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PART I. Numerical
Experimentation

Computer-assisted Discovery and
Proof of Generating Functions for
Riemann’s Zeta

Jonathan M. Borweln
Dalhousie D-Drive

David H Bailey
Lawrence Berkeley National Lab

Details in Experimental Mathematics in Action
Borwein, Bailey, Calkin, Girgensohn, Luke and Moll, A.K. Peters, 2007
- based on eponymous 2006 MAA short Course

“All truths are easy to understand once they are discovered; the point is to
discover them.” — Galileo Galilei




Algorithms Used in Experimental
Mathematics

Symbolic computation for algebraic and calculus
manipulations.

Integer-relation methods, especially the “PSLQ” algorithm.
High-precision integer and floating-point arithmetic.

High-precision evaluation of integrals and infinite series
summations.

The Wilf-Zeilberger algorithm for proving summation
identities.

lterative approximations to continuous functions.
|dentification of functions based on graph characteristics.

Graphics and visualization methods targeted to
mathematical objects.



“High-Precision” or “Arbitrary
Precision” Arithmetic

High-precision integer arithmetic is required in symbolic
computing packages.
High-precision floating-point arithmetic is required to permit

identification of mathematical constants using PSLQ or
online constant recognition facilities.

Most common requirement is for 200-500 digits, although
more than 1,000-digit precision is sometimes required.

One problem required 50,000-digit arithmetic.

"Equations are more important to me, because politics is for the
present, but an equation is something for eternity." - Albert Einstein




The PSLQ Integer Relation
Algorithm

Let (x,) be a vector of real numbers. An integer relation
algorithm finds integers (a,,) such that

a1xr1 + ar>xo> + -+ anrn = 0O

¢ At present the PSLQ algorithm of mathematician-sculptor
Helaman Ferguson (featured in Science in October 2006)
IS the best-known integer relation algorithm

¢ PSLQ was named one of ten “algorithms of the century”
by Computing in Science and Engineering.

¢ High precision arithmetic software is required: at least
d £ n digits, where d is the size (in digits) of the largest of
the integers a,.



Decrease of min; |A; x| in PSLQ
(error versus |terat|ons)



Ferguson’s Sculpture



The David Borwein CMS Career Award
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This polished solid silicon bronze sculpture is inspired by the work of
David Borwein, his sons and colleagues, on the conditional series
above for salt, Madelung's constant. This series can be summed to

give uncountably many constants; one is Madelung's constant for
sodium chloride.

This constant is a period of an elliptic curve, a real surface infour
dimensions. There are uncountably many ways to imagine that
surface In three dimensions; one has negative gaussian curvature
and is the tangible form of this sculpture. (As described by the artist.)



|. Extreme Quadrature (EQ)
tant 4+ 7 5

24 /W/Q -
V7T /3 tant — /7

i i 1 n 1 B 1
S (Tn+1)2 0 (Tn+2)2 (Tn+3)2
n 1 B 1 B 1
(Tn+4)2 (Tn+5)2 (7Tn+6)2
This arises in mathematical physics,

from analysis of the volumes of ideal
tetrahedra in hyperbolic space.

This “identity” has now been verified
numerically to 20,000 digits, but no
proof is known.

Note that the integrand function has a
nasty singularity.



Extreme Quadrature ...

20,000 Digits (50 Certified)
on 1024 CPUs

» The integral was split at the nasty interior singularity
» The sum was easy'.
= All fast arithmetic & function evaluation ideas used

Run-times and speedup ratios on the Virginia Tech G5 Cluster

Expected and unexpected scientific spinoffs

» 1986-1996. Cray used quartic-Pi to check machines in factory

» 1986. Complex FFT sped up by factor of two

» 2002. Kanada used hex-pi (20hrs not 300hrs to check computation)
« 2005. Virginia Tech (this integral pushed the limits)

» 1995- Math Resources (another lecture)




Further Equations

Define
(n+1)7/60 tant + /7
Jn = / log dt
nm /60 tant — V7
Then
0 £ —2Jp—2J3—2J442J10 4 2J11 + 3J15

+3J13 + J14 — J15 — J16 — J17 — J18
—J19 + Jog + J21 — J2o — J23 + 2J25

This has been verified to over 1000 digits. The interval
In J,; Includes the singularity.

"We [Kaplansky and Halmos] share a philosophy about linear algebra:
we think basis-free, we write basis-free, but when the chips are down we
close the office door and compute with matrices like fury."

(Irving Kaplansky, 1917-2006)




Il. New Ramanujan-Like ldentities

Guillera has recently found Ramanujan-like identities, including:

128 o 1\ 2n
= (—1)™r(n)°(13 4 180n 4 820n2) | —
2 =0 2(32)
32 — - _1\n b 2 l "
> = T;O( 1)"r(n)5(1 4 8n + 20n )(2)
32 i 1 2n
— = r(n)" (14 14n + 76n° + 168n°) [ — :
w3 ,,;0 (32)
where
(n) — (1/2)n  1/2-3/2-----(2n—1)/2  T(n+1/2)
AT n!  Jrlr(n4+1)

Guillera proved the first two of these using the Wilf-Zeilberger algorithm. He
ascribed the third to Gourevich, who found it using integer relation methods.

Are there any higher-order analogues?

Not as far as we can tell



Searches for Additional Formulas

We searched for additional formulas of either the following forms:

S = 2t o+ pin - A pmn ™0™
n=0

S = 2 1) (o + pin A+ - pmn™)a”"
=0

where c Is some linear combination of
1 21/2, 21/3’ 21/4’ 21/6’ 41/3, 81/4, 321/6’ 31/2, 31/3’ 31/4, 31/6’ 91/3,

071/4 2431/6 51/2 51/4 10851/4 71/2 131/2 1/2 g1/3 gl/4 g1/6
7,361/3, 2161/4, 77761/6, 121/4 1081/4 10%/2, 101/4, 151/2
where each of the coefficients p; is a linear combination of

1, 21/2 31/2 51/2 g1/2 71/2 1091/2 131/2 141/2 151/2 301/2

and where a Is chosen as one of the following:
1/2,1/4,1/8,1/16,1/32,1/64, 1/128, 1/256, V5 — 2, (2 — V3)?,
5v/13 — 18, (v/5 — 1)*/128, (v/5 — 2)*, (21/3 —1)4/2, 1/(2v?2),
(V2-1)%, (V5 -2)% (V3-v2)*



Relations Found by PSLQ
(in addition to Guillera’s three relations)

4 B o 3 1 2n
= = ngor(n) (14 6n) (2)
16 = 3 1\2"
= = ngcr(n) (5 + 42n) (g)
12V4 3 r(n)3(=15 + 9v/3 — 36n + 24v/3n) (2-v3)™
a n=0
o0 2n
2 - > r(n)3(—1 4+ 5v/5 + 30n 4 42v5n) ((\/312_81)4)
- n=0
51/4 oo 8n
= = Y r(n)3(-525 +235V5 — 1200n + 540v/5n) (V5 — 2
& n=0
2\/5 _ 00 . 5 1 2n
= ngo(—l) r(n)”(1 + 6n) (2\/5)
2 = f (—1)"r(n)3(=5 + 4v2 — 12n 4+ 12v/2n) (\5 - 1)4”
T n=0
2 i (—1)"r(n)3(23 — 10V5 + 60n — 24v/5n) (f5 — 2)4”
m n=0
£ = ioj (—1)"r(n)3(177 — 72v6 + 420n — 168v/6n) (\/5 . \5)8”
& n=0

v'all are in Ramanujan (Pi and the AGM)



Proofs?

Echoes of the elliptic theory in
Pi and the AGM
explain the various series for 1/x.

Details are in given
Experimental Mathematics in Action.

“No. | have been teaching it all my life, and | do not want to have
my ideas upset."

Isaac Todhunter (1820-1884) recording Maxwell's response to
being asked whether he would like to see an experimental
demonstration of conical refraction.







Part Il.
Experiment and Proof

JM Borwein and DH Bailey
with DA Bradley

“Anyone who is not shocked by quantum theory has not understood a
single word." - Niels Bohr




The Wilf-Zeilberger Algorithm
for Proving Identities

¢ A slick, computer-assisted proof scheme to prove certain
types of identities

¢ Provides a nice complement to PSLQ

= PSLQ and the like permit one to discover new
Identities but do not constitute rigorous proof

= W-Z methods permit one to prove certain types of
Identities but do not suggest any means to
discover the identity

"The formulas move in advance of thought, while the intuition often lags
behind; in the oft-quoted words of d'Alembert, "L'algebre est genereuse,
elle donne souvent plus qu'on lui demande."" (Edward Kasner, 1905)




Example Usage of W-Z

Consider these experimentally-discovered identities (the later from Part I):

oo (AN (274

REZ:O (2?;)1(62,) (12072,2 + 34n + 3) = % B = 4A
0o (13 \n(2n S
3 ( 12)20(n”) (820n? +180n + 13) = f—f
n=0

Guillera cunningly started by defining

2n\4 (2k\3 (4n—2k
G(n,k) = 2(1;712)2’5(120712—%84?1]@4—34”4_10]%_'_3)(n) (k) (Qn—k)

(zkn) (nn k)Q
He then used the EKHAD software package to obtain the companion
3 /4m—
Pl k) = (D512 G G (5.59)
’ 216n24k 4pn — 2k — 1 (an) (n+k)2
n




Example Usage of W-Z, Il

When we define

H(n,k) = F(n+1,n+k)+Gn,n+k)

Zeilberger's theorem gives the identity

(. 9] ©. @)

> G(n,0) = > H(n0)

which when written out Is

o\ 4 (4n 2n+2\% 120\ 3 (2n+4
> Ln) \2n $ D +1)° (% n) Un

| 2)16(3 ) (1200°+ San -8} = 2(20”3’7(273,4-; ( J(rzlnlz() (2)”51);2)

n=0 n=0 7 n+1

o [ 1\ 5 o (—1)" 2n\ 2
+n=0 (223& (20402 + 44n + 3) (2:) = %RZ::O ( 2)20(;) (820n° 4 180n + 13)
Now for integer k 00 00
Y Gn,k) = Y Gn,k+1)
n=0 n=0

and so for all real k: taking the limit at t=1/2 completes the proof.



llla. A Cautionary Example

These constants agree to 42 decimal digits accuracy,
but are NOT equal:

00 0
/o cos(2z) |] cos(z/n)dxr =
n=0
0.39269908169872415480783042290993786052464543418723 . ..
T

3
0.39269908169872415480783042290993786052464617492189. ..

Computing this integral is nontrivial, due largely to difficulty
In evaluating the integrand function to high precision.

Fourier analysis explains
this happens when a
hyperplane meets a

n
hypercube (LP) ... > 1/k>2
k



llIb. A Cautionary Example

Relatedly, very recently, Baillie, D. Borwein and J. Borwein
discovered and showed why

“ 1 X 1
sinc™ (X) dx ij sinc™ (n) = —
0 n—1 2

exactly for N=1, 2,.., 6. For N>6 they differ by a polynomial
of degree N in .

*The integral is always a rational multiple of =.

n
Y 1/k>2
k



V. Apery-Like Summations

The following formulas for £(n) have been known for many decades or more:

© 1
k;gl k2 (%f)
B E 00 (_1)k—|—l
o) = 2= k(%)
(@ = By o

These results have led many to speculate that

k+1
Qs = c<5)/2( 2

k(%)

might be some nice rational or algebraic value.

Sadly, PSLQ calculations have established that if Q. satisfies a polynomial
with degree at most 25, then at least one coefficient has 380 digits.



Nothing New under the Sun

Margo Kondratieva found a formula of Markov in 1890:

- 1 1 (—1)" (n!)°
;(n—l—a) Z (2n+ 1)!
(5 (n+1) +6(a—1)(n+1)+2(a—1))
Hk o(a+k)

Note: Maple establishes this identity as
—1/2W (2,a) = -1/2WV (2,a) —((3) +5/44F3([1,1,1,1],[3/2,2,2],-1/4)

Hence

o0 _1ym—1 m—1
C(4):_Z( 2, ‘|‘—Z( 1)(2m i lk

Cn)m® 3 ) m?

m=1 m=1 m

The case a=0 above is Apery’'s formula for £(3)!



Apery-Like Relations Found
Using Integer Relation Methods

oo ¢ 1yk+1 0o ¢ 1yk+1 k-1

=1 R 263 k(R =
1

(= =Y — +=3 3 -
4 2i=1 k(%) 2= B3(Y) =T
J 00 E+1 00 k+1 k—1 00 E+1 k—1
. (—1) 5 (—1) 1 (—1) 1
1609 = =% —= X =+5 ) =
| 4= kg(Qkk) 4 = k-,'(Qkk) =7 = k5(2kk) =5
! 145 X (—1)ktlkzl 1 o5 § (—1)kt+1E=l g k=14
l o S = L,
'_ 4 = k3(2kk) 32136 = kg(Qkk) j:134j:1-72
' 5 X (—1)kt1 o5 X (—1)ktlh=ly
Fcan) = 2 + -
rog ngl ) 2 k; K7(%) =t
PR 75 X (—1)kt1k=l 1 195 X (—1)ktlh=l g k-1,
' 2 13 (2F >t 2 13 (2F 4 2 i
L k=1 (k) j=1J k=1 (k) j=17 i=1
.
l

Formulas for 7 and 11 were found by JMB and David Bradley; 5 and 9
by Kocher 25 years ago, as part of the general formula:
g 1 1 & (—1)kHieE2 — g2 ] ( 312)

= 1 —
k; k(k2 —22) 2 k; w3(%F) K —a? mlll m?2




Newer (2005) Results

Using bootstrapping and the “Pade/pade” function JIMB and Dave
Bradley then found the following remarkable result (1996):

00 1 B E 00 (_l)k—l—l k—1 (1—{—4:1:4/7714)
k§1k3(1—$4/k4) B 2k§1k3(2kk)(1—x4/k4)m1_=11 1 —z%/m*

Following an analogous — but more deliberate — experimental-based
procedure, we have obtained a similar general formula for £(2n+2) that is

pleasingly parallel to above:
Ca 1

e 1 Rl (1 — 422/m?
> s = 3% 0 (s

k=1 p=1 k2 (5F) (1 — 22/k2) =y

Note that this gives an Apery-like formula for £(2n), since the LHS equals

1 — wx cot(mx)
212

ioj C(2n + 2)z°" =

=0

» We sketch our experimental discovery of this in the new few slides
BBB, Exp Mathematics, 15 (2006), 281-289.



The Experimental Scheme

1. We first supposed that £(2n+2) is a rational combination of terms of the
form:
00 N k-1
o(2r;[2a1, --,2ay]) = 1 2%

2k
k=1 kQT( ) =1 n;=1"1,

wherer+a,+a,+...+ay,=n+1and a are listed increasingly.

2. We can then write:

o0 co n+1
S c@n4+2)22" £ 3 Y Y aln)o(2r; 20) 220
n=0 n=0r=1 rcN(n+1-r)

where I'1(m) denotes the additive partitions of m.

3. We can then deduce that
Sl 1

io: C(Qn + 2) 332” — Z (zkk)(k’z Pk(m)

oy k=1 — z2)

where P,(x) are functions whose general form we hope to discover:




¢(2)

¢(4)

¢(6)

¢(8)

¢(10)

The Bootstrap Process

8
et

32 @y = @D,
3 zjl (%fl - zjl Zé% i 2_2 — 35(4.[0]) — 90(2, [2])
» o k=1 . o L o
3 .’c;l (Qkkl)kfi _9 kgl 25%3242 B 425 kgl 25%3;24
o k—1<k—1_.-2
+2§ k; =i %@5%’
30(6,11) ~ 90(4,121) ~ =20(2, [41) + 2 0(2,[2,2)

30(8, [1) - 90(6, [2]) - - 0(4, [4) + = (4, [2,2]) — 635(2, [6])

+%a(2, [4,2]) — 22—70(2, 2,2,2])
45 20
30(10, 1) - 90(8. [2]) ~ *20(6. [4]) + 22 (6, [2.2]) — 630(4. [6])

+%a(4, [4,2]) - %70(4, [2,2,2]) — ?0(2, [8]) + 1890(2, [6,2])

+6§o~(2, [4,4]) — ?a(z, [4,2,2]) + %lo(z 2,2,2,2])



Coefficients Obtained

Partition | Alpha Partition | Alpha Partition Alpha

[empty] | 3/1 1 -9/1 2 -45/2

1,1 27/2 3 -63/1 2,1 135/2

1,1,1 -27/2 4 -765/4 3,1 189/1

22 675/8 2,1,1 -405/4 1,1,1,1 81/8

5 -3069/5 4,1 2295/4 32 945/2

3,1,1 -567/2 2,2,1 -2025/8 | 2,1,1,1 405/4

1,1,1,1,1 | -243/40 |6 -4095/2 | 5,1 9207/5

4,2 11475/8 | 4,1,1 -6885/8 | 3,3 1323 /2

3,21 -2835/2 | 3,1,1,1 567 /2 222 -3375/16

221,11 6075/16 |2,1,1,1,1|-1215/16/1,1,1,1,1,1 | 243/80

7 -49149/7 | 6,1 49140/8 | 5,2 36828/8
Partition Alpha Partition Alpha Partition Alpha
51,1 -27621/10 4,3 32130/8 4,21 -34425/8
4,1,1,1 6885/8 3:3.1 -15876/8 83.2.2 -14175/8
3,2,1,1 17010/8 3,1,1,1,1 -1701/8 2,2,2,1 10125/16
2,2,1,1,1 -6075/16 2,1,1,1,1,1 | 729/16 1,1,1,1,1,1,1 | -729/560
8 -1376235/56 | 7,1 1179576/56 | 6,2 859950/56
6,11 -515970/56 | 5,3 902286/70 | 5,2,1 -773388/56
5,1,1,1 193347 /70 4.4 390150/64 | 4,3,1 -674730/56
4,22 -344250/64 | 4,2,1,1 413100/64 | 4,1,1,1,1 -41310/64
3,3,2 -277830/56 | 3,3,1,1 166698/56 | 3,2,2,1 297675/56
3,2,1,1,1 -119070/56 | 3,1,1,1,1,1 | 10206/80 2,222 50625/128
222,11 -60750/64 2,2,1,1,1,1 | 18225/64 2,1,1,1,1,1,1 | -1458/64
1,1,1,1,1,1,1,1 | 2187/4480




Resulting Polynomials

45 , 45 4, 45 4 45 g 45 qg 45 45 45 44
xZ xr

X

— el e gt e i s ———if B — &
4 16 64 256 1024 4096 16384

65586
49 119 , 3311 , 38759 o 384671 g

3——ﬂ7+ e
4 44 5184 186624 ' 6718464

3605399 Lo . 33022031 15, . 299492039 1,

241864704 8707129344 313456656384
205 5 7115 , 207395 ¢ 4160315 o = 74142995 1

16 2304 4_331776 47775744 6879707136

1254489515 1, 20685646595 14 336494674715 14
990677827584 142657607 172096 20542695432781824

5269 , , 6640139 , 1635326891 o 5944880821 g
Ps(z) ~ 3— a4+ — "% 4 x
400 1440000 5184000000 _ 18662400000000
212874252291349 4  141436384956907381 ;-

T 67184640000000000°  241864704000000000000"
70524260274859115989 14 31533457168819214655541 1,

_—870712934400000000000000x __313456656384000OOOOOOOOOOOOOx
Py () 3_ 5369 2 8210839 4 199644809 .6 680040118121 g4
7\ ~

400 1440000° 5184000000 _ 18662400000000
278500311775049 1, 84136715217872681 15

T 67184640000000000°  241864704000000000000
22363377813883431689 14 5560000840263911428841 1

-_8707129344000OOOOOOOOOOO$ ~ 3134566563840000000000000000

P3(x)

&Q

Py(x)

&

Ps(x)




After Using “Pade” Function in
Mathematica or Maple

Pile) = 3 2
? 3(4z<—1)

P(z) = (22~ 1) ... and factoring
7 12(42% - 1)

7 12(422 — 1)(422 - 9)

- (@2 -4)(=?-9)

7 48(422—1)(422-9)

Ps(@) = — 2 9y2 —16)

Pe(z) 2 48(4x2 — 1) (422 — 9)(4x2 — 25)
O T T (422 9) (22 — 16) (22 — 25)

P () 7 192(4z2 — 1)(4z2 — 9)(4z2 — 25)
AT T (62 216) (22 — 25) (22 — 36)

Py(x)

which immediately suggests the general form:

1 k=1 4.2 _ 2
Z c(2n 4 2)z2" = 3 Z @ il

11

(k2—$2) o T2 — m?2



Several Confirmations of
Z(2n+2)=Zeta(2n+2) Formula

¢ We symbolically computed the power series coefficients
of the LHS and the RHS , and verified that they agree up
to the term with x100,

¢ We verified that Z(1/6), Z(1/2), Z(1/3), Z(1/4) give
numerically correct values (analytic values are known).

¢ We then affirmed that the formula gives numerically
correct results for 100 pseudorandomly chosen arguments
— to high precision near radius of convergence

We subsequently proved this formula two different ways,
Including using the Wilf-Zeilberger method....

To SUMMARIZE ....



&

1. viaPSLQ to
50,000 digits
(250 terms)

Riemann
(1826-66) Z(a:)

Bailey, Bradley
JMB discovered

and proved - in 3Ms -

three equivalent
binomial identities

3F> (

¢(2) =

2 0

%,cm) ,c( y=—,..

. o 1 Euler _§
()= ) — By (1707-73) B

;o= I
945

1 k—1 42 — n?
(k2 2) n=1 ¥~ — N

3 Z @

>0
1
- 2k __
= 3 @kt = Y
k=0 1
D2 as hoped
k—1 4 n?—m?
= Hmzn—l—l ’n,%—?’r’r;é 1 1

3n,n+ 1, —n l -
on+1,n+1/2"4)

human/MAA?




Automating the Steps?

o(2r; [2a1,---,2an]) = Z H Z

2k 2a
k— 1’“2’"( )z—l n=17;

1. HUMAN CONJECTURE “There Is a generating function for
£(2n+2) in terms of ¢”
2. DATA COLLECTION via PSLQ and Maple or Mathematica

=P 3. PATTERN DETECTION <G

4. STRUCTURE DETERMINATION via Maple/Mathematica
- INFINITE IDENTITY
5. ANALYTIC CONTINUATION via Gosper
- FINITE IDENTITY |
6. HUMAN PURIFICATION
- FINITE IDENTITY 1I

7. WILF-ZEILBERGER PROOF




Summary

New technigues now permit integrals,
Infinite series sums and other entities
to be evaluated to high precision
(hundreds or thousands of digits),
thus permitting PSLQ-based
schemes to discover new identities.

These methods typically do not suggest
proofs, but often it is much easier to
find a proof when one “knows” the
answer is right.

Details are in Experimental Mathematics in Action,
or in these two slightly older books by Borwein,
Bailey and (for vol 2) Girgensohn (also on CD). A
“Reader’s Digest” version of these two books is at
www. exper i nent al mat h. 1 nf o.

"The plural of ‘anecdote’ is not 'evidence'."
- Alan L. Leshner, Science publisher
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