along with the
definition of the partial inf-convolution. Given two real Banach spaces X,Y and F1, F2 : X×Y → ]−∞,+∞],
the partial inf-convolution F1�2F2 is the function defined on X × Y by

F1�2F2 : (x, y) 7→ inf
v∈Y

{
F1(x, y − v) + F2(x, v)

}
.

.

Fact 5 (Simons and Zălinescu) (See [64, Theorem 4.2] or [62, Theorem 16.4(a)].) Let X,Y be real Banach
spaces and F1, F2 : X × Y → ]−∞,+∞] be proper lower semicontinuous and convex bifunctionals. Assume
that for every (x, y) ∈ X × Y ,

(F1�2F2)(x, y) > −∞

and that
⋃
λ>0 λ [PX domF1 − PX domF2] is a closed subspace of X. Then for every (x∗, y∗) ∈ X∗ × Y ∗,

(F1�2F2)∗(x∗, y∗) = min
u∗∈X∗

{F ∗1 (x∗ − u∗, y∗) + F ∗2 (u∗, y∗)} .

We denote by JX the duality map from X to X∗, which will be simply written as J , i.e., the subdifferential
of the function 1

2‖ · ‖
2. Let F : X × Y → ]−∞,+∞] be a bifunctional defined on two real Banach spaces.

Following the notation by Penot [51] we set

F ᵀ : Y ×X : (y, x) 7→ F (x, y). (23)

Theorem 17 (Sum theorem) Suppose that X is reflexive. Let A,B : X ⇒ X be maximally monotone.
Assume that

⋃
λ>0 λ [domA− domB] is a closed subspace. Then A+B is maximally monotone.

Proof. Clearly, A+B is monotone. Assume that (z, z∗) ∈ X ×X∗ is monotonically related to gra(A+B).
Let F1 := FA�2FB , and F2 := F ∗ᵀ1 . By [9, Lemma 5.8],

⋃
λ>0 λ [PX(domFA)− PX(domFB)] is a closed

subspace. Then Fact 5 implies that

F ∗1 (x∗, x) = min
u∗∈X∗

{F ∗A(x∗ − u∗, x) + F ∗B(u∗, x)} , for all (x, x∗) ∈ X ×X∗. (24)

Set G : X ×X∗ → ]−∞,+∞] by

(x, x∗) 7→ F2(x+ z, x∗ + z∗)− 〈x, z∗〉 − 〈z, x∗〉+
1

2
‖x‖2 +

1

2
‖x∗‖2.

Assume that (x0, x
∗
0) ∈ X ×X∗ is a minimizer of G. ([66, Theorem 2.5.1(ii)] implies that minimizers exist

since G is coercive). Then we have (0, 0) ∈ ∂G(x0, x
∗
0). Thus, there exists v∗ ∈ Jx0, v ∈ JX∗x∗0 such that

(0, 0) ∈ ∂F2(x0 + z, x∗0 + z∗) + (v∗, v) + (−z∗,−z), and then

(z∗ − v∗, z − v) ∈ ∂F2(x0 + z, x∗0 + z∗).
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Thence 〈
(z∗ − v∗, z − v), (x0 + z, x∗0 + z∗)

〉
= F2(x0 + z, x∗0 + z∗) + F ∗2 (z∗ − v∗, z − v). (25)

Fact 4 and (24) show that

F2 ≥ 〈·, ·〉, F ∗ᵀ2 = F1 ≥ 〈·, ·〉.

Then by (25),

〈
(z∗ − v∗, z − v), (x0 + z, x∗0 + z∗)

〉
= F2(x0 + z, x∗0 + z∗) + F ∗2 (z∗ − v∗, z − v)

≥
〈
x0 + z, x∗0 + z∗

〉
+
〈
z∗ − v∗, z − v

〉
. (26)

Thus, since v∗ ∈ Jx0, v ∈ JX∗x∗0,

0 ≤ δ :=
〈

(z∗ − v∗, z − v), (x0 + z, x∗0 + z∗)
〉
−
〈
x0 + z, x∗0 + z∗

〉
−
〈
z∗ − v∗, z − v

〉
=
〈
− x0 − v, x∗0 + v∗

〉
= 〈−x0, x

∗
0〉 − 〈x0, v

∗〉 − 〈v, x∗0〉 − 〈v, v∗〉

= 〈−x0, x
∗
0〉 −

1

2
‖x∗0‖2 −

1

2
‖x0‖2 −

1

2
‖v∗‖2 − 1

2
‖v‖2 − 〈v, v∗〉,

which implies

δ = 0 and 〈x0, x
∗
0〉+

1

2
‖x∗0‖2 +

1

2
‖x0‖2 = 0;

that is,

δ = 0 and x∗0 ∈ −Jx0. (27)

Combining (26) and (27), we have F2(x0 + z, x∗0 + z∗) =
〈
x0 + z, x∗0 + z∗

〉
. By (24) and Fact 4,

(x0 + z, x∗0 + z∗) ∈ gra(A+B). (28)

Since (z, z∗) is monotonically related to gra(A+B), it follows from (28) that

〈
x0, x

∗
0

〉
=
〈
x0 + z − z, x∗0 + z∗ − z∗

〉
≥ 0,

and then by (27),

−‖x0‖2 = −‖x∗0‖2 ≥ 0,

whence (x0, x
∗
0) = (0, 0). Finally, by (28), one deduces that (z, z∗) ∈ gra(A + B) and A + B is maximally

monotone. �
It is still unknown whether the reflexivity condition can be omitted in Theorem 17 though many partial

results exist, see [14,15] and [22, §9.7].
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4.2 Autoconjugate functions

Given F : X × X∗ → ]−∞,+∞], we say that F is autoconjugate if F = F ∗ᵀ on X × X∗. We say F is a
representer for graA if

graA =
{

(x, x∗) ∈ X ×X∗ | F (x, x∗) = 〈x, x∗〉
}
. (29)

Autoconjugate functions are the core of representer theory, which has been comprehensively studied in
Optimization and Partial Differential Equations (see [8,9,52,62,22,34]).

Fitzpatrick posed the following question in [33, Problem 5.5]:

If A : X ⇒ X∗ is maximally monotone, does there necessarily exist an autoconjugate representer for
A?

Bauschke and Wang gave an affirmative answer to the above question in reflexive spaces by construction of
the function BA in Fact 6. The first construction of an autoconjugate representer for a maximally monotone
operator satisfying a mild constraint qualification in a reflexive space was provided by Penot and Zălinescu
in [52]. This naturally raises a question:

Is BA still an autoconjugate representer for a maximally monotone operator A in a general Banach
space?

We give a negative answer to the above question in Example 13: in certain spaces, BA fails to be autocon-
jugate.

Fact 6 (Bauschke and Wang) (See [8, Theorem 5.7].) Suppose that X is reflexive. Let A : X ⇒ X∗ be
maximally monotone. Then

BA : X ×X∗ → ]−∞,+∞]

(x, x∗) 7→ inf
(y,y∗)∈X×X∗

{
1
2FA(x+ y, x∗ + y∗) + 1

2F
∗ᵀ
A (x− y, x∗ − y∗) + 1

2‖y‖
2 + 1

2‖y
∗‖2
}

(30)

is an autoconjugate representer for A.

We will make use of the following result to prove Theorem 18 below.

Fact 7 (Simons) (See [62, Corollary 10.4].) Let f1, f2, g : X → ]−∞,+∞] be proper convex. Assume that
g is continuous at a point of dom f1 − dom f2. Suppose that

h(x) := inf
z∈X

{
1
2f1(x+ z) + 1

2f2(x− z) + 1
4g(2z)

}
> −∞, ∀x ∈ X.

Then

h∗(x∗) = min
z∗∈X∗

{
1
2f
∗
1 (x∗ + z∗) + 1

2f
∗
2 (x∗ − z∗) + 1

4g
∗(−2z∗)

}
, ∀x∗ ∈ X∗.

Let A : X ⇒ X∗ be a linear relation. We say that A is skew if graA ⊆ gra(−A∗); equivalently, if
〈x, x∗〉 = 0, ∀(x, x∗) ∈ graA. Furthermore, A is symmetric if graA ⊆ graA∗; equivalently, if 〈x, y∗〉 = 〈y, x∗〉,
∀(x, x∗), (y, y∗) ∈ graA. We define the symmetric part and the skew part of A via

P := 1
2A+ 1

2A
∗ and S := 1

2A−
1
2A
∗, (31)

respectively. It is easy to check that P is symmetric and that S is skew.
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Fact 8 (See [6, Theorem 3.7].) Let A : X∗ → X∗∗ be linear and continuous. Assume that ranA ⊆ X and
that there exists e ∈ X∗∗\X such that

〈Ax∗, x∗〉 = 〈e, x∗〉2, ∀x∗ ∈ X∗.

Let P and S respectively be the symmetric part and skew part of A. Let T : X ⇒ X∗ be defined by

graT :=
{

(−Sx∗, x∗) | x∗ ∈ X∗, 〈e, x∗〉 = 0
}

=
{

(−Ax∗, x∗) | x∗ ∈ X∗, 〈e, x∗〉 = 0
}
. (32)

Then the following hold.

(i) A is a maximally monotone operator on X∗ .
(ii) Px∗ = 〈x∗, e〉e, ∀x∗ ∈ X∗.
(iii) T is maximally monotone and skew on X.
(iv) graT ∗ = {(Sx∗ + re, x∗) | x∗ ∈ X∗, r ∈ R}.
(v) FT = ιC , where C := {(−Ax∗, x∗) | x∗ ∈ X∗}.

We next give concrete examples of A, T as in Fact 8.

Example 12 (c0) (See [6, Example 4.1].) Let X := c0, with norm ‖ · ‖∞ so that X∗ = `1 with norm ‖ · ‖1,
and X∗∗ = `∞ with its second dual norm ‖ · ‖∗ (i.e., ‖y‖∗ := supn∈N |yn|, ∀y := (yn)n∈N ∈ `∞). Fix
α := (αn)n∈N ∈ `∞ with lim supαn 6= 0, and let Aα : `1 → `∞ be defined by

(Aαx
∗)n := α2

nx
∗
n + 2

∑
i>n

αnαix
∗
i , ∀x∗ = (x∗n)n∈N ∈ `1. (33)

Now let Pα and Sα respectively be the symmetric part and skew part of Aα. Let Tα : c0 ⇒ X∗ be defined by

graTα :=
{

(−Sαx∗, x∗) | x∗ ∈ X∗, 〈α, x∗〉 = 0
}

=
{

(−Aαx∗, x∗) | x∗ ∈ X∗, 〈α, x∗〉 = 0
}

=
{(

(−
∑
i>n

αnαix
∗
i +

∑
i<n

αnαix
∗
i )n∈N, x

∗) | x∗ ∈ X∗, 〈α, x∗〉 = 0
}
. (34)

Then

(i) 〈Aαx∗, x∗〉 = 〈α, x∗〉2, ∀x∗ = (x∗n)n∈N ∈ `1 and (34) is well defined.
(ii) Aα is a maximally monotone.
(iii) Tα is a maximally monotone operator.
(iv) Let G : `1 → `∞ be Gossez’s operator [35] defined by(

G(x∗)
)
n

:=
∑
i>n

x∗i −
∑
i<n

x∗i , ∀(x∗n)n∈N ∈ `1.

Then Te : c0 ⇒ `1 as defined by

graTe := {(−G(x∗), x∗) | x∗ ∈ `1, 〈x∗, e〉 = 0}

is a maximally monotone operator, where e := (1, 1, . . . , 1, . . .). ♦

We may now show that BT need not be autoconjugate.
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Theorem 18 Let A : X∗ → X∗∗ be linear and continuous. Assume that ranA ⊆ X and that there exists
e ∈ X∗∗\X such that ‖e‖ < 1√

2
and

〈Ax∗, x∗〉 = 〈e, x∗〉2, ∀x∗ ∈ X∗.

Let P and S respectively be the symmetric part and skew part of A. Let T,C be defined as in Fact 8. Then

BT (−Aa∗, a∗) > B∗T (a∗,−Aa∗), ∀a∗ /∈ {e}⊥.

In consequence, BT is not autoconjugate.

Proof. First we claim that

ι∗ᵀC |X×X∗ = ιgraT . (35)

Clearly, if we set D := {(A∗x∗, x∗) | x∗ ∈ X∗}, we have

ι∗ᵀC = σᵀ
C = ιᵀ

C⊥
= ιD, (36)

where in the second equality we use the fact that C is a subspace. Additionally,

A∗x∗ ∈ X ⇔ (S + P )∗x∗ ∈ X ⇔ S∗x∗ + P ∗x∗ ∈ X ⇔ −Sx∗ + Px∗ ∈ X
⇔ −Sx∗ − Px∗ + 2Px∗ ∈ X ⇔ 2Px∗ −Ax∗ ∈ X ⇔ Px∗ ∈ X (since ranA ⊆ X)

⇔ 〈x∗, e〉e ∈ X (by Fact 8(ii))

⇔ 〈x∗, e〉 = 0 (since e /∈ X). (37)

Observe that Px∗ = 0 for all x∗ ∈ {e}⊥ by Fact 8(ii). Thus, A∗x∗ = −Ax∗ for all x∗ ∈ {e}⊥. Combining (36)
and (37), we have

ι∗ᵀC |X×X∗ = ιD∩(X×X∗) = ιgraT ,

and hence (35) holds.
Let a∗ /∈ {e}⊥. Then 〈a∗, e〉 6= 0. Now we compute BT (−Aa∗, a∗). By Fact 8(v) and (35),

BT (−Aa∗, a∗)
= inf

(y,y∗)∈X×X∗

{
ιC(−Aa∗ + y, a∗ + y∗) + ιgraT (−Aa∗ − y, a∗ − y∗) + 1

2‖y‖
2 + 1

2‖y
∗‖2
}
. (38)

Thus

BT (−Aa∗, a∗) = inf
y=−Ay∗

{
ιgraT (−Aa∗ − y, a∗ − y∗) + 1

2‖y‖
2 + 1

2‖y
∗‖2
}

= inf
y=−Ay∗, 〈a∗−y∗,e〉=0

{
1
2‖y‖

2 + 1
2‖y
∗‖2
}

= inf
〈a∗−y∗,e〉=0

{
1
2‖Ay

∗‖2 + 1
2‖y
∗‖2
}

≥ inf
〈a∗−y∗,e〉=0

〈Ay∗, y∗〉 = inf
〈a∗−y∗,e〉=0

〈e, y∗〉2

= 〈e, a∗〉2. (39)

Next we will compute B∗T (a∗,−Aa∗). By Fact 7 and (38), we have

B∗T (a∗,−Aa∗)

= min
(y∗,y∗∗)∈X∗×X∗∗

{
1

2
ι∗C(a∗ + y∗,−Aa∗ + y∗∗) +

1

2
ι∗graT (a∗ − y∗,−Aa∗ − y∗∗) + 1

2‖y
∗∗‖2 + 1

2‖y
∗‖2
}

= min
(y∗,y∗∗)∈X∗×X∗∗

{
ιD(−Aa∗ + y∗∗, a∗ + y∗) + ι(graT )⊥(a∗ − y∗,−Aa∗ − y∗∗) + 1

2‖y
∗∗‖2 + 1

2‖y
∗‖2
}

(by (36))
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≤ ιD(−Aa∗ + 2Pa∗, a∗) + ι(graT )⊥(a∗,−Aa∗ − 2Pa∗) + 1
2‖2Pa

∗‖2 (by taking y∗ = 0, y∗∗ = 2Pa∗)

= ιgra(−T∗)(−Aa∗ − 2Pa∗, a∗) + 1
2‖2Pa

∗‖2

= 1
2‖2Pa

∗‖2 (by Fact 8(iv))

= 1
2‖2〈a

∗, e〉e‖2 (by Fact 8(ii))

= 2〈a∗, e〉2‖e‖2.

This inequality along with (39), 〈e, a∗〉 6= 0 and ‖e‖ < 1√
2
, yield

BT (−Aa∗, a∗) ≥ 〈e, a∗〉2 > 2〈a∗, e〉2‖e‖2 ≥ B∗T (a∗,−Aa∗), ∀a∗ /∈ {e}⊥.

Hence BT is not autoconjugate. �

Example 13 (Example 12 revisited) Let X := c0, with norm ‖ · ‖∞ so that X∗ = `1 with norm ‖ · ‖1, and
X∗∗ = `∞ with its second dual norm ‖ · ‖∗. Fix α := (αn)n∈N ∈ `∞ with lim supαn 6= 0 and ‖α‖∗ < 1√

2
, and

let Aα : `1 → `∞ be defined by

(Aαx
∗)n := α2

nx
∗
n + 2

∑
i>n

αnαix
∗
i , ∀x∗ = (x∗n)n∈N ∈ `1. (40)

Now let Pα and Sα respectively be the symmetric part and skew part of Aα. Let Tα : c0 ⇒ X∗ be defined by

graTα :=
{

(−Sαx∗, x∗) | x∗ ∈ X∗, 〈α, x∗〉 = 0
}

=
{

(−Aαx∗, x∗) | x∗ ∈ X∗, 〈α, x∗〉 = 0
}

=
{(

(−
∑
i>n

αnαix
∗
i +

∑
i<n

αnαix
∗
i )n∈N, x

∗) | x∗ ∈ X∗, 〈α, x∗〉 = 0
}
. (41)

Then, by Example 12 and Theorem 18,

BTα(−Aa∗, a∗) > B∗Tα(a∗,−Aa∗), ∀a∗ /∈ {e}⊥.

In consequence, BTα is not autoconjugate. ♦

The latter raises a very interesting question:

Problem 1 Is there a maximally monotone operator on some (resp. every) non-reflexive Banach space that
has no autoconjugate representer?

4.3 The Fitzpatrick function and differentiability

The Fitzpatrick function introduced in [33] was discovered precisely to provide a more transparent convex
alternative to the earlier saddle function construction due to Krauss [22]—we have not discussed saddle-
functions but they produce interesting maximally monotone operators [57, §33 & §37]. At the time, Fitz-
patrick’s interests were more centrally in the differentiation theory for convex functions and monotone
operators.

The search for results relating when a maximally monotone T is single-valued to differentiability of FT did
not yield fruit, and he put the function aside. This is still the one area where to the best of our knowledge
FT has proved of very little help—in part because generic properties of domFT and of dom(T ) seem poorly
related.

That said, monotone operators often provide efficient ways to prove differentiability of convex functions.
The discussion of Mignot’s theorem in[22] is somewhat representative of how this works as is the treatment
in [53]. By contrast, as we have seen the Fitzpatrick function and its relatives now provide the easiest access
to a gamut of solvability and boundedness results.
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5 Other results

5.1 Renorming results: Asplund averaging

Edgar Asplund [3] showed how to exploit convex analysis to provide remarkable results on the existence of
equivalent norms with nice properties. Most optimizers are unaware of his lovely idea which we recast in
the language of inf-convolution. Our development is a reworking of that in Day [31]. Let us start with two
equivalent norms ‖ · ‖1 and ‖ · ‖2 on a Banach space X. We consider the quadratic forms p0 := ‖ · ‖21/2 and
q0 := ‖ · ‖22/2, and average for n ≥ 0 by

pn+1(x) :=
pn(x) + qn(x)

2
and qn+1(x) :=

(pn�qn)(2x)

2
. (42)

Let C > 0 be such that q0 ≤ p0 ≤ (1+C)q0. By the construction of pn and qn, we have qn ≤ pn ≤ (1+4−nC)qn
([3, Lemma]) and so the sequences (pn)n∈N, (qn)n∈N converge to a common limit: a convex quadratic function
p.

We shall show that the norm ‖ · ‖3 :=
√

2p typically inherits the good properties of both ‖ · ‖1 and ‖ · ‖2.
This is based on the following fairly straightforward result.

Theorem 19 (Asplund) (See [3, Theorem 1].) If either p0 or q0 is strictly convex, so is p.

We make a very simple application in the case that X is reflexive. In [41], Lindenstrauss showed that
every reflexive Banach space has an equivalent strictly convex norm. The reader may consult [22, Chapter 4]
for more general results. Now take ‖ · ‖1 to be an equivalent strictly convex norm on X, and take ‖ · ‖2 to be
an equivalent smooth norm with its dual norm on X∗ strictly convex. Theorem 19 shows that p is strictly
convex. We note that by Corollary 1 and Fact 3

q∗n+1(x∗) :=
q∗n(x∗) + qn(x∗)

2
and p∗n+1(x∗) :=

(p∗n�q
∗
n)(2x∗)

2

so that Theorem 19 applies to p∗0 and q∗0 . Hence p∗ is strictly convex (see also [30, Proof of Corollary 1,
page 111]). Hence ‖ · ‖3(:=

√
2p) and its dual norm (:=

√
2p∗) are equivalent strictly convex norms on X

and X∗ respectively.
Hence ‖ · ‖3 is an equivalent strictly convex and smooth norm (since its dual is strictly convex). The

existence of such a norm was one ingredient of Rockafellar’s first proof of the Sum theorem.

5.2 Resolvents of maximally monotone operators and connection with convex functions

It is well known since Minty, Rockafellar, and Bertsekas-Eckstein that in Hilbert spaces, monotone operators
can be analyzed from the alternative viewpoint of certain nonexpansive (and thus Lipschitz continuous)
mappings, more precisely, the so-called resolvents. Given a Hilbert spaceH and a set-valued operator A : H ⇒
H, the resolvent of A is

JA := (Id +A)−1.

The history of this notion goes back to Minty [43] (in Hilbert spaces) and Brezis, Crandall and Pazy [29]
(in Banach spaces). There exist more general notions of resolvents based on different tools, such as the
normalized duality mapping, the Bregman distance or other maximally monotone operators (see [40,1,11]).
For more details on resolvents on Hilbert spaces see [7].

The Minty surjectivity theorem (Theorem 16 [43]) implies that a monotone operator is maximally mono-
tone if and only if the resolvent is single-valued with full domain. In fact, a classical result due to Eckstein-
Bertsekas [32] says even more. Recall that a mapping T : H → H is firmly nonexpansive if for all x, y ∈ H,
‖Tx− Ty‖ ≤ 〈Tx− ty, x− y〉.
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Theorem 20 Let H be a Hilbert space. An operator A : H ⇒ H is (maximal) monotone if and only if JA
is firmly nonexpansive (with full domain).

Example 14 Given a closed convex set C ⊆ H, the normal cone operator of C, NC , is a maximally monotone
operator whose resolvent can be proved to be the metric projection onto C. Therefore, Theorem 20 implies
the firm nonexpansivity of the metric projection. ♦

In the particular case when A is the subdifferential of a possibly non-differentiable convex function in a
Hilbert space, whose maximal monotonicity was established by Moreau [48] (in Banach spaces this is due
to Rockafellar [56], see also [25,22]), the resolvent turns into the proximal mapping in the following sense of
Moreau. If f : H → ]−∞,+∞] is a lower semicontinuous convex function defined on a Hilbert space H, the
proximal or proximity mapping is the operator proxf : H → H defined by

proxf (x) := argmin
y∈H

{
f(y) +

1

2
‖x− y‖2

}
.

This mapping is well-defined because proxf (x) exists and is unique for all x ∈ H. Moreover, there exists the
following subdifferential characterization: u = proxf (x) if and only if x− u ∈ ∂f(u).

Moreau’s decomposition in terms of the proximal mapping is a powerful nonlinear analysis tool in the
Hilbert setting that has been used in various areas of optimization and applied mathematics. Moreau estab-
lished his decomposition motivated by problems in unilateral mechanics. It can be proved readily by using
the conjugate and subdifferential.

Theorem 21 (Moreau decomposition) Given a lower semicontinuous convex function f : H →
]−∞,+∞], for all x ∈ H,

x = proxf (x) + proxf∗(x).

Example 15 Note that for f := ιC , with C closed and convex, the proximal mapping turns into the pro-
jection onto a closed and convex set C. Therefore, this result generalizes the decomposition by orthogonal
projection on subspaces. In particular, if K is a closed convex cone (thus ι∗K = ιK− , see Example 8), Moreau’s
decomposition provides a characterization of the projection onto K:

x = y + z with y ∈ K, z ∈ K− and 〈y, z〉 = 0 ⇔ y = PKx and z = PK−x.

This illustrates that in Hilbert space, the Moreau decomposition can be thought of as generalizing the
decomposition into positive and negative parts of a vector in a normed lattice [22, §6.7] to an arbitrary
convex cone. ♦

There is another notion associated to an operator A, which is strongly related to the resolvent. That is
the Yosida approximation of index λ > 0 or the Yosida λ-regularization:

Aλ := (λ Id +A−1)−1 =
1

λ
(Id−JλA).

If the operator A is maximally monotone, so is the Yosida approximation, and along with the resolvent they
provide the so-called Minty parametrization of the graph of A that is Lipschitz continuous in both directions
[58]:

(JλA(z), Aλ(z)) = (x, y)⇔ z = x+ y, (x, y) ∈ graA.

If A = ∂f is the subdifferential of a proper lower semicontinuous convex function f , it turns out that the
Yosida approximation of A is the gradient of the Moreau envelope of f eλf , defined as the infimal convolution
of f and ‖ · ‖2/2λ, that is,

eλf(x) := f �
‖ · ‖2

2λ
= inf
y∈H

{
f(y) +

1

2λ
‖x− y‖2

}
.
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This justifies the alternative term Moreau-Yosida approximation for the mapping (∂f)λ = (λ Id +(∂f)−1)−1.
This allows to obtain a proof in Hilbert space of the connection between the convexity of the function and
the monotonicity of the subdifferential (see [58]): a proper lower semicontinuous function is convex if and
only its Clarke subdifferential is monotone.

It is worth mentioning that generally the role of the Moreau envelope is to approximate the function, with
a regularizing effect since it is finite and continuous even though the function may not be so. This behavior
has very useful implications in convex and variational analysis.

5.3 Symbolic convex analysis

The thesis work of Hamilton [20] has provided a conceptual and effective framework (the SCAT Maple
software) for computing conjugates, subdifferentials and infimal convolutions of functions of several variables.
Key to this is the notion of iterated conjugation (analogous to iterated integration) and a good data structure.

As a first example, with some care, the convex conjugate of the function

f : x 7→ log

(
sinh (3x)

sinhx

)
can be symbolically nursed to obtain the result

g : y 7→ y

2
· log

(
y +

√
16− 3y2

4− 2y

)
+ log

(√
16− 3y2 − 2

6

)
,

with domain [−2, 2].
Since the conjugate of g is much more easily computed to be f , this produces a symbolic computational

proof that f and g are convex and are mutually conjugate.
Similarly, Maple produces the conjugate of x 7→ exp(exp(x)) as y 7→ y (log (y)−W (y)− 1/W (y)) in

terms of the Lambert’s W function—the multi-valued inverse of z 7→ zez. This function is unknown to most
humans but is built into both Maple and Mathematica. Thus Maple knows that to order five

g(y) = −1 + (−1 + log y) y − 1

2
y2 +

1

3
y3 − 3

8
y4 +O

(
y5
)
.

Figure 3 shows the Maple-computed conjugate after the SCAT package is loaded: There is a correspond-
ing numerical program CCAT [20]. Current work is adding the capacity to symbolically compute convex
compositions—and so in principle Fenchel duality.

5.4 Partial Fractions and Convexity

We consider a network objective function pN given by

pN (q) :=
∑
σ∈SN

(
N∏
i=1

qσ(i)∑N
j=i qσ(j)

)(
N∑
i=1

1∑N
j=i qσ(j)

)
,

summed over all N ! permutations; so a typical term is(
N∏
i=1

qi∑N
j=i qj

)(
N∑
i=1

1∑n
j=i qj

)
.
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> > 

> > 

> > 

> > 

> > 

(1)(1)

(2)(2)

(3)(3)

(4)(4)

restart:

read("scat.mpl"):read("ccat.mpl"):

with(SCAT);with(CCAT);
"1. combinat,gfun,student,IntegerRelations,PolynomialTools loaded"

"2. p2s,s2p,r2p,f2p,pslq,find loaded"
"3. anim and binzetas loaded"

f11:=convert(exp(exp(x)),PWF);

g11:=Conj(f11,y);

sdg11:=SubDiff(g11);

Plot(sdg11,y=-1..1,view=[0..1,-5..0],axes=boxed,labels=["$y$",""]

); 

Fig. 3 The conjugate and subdifferential of exp exp.

For example, with N = 3 this is

q1q2q3

(
1

q1 + q2 + q3

)(
1

q2 + q3

)(
1

q3

)(
1

q1 + q2 + q3
+

1

q2 + q3
+

1

q3

)
.

This arose as the objective function in research into coupon collection. The researcher, Ian Affleck, wished
to show pN was convex on the positive orthant.

First, we tried to simplify the expression for pN . The partial fraction decomposition gives:

p1(x1) =
1

x1
, (43)

p2(x1, x2) =
1

x1
+

1

x2
− 1

x1 + x2
,

p3(x1, x2, x3) =
1

x1
+

1

x2
+

1

x3
− 1

x1 + x2
− 1

x2 + x3
− 1

x1 + x3
+

1

x1 + x2 + x3
.

In [60], the simplified expression of PN is given by

p(x1, x2, · · · , xN ) :=

N∑
i=1

1

xi
−

∑
1≤i<j≤N

1

xi + xj
+

∑
1≤i<j<k≤N

1

xi + xj + xk

− . . .+ (−1)N−1 1

x1 + x2 + . . .+ xN
.
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Partial fraction decompositions are another arena in which computer algebra systems are hugely useful. The
reader is invited to try performing the third case in (43) by hand. It is tempting to predict the “same”
pattern will hold for N = 4. This is easy to confirm (by computer if not by hand) and so we are led to:

Conjecture 1 For each N ∈ N, the function

pN (x1, · · · , xN ) =

∫ 1

0

(
1−

N∏
i=1

(1− txi)

)
dt

t
(44)

is convex; indeed 1/pN is concave.

One may check symbolically that this is true for N < 5 via a large Hessian computation. But this is
impractical for larger N . That said, it is easy to numerically sample the Hessian for much larger N , and it
is always positive definite. Unfortunately, while the integral is convex, the integrand is not, or we would be
done. Nonetheless, the process was already a success, as the researcher was able to rederive his objective
function in the form of (44).

A year after, Omar Hjab suggested re-expressing (44) as the joint expectation of Poisson distributions.3

Explicitly, this leads to:

Lemma 2 [17, §1.7] If x = (x1, · · · , xn) is a point in the positive orthant Rn++, then

∫ ∞
0

(
1−

n∏
i=1

(1− e−txi)

)
dt =

(
n∏
i=1

xi

)∫
Rn++

e−〈x,y〉max(y1, · · · , yn) dy,

(45)

where 〈x, y〉 = x1y1 + · · ·+ xnyn is the Euclidean inner product.

It follows from the lemma—which is proven in [17] with no recourse to probability theory—that

pN (x) =

∫
RN++

e−(y1+···+yN ) max

(
y1

x1
, · · · , yN

xN

)
dy,

and hence that pN is positive, decreasing, and convex, as is the integrand. To derive the stronger result that
1/pN is concave we refer to [17, §1.7]. Observe that since 2ab

a+b ≤
√
ab ≤ (a+b)/2, it follows from (45) that pN

is log-convex (and convex). A little more analysis of the integrand shows pN is strictly convex on its domain.
The same techniques apply when xk is replaced in (43) or (44) by g(xk) for a concave positive function g.

Though much nice related work is to found in [60], there is still no truly direct proof of the convexity
of pN . Surely there should be! This development neatly shows both the power of computer assisted convex
analysis and its current limitations.

Lest one think most results on the real line are easy, we challenge the reader to prove the empirical
observation that

p 7→ √p
∫ ∞

0

∣∣∣∣ sinxx
∣∣∣∣p dx

is difference convex on (1,∞), i.e. it can be written as a difference of two convex functions [5].

3 See “Convex, II” SIAM Electronic Problems and Solutions at http://www.siam.org/journals/problems/downloadfiles/

99-5sii.pdf.

http://www.siam.org/journals/problems/downloadfiles/99-5sii.pdf
http://www.siam.org/journals/problems/downloadfiles/99-5sii.pdf
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6 Concluding comments

All researchers and practitioners in convex analysis and optimization owe a great debt to Jean-Jacques
Moreau—whether they know so or not. We are delighted to help make his seminal role more apparent to the
current generation of scholars. For those who read French we urge them to experience the pleasure of [44,
45,46,48] and especially [49]. For others, we highly recommend [50], which follows [48] and of which Zuhair
Nashed wrote in his Mathematical Review MR0217617: “There is a great need for papers of this kind; the
present paper serves as a model of clarity and motivation.”

Acknowledgements The authors are grateful to the three anonymous referees for their pertinent and constructive comments.
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