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ABSTRACT

Jonathan M. Borweln

| will argue that the mathematical community (appropriately
defined) Is facing a great challenge to re-evaluate the role of
proof in light of the power of current computer systems, of
modern mathematical computing packages and of the growing
capacity to data-mine on the internet. With great challenges
come great opportunities. | intend to illustrate the current
challenges and opportunities for the learning and doing of
mathematics.

“The object of mathematical rigor is to sanction and legitimize the conquests
of intuition, and there was never any other object for it.” — Jacques Hadamard
(1865-1963)




COMPUTER
ASSISTED RESEARCH
MATHEMATICS anp 178
APPLICATIONS
(CARMA)

Two decades ago, few mathematicians
used computations in serious research
work. There was a wide-spread view that
“real mathematicians don't compute.” In
the ensuing years, computer hardware
has skyrocketed in power and plunged in
cost, thanks to the remarkable persistent
phenomenon of Moore’s Law. And many
powerful mathematical software products
have emerged. Just as importantly, a
new generation of mathematicians is
eager to use these tools. Thus, many
new results are being discovered,

and use of mathematics in society is
expanding rapidly.

Experimental methodology provides a
compelling way to build insight, to find
and confirm or confront conjectures; to
make mathematics more tangible, lively
and fun for a researcher, a practitioner, or
a novice. Experimental approaches also
broaden the interdisciplinary nature of
research: a chemist, physicist, engineer,
and mathematician may not understand
each others’ motivation or jargon, but
often share underlying computational
tools, usually to the benefit of all parties.

Advanced mathematical computation is
equally essential to solution of real-world
problems; sophisticated mathematics is
core to software used by decision-makers,
engineers, scientists, managers, and who
design, plan and control the products and
systems key to present day life.

NEWCASTLE
RESEARCH CENTRE

To perform research and
development relating to the informed
use of computers as an adjunct to
mathematical discovery (including
current advances in cognitive science,
in information technology, operations
research and theoretical computer
science).

To perform research and development
of mathematics underlying computer-
based decision support systems,
particularly in automation and
optimization of scheduling, planning
and design activities, and to undertake
mathematical modelling of such
activities.

To promote and advise on the use

of appropriate tools (hardware,
software, databases, learning

object repositories, mathematical
knowledge management, collaborative
technology) in academia, education
and industry.

To make University of Newcastle a
world-leading institution for Computer
Assisted Research Mathematics and
its Applications.



OUTLINE

¢ Working Definitions of:
= Discovery
= Proof (and Maths)
= Digital-Assistance
= Experimentation (in Maths and in Science)

¢ Five Core Examples:
= What is that number?
=  Why Pi is not 22/7
= Making abstract algebra concrete
= A more advanced foray into mathematical physics
= A dynamical system | can visualize but not prove

¢ Making Some Tacit Conclusions Explicit

¢ Three Additional Examples (as time permits)
= |nteger Relation Algorithms
= Wilf-Zeilberger Summation
= A Cautionary Finale




WHAT is a DISCOVERY?

“discovering a truth has three components. First, there
IS the iIndependence requirement, which is just that
one comes to believe the proposition concerned by
one’s own lights, without reading it or being told.
Secondly, there Is the requirement that one comes to
believe it in a reliable way. Finally, there is the
requirement that one’s coming to believe it involves no
violation of one’s epistemic state. ...

In short, discovering a truth is coming to believe it

In an independent, reliable, and rational way.

Marcus Giaquinto, Visual Thinking in Mathematics.
An Epistemological Study, p. 50, OUP 2007

 _eading to “secure mathematical knowledge”?

“All truths are easy to understand once they are discovered; the point is to
discover them.” — Galileo Galilei




WHAT is a PROOF?

“PROOF, n. a sequence of statements, each of which
IS either validly derived from those preceding it or is an
axiom or assumption, and the final member of which,
the conclusion, is the statement of which the truth is
thereby established. A direct proof proceeds linearly
from premises to conclusion; an indirect proof (also
called reductio ad absurdum) assumes the falsehood
of the desired conclusion and shows that to be
Impossible. See also induction, deduction, valid. ”
Collins Dictionary of Mathematics

“No. | have been teaching it all my life, and | do not want to have my ideas upset.”
- Isaac Todhunter (1820 - 1884) recording Maxwell’'s response when asked
whether he would like to see an experimental demonstration of conical refraction.




Not to Mention

Often quite far in ambit from my
own preoccupations

Coming of age as December
Notices of the AMS make clear:

“We can assert with utmost
confidence that the error
rates of top-tier theorem-
proving systems are orders
of magnitude lower than error
rates in the most prestigious
mathematical journals.
Indeed, since a formal proof
starts with a traditional proof,
then does strictly more
checking even at the human
level, it would be hard for the
outcome to be otherwise.”
[Hales, p. 1376]
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WHAT is MATHEMATICS?

mathematics, n. a group of related subjects, including algebra,
geometry, trigonometry and calculus, concerned with the
study of number, quantity, shape, and space, and their inter-
relationships, applications, generalizations and abstractions.

¢ This definition--from my Collins Dictionary has no mention of proof, nor the
means of reasoning to be allowed (vide Giaquinto). Webster's contrasts:

Induction, n. any form of reasoning in which the conclusion,
though supported by the premises, does not follow from them
necessarily.

and

deduction, n. a. a process of reasoning in which a conclusion
follows necessarily from the premises presented, so that the
conclusion cannot be false if the premises are true.

b. a conclusion reached by this process.

“If mathematics describes an objective world just like physics, there is no reason why
inductive methods should not be applied in mathematics just the same as in physics.”
- Kurt Godel (1951 Gibbs Lecture)




WHAT is DIGITAL ASSISTANCE?

¢ Use of Modern Mathematical Computer Packages
= Symbolic, Numeric, Geometric, Graphical, ...
¢ Use of More Specialist Packages or General Purpose
Languages
= Fortran, C++, CPLEX, GAP, PARI, MAGMA,...

¢+ Use of Web Applications

= Sloane’s Encyclopedia, Inverse Symbolic Calculator, Fractal
Explorer, Euclid in Java, ...

¢ Use of Web Databases

= Google, MathSciNet, Wikipedia, MathWorld, Planet Math, DLMF,
MacTutor, Amazon, ...

¢+ All entail data-mining
= Clearly the boundaries are blurred and getting blurrier

“Knowing things is very 20th century. You just need to be able to find things.”
- Danny Hillis

- on how Google has already changed how we think in Achenblog, July 1 2008

- changing cognitive styles



http://blog.washingtonpost.com/achenblog/?hpid=opinionsbox1
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Interference: The Stroop Effect d

yellow
£ : ) d green
Don't read the words on the right--just say the colors theyTe printed in,
and do this aloud as fast as you can.
red
You re in for a surprisef bhlue
yellow
ff yiou're like mod people, vour first inclination wes to read the words, ‘red, vellow, green.., areen
tather than the colors thev're prnted in, blue, green, red..
red

“ou'e just expenenced hferference

When vou look at one of the words, vou zee both its coforand its meaning. Fthose too pieces of evidence are in conflict, vou hawe
to make a choice. Because expenence haztaught vou that weord meaning iz more irmpottant than ink color, interference ocours when
you troto pay atterntion anleto the ik color,

The interference effect sugae stz vou're not alnayvs in complete control of what vou pay attendion to.
hat do you think mould happen

- Ifyoutried thiz expenment wath a very simall child who had not yet learned to read?
- Ifyoutried this expenment with someone who was just learning to speak English?

- Ifyouused the same order of ink: colors but wrote non-color words?

- Ifyoumade up an exzpenment of your own.

Thiz demonstration iz called the Stroop Bffect. t iz hazed on the work of Dr. John Ridley Stroop, Jowrnal of Expeticmental
Payeholony, 1939, and itis part of the mugeum exbibitions, PSYCHROLOGY Understancing Oursehes, Uncerstancing
Each Ctherand PSVCHOLOGY: 1H's More Than You ThinE, which mere developed and produced bythe Amencan

Peychological Aesociation and the Ontano Science Cerntre




User Experience:
Expectations

1

What Is attention? (Stroop test example)

1. Say the color
represented by the word.

2. Say the color
represented by the font
color.

High multitaskers perform # 2
very easily. They are great at
suppressing information.

http://www.snre.umich.edu/eplab/demos/st0/stroop_program/stroopgraphicnonshockwave.gif

Acknowledgements: Cliff Nass, CHIME lab, Stanford



Jon Borwein's Mathematics Portal

The following is a list of useful math tools. The distinction between categories is
somewhat arbitrary.

Utilities (General) §
The On-Line Encyclopedia of Integer Sequences \*’_
ISC2.0: The Inverse Symbolic Calculator ('"*f
3D Function Grapher

Julia and Mandelbrot Set Explorer

The KnotPlot Site

ook W=

Utilities (Special)

EZ Face : Evaluation of Euler Sums and Multiple Zeta Values

7. GraPHedron: Automated and Computer Assisted Conjectures in
Graph Theory

8. Embree-Trefethen-Wright Pseudospectra and Eigenproblems

9. Symbolic and Numeric Convex Analysis Tools

2

Reference
10. NIST Digital Library of Mathematical Functions(X)

11. Experimental Mathematics Website
12. Numbers, Constants, and Computation
13. Numbers: the Competition

14 The Prime Paces



http://ddrive.cs.dal.ca/~isc/portal
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Breaks Barriers Changing Research Landscape Math & CS often win Science Fairs



Exploratory Experiments and
Wide Instrumentation

STEINLE goes on to explain that exploratory experimentation typically takes place in
phases of scientific development in which no well-formed conceptual framework is
available (Steinle 1997, p. 70). Thus, STEINLE'S exploratory experiments in science
are open-ended and highly important and influential in the processes of concept
formation.

Drawing on examples from research in molecular biology during the last decades, the
philosopher L. R. FRANKLIN adds an interesting dimension to the notion of "exploratory
experimentation", namely that of wide instrumentation. The availability of high-
throughput instruments that can simultaneously measure many features or repeat
measurements very quickly has, so FRANKLIN argues, made it feasible (again) to
address the enquiry of nature without local theories to guide the experiments. In the
process, experiments have gained another quality to be measured by, namely efficiency
in bringing about new results (Franklin 2005, p. 895).

These aspects of exploratory experimentation and wide instrumentation originate from
the philosophy of (natural) science and have not been much developed in the context of
experimental mathematics. However, | claim that e.g. the importance of wide
instrumentation for an exploratory approach to experiments that includes concept
formation also pertain to mathematics.”

* H.K. Sgrenson, What's experimental about experimental mathematics?" Preprint, October 2008.
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Keith Deviin

with illustrations by Karl H. Hofmann
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What is Experimental Mathematics?
Chapter 1

What Is Experimental
Mathematics?

Ikenow it when [ see it
------ Potter Stewart {1915-1985)

United States Supreme Court justice Potter Stewart famously observed
in 1964 that, although he was unable to provide a precise definition of
pornography, “I know it when [ see it.” We would say the same is true
for experimental mathematics. Nevertheless, we realize that we owe our
readers at least an approximate initial definition {of experimental mathe-
matics, that is; you're on your own for pornography) to get started with,
and here it is.

Experimental mathematics is the use of a computer to run computa-
tions—sometimes no more than trial-and-error tests-—to look for patterrns,
to identify particular numbers and sequences, to gather evidence in sup-
port of specific mathematical assertions that may themselves arise by com-
putational means, including search. Like contemporary chemists-—and
before them the alchemists of old-—-who mix various substances together
in a crucible and heat them to a high temperature to see what happens,
today’s experimental mathematician puts a hopefully potent mix of num-
bers, formulas, and algorithms into a computer in the hope that something
of interest emerges.
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5.

6.

7.

8.

Gaining insight and intuition
Discovering new relationships
Visualizing math principles

Testing and especially falsifying
conjectures

Exploring a possible result to see
If it merits formal proof

Suggesting approaches for
formal proof

Computing replacing lengthy
hand derivations

Confirming analytically derived
results

MATH LAB

Computer experiments are transforming mathematics

BY ERICA KLARREICH
T ————

any people regard mathematics asthe crown
jewel of the sciences. Yet math has histori-
cally lacked one of the defining trappings
of seience: laboratory equipment. Physicists
have their particle aceelerators; biologists,
their electron microscopes; and astronomers, their tel-
EECOPES. Mathematios, by eomtrast, concerns not the

physical landscape but an idealized, abstract world. For explor-
ing that world, mathematicians have traditionally had only their
intuition,

Kow, computers are starting to give mathematicians the lab
instrument that they have been
missing, Sophisticated software is
cnahling researchers to travel fur-
ther and deeper into the mathe-
matical universe. They're calcu-
lating the oumber pi with
mind-beggling precision, for
instance, or discovering patterns
in the contours of beawtiful, infi-
nite chains of spheres that arise
out of the geometry of knots

Experiments in the computer lab
are leading mathematicians to dis-
coveries and insights that they might
never have regched by traditional
mzans, “Prety much every [math-
ematical] feld has been transtormed
fowit,"zave Richard Crandall, a math-
craticisn at Reed College in Port-
lnnd, Ore, “Instead of just being &
number-crunching tool, the com-
puter is beeoming more Like o gar-
den shovel that tms over rocks, and
vou find things nnderneath.”

At the same time, the new work
is paisimg unsettling questions about
o to rogerd cxperimental reults

“I have somie of the excitement that Leonardo of Fisa must have
feltwhen he encountered Arable svithmetic: It suddenly made car-
tain calculations flabbergastingly easy” Barwein save. "Thats what
1 think i= happening with compuoter experimentation today”

EXPERIMENTERS OF OLD Tn ane sense, math experiments
are nothing new. Despite thedr field= reputation a= a purely dedoe-
tive seience, the great mathematicians over the centuries have
never limited themsehes 1o formal reasoning and praot

Forinstance, in 1666, sheer curingity and love of numbers led Lsaac
Newton to calenlate directly the first 16 digits of the number pi,
Later writing, “T am ashamed to tell you to how many figares Tcar-
ried these computations, having no other business et the dme”

Carl Friedrich Ganss, one of the towering fizures of 15th-cen-
fury mathematics, habitoally dis-
covered new mathematical results
by experimenting with numbers and
looking for patterns. When Gauss
was & teenager, for instance, his
experiments led him to one of the
most important conjectures in the
history of number theory: that the
mumber of prime numbers less than
a number & is roughly equal to o
divided by the Ingarithm of &

Gauss often diseovered results
experimentally lomg betore he could
proverthem formally, Onoe, be com-
plained. T have the ceenlt, but Tdo
ot yet know how to gee it

In the case of the prime number
theorem, Gauss later refined his
eonjecture but nover did figere ot
hew to-prove it, It took more thana
eemtury for mathemirticiims to come
up with & proct

Like today’s mathematicians,
math experimentersin the late 169th
century nsed computers but in
those days, the word cefermed to peo-
ple with a special faclite for calen

Comparing —-y?In(y) (red) to y-y? and y?-y*



Example 1. What’s that number? (1995 to 2008)

In 1995 or so Andrew Granville emailed me the number
oo .= 1.433127426722312 ...

and challenged me to identify it (our inverse calculator was new in
those days).

| asked for its continued fraction? It was

[1,2,3,4,5,6,7,8,9,10,11,...] (1)
| reached for a good book on continued fractions and found the answer
, — 1o(2)
11(2)

where |, and |, are Bessel functions of the first kind. (Actually | knew
that all arithmetic continued fractions arise in such fashion).

In 2008 there are at least two or three other strategies:
» Given (1), type “arithmetic progression”, “continued fraction” into Google
* Type 1,4,3,3,1,2,7,4,2 into Sloane’s Encyclopaedia of Integer Sequences

| illustrate the results on the next two slides:




“arithmetic progression”, “continued fraction”
In Google on October 15 2008 the first three hits were

Continued Fraction Constant -- from Wolfram MathWorld
- 3 visits - 14/09/07Perron (1954-57) discusses continued fractions having
terms even more general than the arithmetic progression and relates

them to various special functions. ...
mathworld.wolfram.com/ContinuedFractionConstant.html - 31k

HAKMEM -- CONTINUED FRACTIONS -- DRAFT, NOT YET PROOFED

The value of a continued fraction with partial quotients increasing in
arithmetic progression is | (2/D) A/D [A+D, A+2D, A+3D, . ...
www.inwap.com/pdpl0/hbaker/hakmem/cf.html - 25k -

On simple continued fractions with partial quotients in arithmetic ..

0. This means that the sequence of partial quotients of the contlnued
fractions under. investigation consists of finitely many arithmetic

progressions (with ..
Www.springerlink.com/index/COVXH71366261815.pdf - by P Bundschuh

— 1998

Iup ()
[A+D,A+2D,A+3D,..] = D

Moreover the MathWorld entry includes A e ey ¢
I+AD\ b

(Schroeppel 1972) for real A and D £ ()



http://www.google.com.au/url?sa=t&source=web&ct=res&cd=1&url=http%3A%2F%2Fmathworld.wolfram.com%2FContinuedFractionConstant.html&ei=pSf3SNfcJ6CmtQOdlqiYDA&usg=AFQjCNHdVHW3WHPEkPiQQKQwpvHD0nybxw&sig2=HEHFxJUgDIdIZ8QM4ZEjpw
http://www.inwap.com/pdp10/hbaker/hakmem/cf.html
http://www.springerlink.com/index/C0VXH713662G1815.pdf

Example 1: In the Integer Sequence Data Base

iIIIJJJ*

AT&Tl Iu'h;gpr Saiusnc&;

RESE& RCH

Greetings from The On-Line Encvclopedla of Inteqer Sequences!

143,312,742 |

Search: 1,4, 3,

Cisplaying 1-1 o
Farmat: lang

ADE0SST

1! 4! L
—'I‘J' ?F .
3!’ 4!’ f
B, 4,
OFFSET

COMMEMNT

O &= 1w

r

FCRMULA
EXAMPLE
MATHEMATICA

(ROSSREFS

KEY\WORD
AUTHOR,

Hinks

Search I

31,2, 7, 4,2

f 1 results found. page
| shaort | internal | text Sort: relevance | references | number Highlight: an | off
Cedmal representation of continued fracton 1, 2, 3, 4,5, 6, 7, ... +2
3, 1, 2, 7,4, 2, 6, 7, 2, £, 3, 1, 1, 7%, 5, 8, 3, 1, 7, 1, 8, 3, 4, 5, 5,
9, 9,1, &, z, o, 4, 3, 1, 5, 1, &, 7, &, ¥, 9, 0, 5, 9, &, 0, 5, &, 3, .
Z, 8, 86, 3, 6, 3,9, 4, 3, 0, 9,1, 8, 3, Z, 5, 4, 1, 7, 2, 9, 0, 0O, 1, 3,
3, 7, 2, 6, 4, 3,5, 7,8, 6, 1, 1, 4, 6, 5, 9, 5, 0O {lst; cons; graph; listen
1,2

The walue of this continued fraction is the ratio of two Bessel
functions: BesselI(0,2)/BesselI(l,2) = AQ70910/A096789. Or,

equivalently, to the ratio of the sums: sww_ {n=0..inf} 1/ (n'n!'! and
sum_{n=0..inf} n/in'n'). - Mark Hudson (mrmarkhudson(AT) hotmail.
com) , Jan 31 2003

1/a052119.

C=1.433127426722311758317183455775 ...

RBealligits[ FromContinusedFraction[ Range[ 44]], 10, 110] [[1]]
[* Or *) Realligits[ BesselI[0, 2] / BesselI[l, 2], 10, 1107 [[1]]

[* 0r *}) Realbigikts[ Sum[l/(n'n!}), {n, O, Infinity}] / Suw[n'in'n'),

in, 0, Infinity}], 10, 1107 [[1]]
cf. a052119, A001053.
Adjacent sequences: A0DE0994 2060995 AQDG0956 this sequence A0G0993

AO060993 A061000
Sequence in context: AO166989 AODBO37V3 AD90Z80 this sequence 2120624

AD1909Y5 A073871

CONns,easy,honh

Rohert &. Wilson v [rgwy (AT)rowe.com)( May 14 2001

The Inverse Calculator
returns

Best guess:
Besl(0,2)/Besl(1,2)

* We show the ISC on
another number next

» Most functionality of
ISC is built into “identify”
in Maple

“The

price of metaphor is eternal vigilance.” - Arturo Rosenblueth & Norbert Wiener

guoted by R. C. Leowontin, Science p.1264, Feb 16, 2001 [Human Genome Issuel.




e ThyeEr e S0 iiduLL - - T LR = R e = R R
Calculator [ISC) uses a @D"UE Qg;:ﬁ Hanlﬂﬁ_[}ﬂ: accepts either floating
combination of lookup point expressions or
tables and integer carrect Maple syntax
relation algorithms in as input. However, for
order to associate @ baple syntax requiring
with a user-defined, 1SCO i V > -HT E:'_' too long for

truncated decimal B}J %ﬁ AL | Ator evaluation, a timeout
expansion has been

represented as a implemented,
Iloabing pojit Standard lookup results for 12.587886229548403854

expression] a closed

form representation
for the real number,

il Visit

ISC The original I5C Jon Barwein's

Webpage

The Dy Team: Mathan Singer , Andrew Shouldice , Lingyun Ye,

Tomas Daske , Peter Dobcsanyi, Dante Manna, O-Yeat Chan, Jon Borwein : g
David Bailey's

Webpage

tath Fesources Paortal

3146264370

19.99909953 * ISC+ runs on Glooscap

* Less lookup & more
ISC The original I5C algorithms than 1995

The Dev Team: Mathan Singer, Andrew Shouldice , Lingyun Ye,
Tomas Daske , Peter Dobcsanyt, Dante Manna, O-Yeat Chan. Jon Borwein




Example 2. Pi and 22/7 (Year - through 2008)

The following integral was made popular in a 1971 Eureka article

(1-— x)44 _ 22
'O</ 1 4 22 -7 7

e Set on a 1960 Sydney honours final, it perhaps originated in 1941
with Dalziel (author of the 1971 article who did not reference himself)!

Why trust the evaluation? Well Maple and Mathematica both ‘do it’

A better answer is to ask Maple for
/ (1 )4 4
14 22

ted (1 — )4 1 2 4
/af (1-=) de = -t" — 246+ 45 _ 243 4 4¢— 4 arctan (¢)
0 1422 r 3 3

e |t will return

and now differentiation and the Fundamental theorem of calculus
proves the result.

* Not a conventional proof but a totally rigorous one. (An ‘instrumental
use’ of the computer)



Example 3. Multivariate Zeta Values

In 1993, Enrico Au-Yeung, then an undergraduate in Waterloo, came into my
office and asserted that:

o

1 1N 2 17 1774
S (1424 4+7) K% = 459987... ~ —((4) =
50t :

| was very skeptical, but Parseval’s identity computations affirmed this to
high precision. This is reducible to a case of the following class:

k
8| —n;
C(Sl,SQ,"',Sk) — Z Hn] To, ]7

J
ni>np>-->n>07=1

where s; are integers and o= signum s;. These can be rapidly
computed using a scheme implemented in an online tool:
www.cecm.sfu.ca/projects/ezface+. They have become of
more and more interest in number theory, combinatorics, knot theory

and mathematical physics. A marvellous example is Zagier's (now
proven) conjecture

_ n - 27T4n
17 'C 37173717'”7371 —

' —0.47222. .. ~ (4n+2)!
360



http://www.cecm.sfu.ca/projects/ezface

Example 3. Related Matrices (1993-2006)

In the course of proving conjectures about multiple zeta values we
needed to obtain the closed form partial fraction decompaosition for

1

x5(1 — )t

s,t

st b
_ J J
=> ==+

vl 5o (-

720

Fi—j-1
= ()

This was known to Euler but is easily discovered in Maple. We needed
also to show that M=A+B-C was invertible where the n by n matrices

A, B, C respectively had entries

(—1)k+1 (Qn —J)’ (—1)k+1 (

2n —k

2n —3
k—1

)

(~1)k+! (i:ﬁ

Thus, Aand C are_triangular and B is full. After messing around with
lots of cases it occurred to me to ask for the minimal polynomial of M

> [inalg
> [inalg
> [inalg

> [inalg

minpoly]
'minpoly]

'minpoly]

minpoly]

(M(12),t); =2+t + t°
(B(20),p); —1+¢>
(AR20),0); —1 +¢2
(C(20),1); —1 +¢2

M(6) =

—22 110 —330 660 —924 |
—10 55 —165 330 —462
—7 36 -93 162 —210
-5 25 -56 78 —84
-3 15 -31 35 -28
-1 5 -10 10 -6 |




Example 3. The Matrices Conquered

Once this was discovered proving that for all n >2

A2=1, BC=A, C?°=1, CA=B?

IS a nice combinatorial exercise (by hand or computer). Clearly then
B3=B-B°=B(CA) = (BC)A=A’=1]
and the formula
M+ 1
0

IS again a fun exercise in formal algebra; as is confirming that we have
discovered an amusing representation of the symmetric group S'3.

M—l

 characteristic or minimal polynomials (rather abstract for me as a
student) now become members of a rapidly growing box of symbolic
tools, as do many matrix decompositions, Groebner bases etc ...

 a typical matrix has a full degree minimal polynomial




Example 4. Numerical Integration (2006-2008)

The following integrals arise independently in mathematical
physics in Quantum Field Theory and in Ising Theory:

/‘ L/ dul dun
0] Un,

(X (uj + 1/u3>)

We first showed that this can be transformed to a 1-D integral:

21 roo
Cp = = / LR (t) dt
n! Jo

where K, is a modified Bessel function. We then (with care) computed
400-digit numerical values (over-kill but who knew), from which we found
these (now proven) arithmetic results:

1 1
G2 = L) = 2, {(3n+1>2_(3n+2)2}

n>0
.
Cqp, = —((3
4 12(()

De 27

lim C,

n—aoo



Example 4: Identifying the Limit Using
the Inverse Symbolic Calculator (2.0)

We discovered the limit result as follows: We first calculated:

C1024 = 0.630473503374386796122040192710878904354587 ...

We then used the Inverse Symbolic Calculator, the online numerical

constant recognition facility available at:
) g [Soorive Q) 22222 uanue‘s‘éft

httD//ddl‘Ive CSdal Ca/~ISC/DOI"[a| Inverse Symbolic Calculator
Output: Mixed constants, 2 with elementary transforms. it
.6304735033743867 = sr(2)*2/exp(gamma)’2
In other words, ISE o

n Singer, Andrew Shouldice, Lingyun Ye,
Ttlnas Dnska, mu Dd]xarwi,Danl Manna, 0-Yeat cmn Jon Borwein

Ci004 ~ 22

References. Bailey, Borwein and Crandall, “Integrals of the Ising Class," J.
Phys. A., 39 (2006)

Bailey, Borwein, Broadhurst and Glasser, “Elliptic integral representation of
Bessel moments," J. Phys. A, 41 (2008) [loP Select]



http://ddrive.cs.dal.ca/~isc/portal

Example 5: A Simple Phase Reconstruction
Model

Projectors and Reflectors: P,(x) is the metric projection or
nearest point and R,(x) reflects in the tangent

A

PA(X)
RA(X)

In the convex case to find £z € ANB the method
of alternating projections

yn = Pp(xn), p41:= Pa(yn)

works very well and parallelizes to products of
sets (used on Hubble)



Example 5: Phase Reconstruction

In a wide variety of problems (protein folding, 3SAT, Sudoku) B is non-
convex but “divide and concur” works better than theory can explain. It

IS. Rp(x) ;=2 Py(x) —x and =z — x+RA(2RB(m))

Consider the simplest case of a line A of height « and the unit circle B.
With z, := (xn,yn) the iteration becomes

Tpt1 = COSOn,Ypt1 = Yn+a—SiNOn, (Op = argzy)

For =0 proven convergence to one of the two points in A N B iff start off
vertical axis. For a>1 (infeasible) iterates go vertically to infinity. For a=1
(tangent) iterates converge to point above tangent. For o € (0,1) the pictures
are lovely but proofs escape me. Maple (Cinderella) pictures follow:

An ideal problem
to introduce early
uncTer-graduates to
research, with
many accessible
extensions in 2 or
3 dimensions




Dynamic Phase Reconstruction in Cinderella

Consider the simplest case of a line A of height « and the unit circle B.
With  z, := (zn,yn) the iteration becomes

For o € (0,1) the pictures are lovely but proofs escape me. A Cinderella
picture follows:

u=0.96

?:.:1_25|_1_3:, Show Construction




A Sidebar: New Ramanujan-Like lIdentities

Guillera has recently found Ramanujan-like identities, including:
128 N oy [ 1\27
5 = nzzjo(—l) r(n)>(13 4+ 180n + 820n )(3—2>
S = 3 (D51 + 8n + 2002) (l)zn
T2 =0 2
00 2n
% = S r(n)7(1 + 14n + 7602 + 168n3) <%> |
@ n=0
where
rn) — (1/2)n _ 1/2-3/2-----(2n-1)/2 _ T(n+1/2)
n! n! vVal(n+1)

Guillera proved the first two using the Wilf-Zeilberger algorithm. He
ascribed the third to Gourevich, who found it using integer relation methods.
It is true but has no proof. It seems there are no higher-order analogues.

“Why should | refuse a good dinner simply because | don't understand the digestive
processes involved?” - Oliver Heaviside (1850-1925) when criticized for daring to use

his operators before they could be justified formally




First Conclusions

¢

The students of 2010 live in an information-rich, judgement-poor world

The explosion of information is not going to diminish

So we have to teach judgement (not obsessive concern with plagiarism)
= that means mastering the sorts of tools | have illustrated

We also have to acknowledge that most of our classes will contain a very
broad variety of skills and interests (few future mathematicians)

= properly balanced, discovery and proof can live side-by-side and allow
for the mediocre and the talented to flourish in their own fashion

Impediments to the assimilation of the tools | have illustrated are myriad
(as | am only too aware from recent teaching experiences)

These impediments include our own inertia and
= organizational and technical bottlenecks (IT - not so much dollars)
= under-prepared or mis-prepared colleagues
= the dearth of good material from which to teach a modern syllabus

"The plural of 'anecdote’ is not 'evidence'."
- Alan L. Leshner, Science's publisher




Further Conclusions

¢ New techniques now permit Mot homot s secon evrrion
mtegrals |nf|n|te series sums and - O TR

precision (hundreds or thousands of
digits), thus permitting PSLQ-based
schemes to discover new identities.

¢ These methods typically do not
suggest proofs, but often it is much
easier to find a proof (say via WZ)
when one “knows” the answer is
right.

-

Mathematltics
by Experiment

7
PuausieLe Reasoning in THE 2151 CEnTuRy

¥ * "u' rs
)
N il =T
; . = =0
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W
. o 3
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-0
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For more details of the examples see Mathematics by Experiment (2003-08),
Experimentation in Mathematics (2004) with Roland Girgensohn, or

Experimental Mathematics in Action (2007). A “Reader’s Digest” version of
the first two is at www . experimentalmath. info with much other material.

“The future has arrived; it's just not evenly distributed.” - Douglas
Gibson (who coined the term ‘cyberspace’)



http://www.experimentalmath.info/

Three Extra Examples
1. Zeta Values and PSLQ

2. Reciprocal Series for 7 and Wilf-Zeilberger

3. A Cautionary Example

David Bailey on the side of a rkeley bus

“Anyone who is not shocked by quantum theory has not understood a
single word.” - Niels Bohr




Example: Apéry-Like Summations

The following formulas for £(n) have been known for many decades:

The RH in Maple

(2) = 3%

, (known to Euler?)

C(3) = — , (Apéry, 1979)
2 = L3 (Qkk:>
36 X 1
C(4) = — ————, (Comtet, 1974).
7=k (%)
These results have a unified proof (BBK 2001) and have led many to hope that
00 (_1)k—l—1
Qs = ¢(5)/ )
=1 k()

might be some nice rational or algebraic value.

 Sadly (?), PSLQ calculations have shown that if Q. satisfies a polynomial
with degree at most 25, then at least one coefficient has 380 digits.



Apeéery Il: Nothing New under the Sun

Margo Kondratieva found a formula of Markov in 1890:

S 1 (=1)" (n)°
;(n+a)3 B Z (2n+1)!
(5 (n—|—1) +6(a—1)(n+1)+2(a—1))
Ilk o(a'+‘k)

Note: Maple establishes this identity as

Hence

m—1 m—1
C(4) = Z( 1) B 0y CO ik

m=1 (m)m3

¢ The case a:O IS the formula used by Apéry his 1979 proof that ((3) € Q

“How extremely stupid not to have thought of that!” - Thomas Henry Huxley
(1825-1895) ‘Darwin's Bulldog’ was initially unconvinced of evolution.




Example: Use of the Wilf-Zeilberger Method

As noted two post 2000 experimentally-discovered identities are

< (5 ()
> e (120n? +34n+3) = =3
n=0
0o (_1\n(2n 5
( 12)2()(n”) (820n2 + 180n + 13)

n=0

To effect a proof Guillera ‘cunningly’ started by defining

2n\ 4 (2k\3 (4n—2k
G(n, k) = 2(1;32):;6 (120n2 + 84nk + 34n + 10k + 3) G )<2]§L§(>H—Ek2>g_k )
n
He then used the EKHAD software package to obtain the companion
4 3 /40—
k) — (—1)+512 3 (an) <2kk) (42nn_2kk)
’ 216n24k 4pn — 2k — 1 (an> (n+k)2
n




When we define
H(n,k) = Fn+1,n+k)+Gn,n+k)

Zeilberger's theorem gives the identity

oo 0.

Z G(n,0) = Z H(n,0)

http://ddrive.cs.dal.ca/~isc/portal

which when written out is
5 B3 (120 3y 3) = 52 040D (G ()

~>16n 220n+7 2p 4 3 <2n—|—2> (2n_|—_|—11>2
n n

o0 n 0o (_1\n(2n 5
+ 3 OB omt 4aan+3) ()7 = 15 VLD 2002 1 15004 13

n=0 n=0

n=0 n=0

A limit argument completes the proof of Guillera’s identities.


http://ddrive.cs.dal.ca/~isc/portal

A Cautionary Example

These constants agree to 42 decimal digits accuracy,
but are NOT equal:

/OOO cos(2x) 10_0[ cos(z/n)dx =

n=1
0.39269908169872415480783042290993786052464543418723 ...
7T
g —

0.39269908169872415480783042290993786052464617492189. ..

Computing this integral is nontrivial, due largely to difficulty
In evaluating the integrand function to high precision.

Fourier transforms turn the

Integrals into volumes and neatly t
\/ =73 explains this happens when a t i
" hyperplane meets a hypercube Z 1/k> 2
(LP) ... P—



Expeniencing ‘Experimental Mathematics
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David H. Bailey, Jonathan M. Borwein, Neil J. Calkin, Roland Jonathan M. Borwein, David H. Bailey, Roland Girgersohn
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industry. Aryane who is interest- are now making them available in
ed in experimental mathematics | POF format on & CD-ROM. This CD
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this book!" | including hyperlinks for all num-
—Gazette of the bered equations, all Internet URLs,
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avgmented search facility assists one with locating a
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